首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Freshwater shallow lakes typically exhibit two alternative stable states under certain nutrient loadings:macrophyte-dominated and phytoplankton-dominated water regimes.An ecosystem regime shift from macrophytes to phytoplankton blooming typically reduces the number of species of invertebrates and fishes and results in the homogenization of communities in freshwater lakes.We investigated how microbial biodiversity has responded to a shift of the ecosystem regime in Dianchi Lake,which was previously fully covered with submerged macrophytes but currently harbors both ecological states.We observed marked divergence in the diversity and community composition of bacterioplankton between the two regimes.Although species richness,estimated as the number of operational taxonomic units and phylogenetic diversity(PD),was higher in the phytoplankton dominated ecosystem after this shift,the dissimilarity of bacterioplankton community across space decreased.This decrease in beta diversity was accompanied by loss of planktonic bacteria unique to the macrophyte-dominated ecosystem.Mantel tests between bacterioplankton community distances and Euclidian distance of environmental parameters indicated that this reduced bacterial community differentiation primarily reflected the loss of environmental niches,particularly in the macrophyte regime.The loss of this small-scale heterogeneity in bacterial communities should be considered when assessing long-term biodiversity changes in response to ecosystem regime conversions in freshwater lakes.  相似文献   

2.
Saline lakes represent a particularly interesting aquatic environment for harboring high microbial diversity.However,the microbial diversity in different states and locations of saline lake is often overlooked.We studied for the first time the diversity and relative composition of the microbial communities in the Chagan Lake,NE China,and investigated the dif ferences in microbial species and physical and chemical factors in different geographical localities of the lake.After extracting the total DNA of the sample,we tested the library with the established library,sequenced the qualified library with Illumina HiSeq 2500,and studied the bacterial diversity by 16 S rRNA targeted metagenomics analysis.Results reveal that the highest microbial abundance in Chagan Lake at genus level was Proteobacterium followed by Actinomycetes and Bacteroides.In addition,we compared the microbial composition within the lake using alpha-and beta-diversity indices,showing that both diversity and evenness were the highest in the middle of the lake and lowest in the west of lake areas,and in the upper,middle,and lower depth of water columns,the low water column had the highest species number in the whole water environment,but the dif ference was not significant.We believe that physicochemical factors contribute to the formation of microbial community composition and diversity.In aquaculture industry,it is impossible apply horticulture for making full use of the spatial dif ferences in the microbial composition of the water.Therefore,combining cultured aquatic animal with the most suitable microbial species is a good way to boost the breeding ef fect for greater economic value.  相似文献   

3.
Copper has long been utilized as a disinfectant for bacteria,but its impact on microbial communities attached to the steel surface in seawater remains unknown.In the present study,3 mooring chain steels of different copper contents are subjected to a 3-month marine field exposure,and the corrosion rate increases in the order of BR5 steel(without copper) BR5 CuH steel(0.8% copper) BR5 CuL steel(0.4% copper).The microbial community results show that copper introduction does not result in an obvious change in microbial quantity,but it alters the diversity,richness,and structure of microbial communities due to the variation in copper-resistance of different species.BR5 CuH steel holds microbial communities with the highest percentage of some well-known corrosive microbes including sulfate-reducing bacteria,sulfuroxidizing bacteria,and iron-oxidizing bacteria,but possesses the lowest community diversity/richness owing to the toxicity of copper.The microbial community diversity/richness is stimulated by the low-copper content of BR5 CuL steel,and this steel also carries an intermediate proportion of such corrosive bacteria.Both well-known corrosive bacteria and microbial community diversity/richness seem to be involved in the corrosion acceleration of copper-bearing mooring chain steels.  相似文献   

4.
The seasonal dynamics of a crustacean zooplankton community in Erhai Lake was investigated from May 2010 to April 2011. In total, 11 species were recorded, including six (6 genera) cladoceran and five (5 genera) copepod species. The crustacean zooplankton densities ranged from 24.3 to 155.4 ind./L. In winter and spring, the large-bodied cladoceran Daphnia galeata dominated the crustacean plankton community. In summer and autumn, when the colonial or filamentous algae dominated the phytoplankton communities, the small-bodied species (e.g. Bosminafatalis, Ceriodaphnia quadrangular, and Mesocyclops leuckarti) replaced the large-bodied ones. One-way ANOVA and redundancy analysis revealed that community structure was dependent upon total nitrogen, total phosphorus, water temperature, transparency, and the biomass of small algae. The variation in both phytoplankton structure and environmental variables were important factors in the seasonal succession of crustacean zooplankton structure in Erhai Lake.  相似文献   

5.
The spatial and seasonal pattern of macrozoobenthic structure and its relationship with environmental factors were studied from July 2006 to April 2008 in Mingzhu Lake, Chongming Island, Shanghai at the Changjiang River mouth. The congruences in water quality bioassessment based on diversity and biotic indices and using different taxonomic categories were also explored to find the best assessment method of water quality for the lake. All major structural characteristics of macrozoobenthic community, including species composition, abundance, biomass and four biomass-based diversity indices (Shannon’s diversity, Simpson’s diversity, Pielou’s evenness and Simpson’s evenness index) fluctuated significantly in season but in space. The above four abundance-based diversity indices plus abundance-based Margalef’s richness index did not display significant spatial variations; and significant seasonal differences were found in three indices only. Water temperature was the key environmental factor responsible for macrozoobenthic spatio-temporal distribution patterns. Water quality assessed by Shannon’s index (H a′) and biological pollution index (BPI) rather than the other four biotic indices were consistent with those by trophic state index (TSI). Results from chironomids and oligochaetes did not always agree to those from the whole community when H a′ or Hilsenhoff biotic index was applied to bioassessment. Therefore, combining multiple indices and avoiding a single taxonomic category to assess water quality are strongly recommended and in Mingzhu Lake using a mixture of H a′ and BPI will ensure the most effective investigation of water quality. Our results also show that the main structural characteristics of macrozoobenthic communities in the small lake may display consistent spatial patterns.  相似文献   

6.
《山地科学学报》2020,17(6):1398-1409
Soil microbial communities and enzyme activities play key roles in soil ecosystems. Both are sensitive to changes in environmental factors,including seasonal temperature, precipitation variations and soil properties. To understand the interactive mechanisms of seasonal changes that affect soil microbial communities and enzyme activities in a subtropical masson pine(Pinus massoniana) forest, we investigated the soil microbial community structure and enzyme activities to identify the effect of seasonal changes on the soil microbial community for two years in Jinyun Mountain National Nature Reserve, Chongqing, China. The soil microbial community structure was investigated using phospholipid fatty acids(PLFAs). The results indicated that a total of 36 different PLFAs were identified, and 16:0 was found in the highest proportions in the four seasons, moreover, the total PLFAs abundance were highest in spring and lowest in winter. Bacteria and actinomycetes were the dominant types in the study area. Seasonal changes also had a significant(P 0.05) influence on the soil enzyme activity. The maximum and minimum values of the invertase and catalase activities were observed in autumn and winter, respectively. However, the maximum and minimum values of the urease and phosphatase acid enzymatic activities were found in spring and winter, respectively. Canonical correspondence analysis(CCA) analysis revealed that the seasonal shifts in soil community composition and enzyme activities were relatively more sensitive to soil moisture and temperature, but the microbial community structure and enzyme activity were not correlated with soil pH in the study region. This study highlights how the seasonal variations affect the microbial community and function(enzyme activity)to better understand and predict microbial responses to future climate regimes in subtropical area.  相似文献   

7.
Marine bacteria have recently been identified as a potent solution for petroleum hydrocarbon degradation in response to hazardous oceanic oil spills. In this study, a mesocosm experiment simulating a petroleum spill event was performed to investigate changes in the abundance, structure, and productivity of bacterial communities in response to oil pollution. Cultured heterotrophic bacteria and total bacteria showed a consistent trend involving an immediate decrease in abundance, followed by a slight increase, and a steady low-level thereafter. However, the changing trend of bacterial productivity based on bacterial biomass and bacterial volume showed the opposite trend. In addition, the density of oil-degrading bacteria increased initially, then subsequently declined. The change in the bacterial community structure at day 0 and day 28 were also analyzed by amplified ribosomal DNA restriction analysis(ARDRA), which indicated that the species diversity of the bacterial community changed greatly after oil pollution. Alphaproteobacteria(40.98%)replaced Epsilonproteobacteria(51.10%) as the most abundant class, and Gammaproteobacteria(38.80%)became the second most dominant class in the whole bacterial community. The bacterial communities in oil-contaminated seawater(32 genera) became much more complex than those found in the natural seawater sample(16 genera). The proportion of petroleum-degrading bacteria in the oil-contaminated seawater also increased. In this study, culture-dependent and culture-independent approaches were combined to elucidate changes in both bacterial productivity and community structure. These findings will contribute to a better understanding of the role that bacteria play in material cycling and degradation in response to oil pollution.  相似文献   

8.
This study was conducted to evaluate the impact of hazy and foggy weather on the bacterial communities in bioaerosols, for which samples were collected from the Qingdao coastal region on sunny, foggy, and hazy days in January and March 2013. Bacterial community compositions were determined using polymerase chain reaction denaturing gradient gel electrophoresis (PCRDGGE). The bacterial community diversity was found to be high on foggy and hazy days, and the dominant species differed during hazy weather. The Shannon-Wiener index revealed that the bacterial community diversity of coarse particles was higher than that of fine particles in the bioaerosols. The bacterial community diversity of fine particles significantly correlated with relative humidity (RH; r2 = 0.986). The cluster analysis results indicated that the bacterial communities on sunny days differed from those on hazy and foggy days. Compared with sunny days, the bacterial communities in the fine particles during hazy weather exhibited greater changes than those in the coarse particles. Most of the sequenced bacteria were found to be closely affiliated with uncultured bacteria. During hazy weather, members of the classes Bacilli and Gammaproteobacteria (Pseudomonas and Acinetobacter) were dominant. The DGGE analysis revealed that Proteobacteria and Firmicutes were the predominant phyla, and their relative percentages to all the measured species changed significantly on hazy days, particularly in the fine particles. Haze and fog had a significant impact on the bacterial communities in bioaerosols, and the bacterial community diversity varied on different hazy days.  相似文献   

9.
Studies on the diversity and distribution of bacterial populations will improve the overall understanding of the global patterns of marine bacteria and help to comprehend local biochemical processes and environments. We evaluated the composition and the dynamics of bacterial communities in the sediment of Jiaozhou Bay (China) using PCR-denaturing gradient gel electrophoresis (DGGE). Sediment samples were collected from 10 different sites in May, August, and November 2008 and in February 2009. There was significant temporal variation in bacterial community composition at all sites. However, the spatial variation was very small. The DGGE analyses of bacterial communities were used to divide the 10 stations into three types. Canonical correspondence analysis (CCA) revealed that the changes in bacterial communities were driven by sediment properties. Sequence analysis of DGGE band-derived 16S rRNA gene fragments revealed that the dominant bacterial groups in the sediment were of the classes γ-proteobacteria and δ-proteobacteria and phyla Bacteroidetes and Nitrospirae. Our results provide considerable insight into the bacterial community structure in Jiaozhou Bay, China.  相似文献   

10.
Microbial communities play key roles in the marine ecosystem. Despite a few studies on marine microbial communities in deep straits, ecological associations among microbial communities in the sediments of shallow straits have not been fully investigated. The Bohai Strait in northern China(average depth less than 20 m) separates the Bohai Sea from the Yellow Sea and has organic-rich sediments. In this study, in the summer of 2014, six stations across the strait were selected to explore the taxonomic composition of microbial communities and their ecological associations. The four most abundant classes were Gammaproteobacteria, Deltaproteobacteria, Bacilli and Flavobacteriia. Temperature, total carbon, depth, nitrate, fishery breeding and cold water masses influenced the microbial communities, as suggested by representational dif ference and composition analyses. Network analysis of microbial associations revealed that key families included Flavobacteriaceae, Pirellulaceae and Piscirickettsiaceae. Our findings suggest that the families with high phylogenetic diversity are key populations in the microbial association network that ensure the stability of microbial ecosystems. Our study contributes to a better understanding of microbial ecology in complex hydrological environments.  相似文献   

11.
Dynamics of soil fauna in Da Hinggan Mountains, Northeast China   总被引:1,自引:0,他引:1  
The dynamics of soil animals was studied in seven representative forest communities in the north of the Da Hinggan Mountains, Northeast China. The results indicate that it was distinctive in the changes of the numbers of soil animals and groups and diversity in relationship with seasons for macrofauna and torso-micro fauna in the study area. The numbers of the observed soil animals in different months were: October>August>June. Group number was larger in August and October, but smaller in June. The change of diversity index in different months was: August>June>October. The biomass for macrofanna in different months was: October>June>August. The composition and number of each functional group was relatively stable. In the community of the predominant soil environment, the percentage of saprophagous animals was higher than carnivorous animals and herbivorous animals. The dynamics changes of saprophagous and carnivorous animals were distinctive, increasing from June to October, while the change of herbivorous animals was unremarkable.  相似文献   

12.
The distinctive estuary hydrodynamics and nutrient input make the estuary ecosystem play a key role in lake ecosystems. The Nanfei River and Zhaohe River are two main inlets of Chaohu Lake, Anhui, East China. We selected estuaries of the two rivers as representative areas to study temporal and spatial changes of bacterial communities. In August (summer) and November (autumn) 2016 and February (winter) and May (spring) 2017, 16 water and sediment samples were collected from the estuaries. Physicochemical characteristics indicate significant differences in the nutritional status and eutrophication index of the estuaries due mainly to organic input. Examination of the number of operational taxonomic units, the diversity index, the community composition, and redundancy analysis revealed the following. First, the existence of varying degrees of seasonal differences in the distribution of almost all bacteria. In addition, the species diversity in the sediment samples was higher than that in the water samples, and the dominant species differed also among these samples. Second, a large number of unknown genera were detected, especially in the sediment samples, such as unclassified Xanthomonadales incertae sedis, unclassified Anaerolineaceae, and unclassified Alcaligenaceae. Last, TP, TN, and TOC were the main influential factors that affected the bacterial community structure.  相似文献   

13.
DETERMINANTS OF STRUCTURE IN AQUATIC NON-PELAGIC PROTOZOAN COMMUNITIES   总被引:2,自引:0,他引:2  
Although microbes have traditionally been used as models for testing ecological theory, research on the organization of these communities has largely been isolated from other areas of community ecology. Early studies indicated that microbial populations can form dynamic, interacting assemblages. Observations of distributional patterns suggest that certain deterministic forces regulate community structure. It appears that protozoans are tolerant of a wide range of environmental conditions although evidence for this is largely based on gross environmental analyses. Laboratory studies have suggested the importance of negative and positive biotic interactions in determining community membership, but little field evidence for this exists. The importance of transport processes in controlling community composition is being increasingly recognized. All three types of processes likely act to regulate the colonization and successional dynamics of these communities. A simple model is presented to promote the devel  相似文献   

14.
To understand the relationship between the plankton community and environmental factors and water quality in the Bayuquan Port of Liaodong Bay, China, and investigations were carried out during six different periods (April 2009, April 2010, October 2011, April 2012, October 2012, and April 2013). This area was characterized by high levels of nutrient and suspended solids (SPS) during survey periods, and eutrophication led to the occurrence of red tides in April and October 2012 and April 2013. Our analyses revealed that the plankton communities of Bayuquan Port lacked stability and were affected seriously by external disturbance (e.g., oceanographic engineering and river runoff). Our data indicate that oil, dissolved inorganic nitrogen (DIN), SPS, and chlorophyll a (Chl-a) were key factors that regulated the phytoplankton and zooplankton communities. The partial redundancy analysis (partial RDA) suggested that oil and SPS were the most important environmental variables affecting the phytoplankton community in April 2010 and 2012, whereas DIN concentration played a governing role in zooplankton dynamics. Oil and Chl- a concentrations affected significantly the zooplankton community in October 2012. Therefore, the plankton communities could reflect both dynamic changes in coastal environmental factors and the ongoing eutrophication process caused by anthropogenic activities in this area.  相似文献   

15.
Little is known about whether soil microbial population dynamics are correlated with forest succession.To test the hypotheses that(1) soil microbial composition changes over successional stages,and(2) soil microbial diversity is positively correlated with plant species diversity,we determined the soil microbial populations,community composition,and microflora diversity in evergreen broad-leaved forests along a chronosequence of vegetation succession from 5 to 300 years in southwestern China.The soil microbi...  相似文献   

16.
Using multi-mesh gillnets and trawls, the fish communities in Dianshan Lake at 6 stations from Oct. 2009 to Jul. 2010 were investigated seasonally to reveal the biodiversity and its spatial and temporal distribution patterns. The long-term changes in their structural characteristics were then analyzed to identify the main infl uencing factors and several measures for lake restoration were put forward. Thirty six species, belonging to 9 family and 30 genera, were collected, amongst which, the order Cypriniformes accounted for 61.1% of the total species number. In terms of importance value, Cypriniformes was the predominant group, Coilia nasus the dominant species, while Cyprinus carpio and Rhinogobius giurinus were the subdominant taxa. The community types did not differ among stations, but between seasons. There were no significant differences between seasons and among stations in species diversity, but richness differed both spatially and seasonally. Along with the process of eutrophication and the drastic reduction of the area colonized by macrophytes from 1959 to 2009–2010, the fish diversity declined markedly, and species numbers of herbivores and piscivores declined proportionately more than those of invertivores, omnivores, and planktivores. The decline of potamophilus and river-lake migratory fish was more marked than those of sedentary, river-sea migratory, and estuarine fishes. Eutrophication concomitant with sharp reduction of macrophyte area and overfishing may be the main reasons for the decline in fish diversity in Dianshan Lake.  相似文献   

17.
Four soil types(peat, marsh, meadow, and sandy) in the Zoige Plateau of China are associated with the severity of wetland degradation. The effects of wetland degradation on the structure and abundance of fungal communities and cellulase activity were assessed in these 4 soil types at 3 depths using DGGE(Denatured Gradient Gel Electrophoresis), q PCR(Quantitative Real-time PCR),and 3,5-dinitrosalicylic acid assays. Cellulase activity and abundance of the fungal community declined in parallel to the level of wetland degradation(from least to most disturbed). DGGE analysis indicated a major shift in composition of fungal communities among the4 soil types consistent with the level of degradation.Water content(WC), organic carbon(OC), total nitrogen(TN), total phosphorus(TP), available nitrogen(AN), and available phosphorus(AP) were strongly correlated with cellulase activity and the structure and abundance of the fungal community.The results indicate that soil physicochemical properties(WC, OC, TN, TP, AN, and AP), cellulase activity, and diversity and abundance of fungal communities are sensitive indicators of the relative level of wetland degradation. WC was the major factorinvolved in Zoige wetland degradation and lower WC levels contributed to declines in the abundance and diversity of the fungal community and reduction in cellulase activity.  相似文献   

18.
The dynamic microcosms were used to evaluate the effect of oil spills on microbial ecological system in marine sediment and the enhancement of nutrient on the oil removal. The function and structure of microbial community caused by the oil pollution and phosphate dosage were simultaneously monitored by dehydrogenase activity assay and PCR-denaturing gradient gel electrophoresis (DGGE) techniques. The results indicated that the amount of total bacteria in all dynamic microcosms declined rapidly with incubation time. The number of petroleum-degrading bacteria and the activity of sediment dehydrogenase were gradually enhanced by petroleum in the oil-treated microcosms, while they both showed no obvious response to phosphate dosage. In comparison, phosphate spiked heterotrophic bacteria and they showed a significant increase in amount. DGGE profiles indicated that petroleum dosage greatly changed community structure, and the bacteria belonged to class Deltaproteobacteria, and phyla Bacteroidetes and Chlorobi were enriched. This study demonstrated that petroleum input greatly impacted the microbial community structure and consequently the marine sediment petroleum-degrading activity was enhanced. Phosphate dosage would multiply heterotrophic bacteria but not significantly enhance the petroleum degradation.  相似文献   

19.
Pollution has a considerable effect on biological communities, in terms of size and diversity of the populations. Yet, the precise consequences of human activity on microbial communities in the marine environment are poorly understood. Therefore, in an ongoing collaborative research programme between Heriot-Watt University and the Ocean University of Qingdao, bacteria were isolated in 1999 and 2000 from marine sediment, seawater, seaweed, fish and shellfish, taken from locations in Shandong Province adjacent to Qingdao. Sampling locations were comprised of industrial and aquacultural sites and a clean, control site. In order to analyse microbial diversity, a polyphasic approach was adopted for characterisation of these isolates, specifically through examination of key phenotypic traits, i.e. using Biolog GN MicroPlate profiles, bacterial whole cell protein profiles and 16S and 23S rRNA gene sequences. These techniques yielded complex taxonomic data, which were subjected to statistical and cluster analyses. The application of these methods to studies of microbial communities is discussed.  相似文献   

20.
Denitrification and anammox processes are major nitrogen removal processes in coastal ecosystems.However,the spatiotemporal dynamics and driving factors of the diversity and community structure of involved functional bacteria have not been well illustrated in coastal environments,especially in human-dominated ecosystems.In this study,we investigated the distributions of denitrifiers and anammox bacteria in the eutrophic Bohai Sea and the northern Yellow Sea of China in May and November of2012 by constructing clone libraries employing nosZ and 16 S rRNA gene biomarkers.The diversity of nosZ-denitrifier was much higher at the coastal sites compared with the central sites,but not significant among basins or seasons.Alphaproteobacteria were predominant and prevalent in the sediments,whereas Betaproteobacteria primarily occurred at the site near the Huanghe(Yellow)River estuary.Anammox bacteria Candidatus Scalindua was predominant in the sediments,and besides,Candidatus Brocadia and Candidatus Kuenenia were also detected at the site near the Huanghe River estuary that received strong riverine and anthropogenic impacts.Salinity was the most important in structuring communities of nosZdenitrifier and anammox bacteria.Additionally,anthropogenic perturbations(e.g.nitrogen overloading and consequent high primary productivity,and heavy metal discharges)contributed significantly to shaping community structures of denitrifier and anammox bacteria,suggesting that anthropogenic activities would influence and even change the ecological function of coastal ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号