首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract The article describes the characteristics of the Yagan metamorphic core complex, especially the associated detachment fault and various extensional structures in its footwall. The age of the complex is discussed in some detail as well. The basic features of the Yagan metamorphic complex (Jurassic in age) are similar to those of the metamorphic core complex (Tertiary in age) in the Cordilleran area; they are as follows: (a) mylonitic gneisses in the footwall, (b) chloritized sheared mylonitic rocks, (c) pseudotachylites and flinty cataclasites or microbreccias, (d) unmetamorphosed or epimetamorphic rocks in the hanging wall with a layer of fault gouges or incohesive fault breccia next to the detachment fault. In contrast to its Cordilleran counterpart, however, there are many extensional faults with different styles (from dactile low-angle normal faults through brittle — ductile to brittle high — angle normal faults) in the footwall.  相似文献   

2.
根据对内蒙古苏尼特左旗地区的野外研究 ,我们将以前描述的交其尔逆冲断层重新解释为一南倾的伸展拆离断层。该断层为一印支期变质核杂的主拆离断层 ,它叠加在缩短的阿尔泰和满洲里带间的晚古生代索伦缝合带上。变质核杂岩的组成要素包括 :下盘的古生代中期和二叠—三叠纪侵入体 (分别是宝底道和哈拉图岩体 ) ,交其尔拆离断层之下、叠加在下盘岩体上的糜棱岩状剪切带 ,拆离断层本身和上盘成分多变、构造复杂的古生代和元古宙岩石。从U Pb年龄为 2 5 2Ma的糜棱岩化哈拉图岩体中获得白云母 ,其40 Ar/ 3 9Ar冷却年龄为 2 2 4Ma和 2 0 8Ma ,而后伸展沉积的下、中侏罗统沉积在下盘之上 ,表明变质核杂岩形成于印支期 ,即晚三叠世至侏罗纪最早期。研究区内 ,北东东走向的交其尔拆离断层的伸展作用方向大致为 2 15°。这是索伦缝合带内首次发现的印支期伸展作用 ,结合分隔遥远的中国各地区 ,如大别—苏鲁缝合带、西藏高原羌塘变质带和东阿尔金山区近来报道的其它一些晚三叠—早侏罗世 (约 2 2 0~ 190Ma)沿韧性拆离断层的伸展作用实例 ,清楚表明东亚地区区域性印支期变形的性质有必要进行重新研究  相似文献   

3.
内蒙古亚干变质核杂岩与伸展拆离断层   总被引:33,自引:0,他引:33       下载免费PDF全文
郑亚东  张青 《地质学报》1993,67(4):301-309
本文阐明了内蒙古亚干变质核杂岩的构造组成与特征,特别是拆离断层本身及下盘中的各种伸展构造,对变质核杂岩的年龄也进行了较详细的讨论。亚干变质核杂岩)侏罗纪)与科迪勒拉的变质核杂岩(第三纪)的特征基本。相似。其基本构造要求:(1)下盘为糜棱状片麻岩;(2)绿泥石化礴岩;(3)假熔岩和燧石状碎裂岩或微角砾岩;(4)末变质或轻微变质的上船岩石和邻近拆离断层的一层断层泥或朱粘结的断层角砾。但与科迪勒拉区不同  相似文献   

4.
The Simav metamorphic core complex of the northern Menderes massif, western Turkey, consists of a plutonic (Tertiary) and metamorphic (Precambrian) core (footwall) separated from an allochthonous cover sequence (hanging wall) by a low-angle, ductile-to-brittle, extensional fault zone (i.e. detachment fault). The core rocks below the detachment fault are converted into mylonites with a thickness of a few hundred metres. Two main deformation events have affected the core rocks. The first deformational event (D1) was developed within the Precambrian metamorphic rocks. The second event (D2), associated with the Tertiary crustal extension, includes two distinct stages. Stage one is the formation of a variably developed ductile (mylonitic) deformation (D2d) in metamorphic and granitic core rocks under greenschist facies conditions. The majority of the mylonites in the study area have foliations that strike NNW to NNE and dip SW to SE. Stretched quartz and feldspar grains define the mineral lineation trending SW-NE direction and plunging gently to SW. The kinematic indicators indicate a top-to-NE sense of shear. Stage two formation of brittle deformation (D2b) that affected all core and cover rocks. D2b involves the development of cataclasites and high-angle normal faults. An overall top towards the north sense of shear for the ductile (mylonitic) fabrics in the core rocks is consistent with the N-S regional extension in western Turkey.  相似文献   

5.
A special metamorphic core complex underlain by a low-angle strike-slip ductile shear zone is present near Chifeng in eastern Inner Mongolia, northern China. The geology of the study area is similar to that of several Cordilleran metamorphic core complexes, but contrasts in significant ways as well. A major ESE-dipping normal fault, the Louzidian Range frontal fault, formed during Late Cretaceous extension. This fault separates a crystalline footwall locally containing mylonitic basement gneisses and granitic rocks (0 to >3 km thick) from a non-metamorphic hanging wall that is distended by normal faults. However, the shear sense of the underlying mylonitic shear zone, a low-angle strike-slip zone, is not compatible with the Louzidian fault. It may be related to a pre-Cretaceous regional sinistral strike-slip event rather than the Late Cretaceous regional crustal extension common throughout eastern China. Pre-existing mylonitic fabric anisotropy appears to have controlled the development of the Louzidian normal fault. Chloritic breccias locally developed along the fault indicate that it cut deeply into the crust of northern China.  相似文献   

6.
Analyses of 3‐D seismic data reveal that pre‐Triassic basins are present underneath the Mesozoic North Træna Basin (Lofoten Margin, Norway). These are linked to a Cordilleran‐style metamorphic core complex that developed in Palaeozoic times, including rotated fault blocks with hanging wall ‘growth’ wedges, bounded by listric faults that sole into a sub‐horizontal detachment. On the basis of similarity in age, structural style and transport direction, we propose a kinematic link with a Permian mylonitic detachment documented onshore. This study presents the first offshore evidence for Palaeozoic detachment faulting, elucidating the mechanisms behind the long‐lived exhumation history of the Lofoten basement.  相似文献   

7.
Records of lithospheric extension and mountain-range uplift are most continuously contained within syntectonic sedimentary rocks in basins adjacent to large structural culminations. In southeastern Arizona, metamorphic core complexes form mountain ranges with the highest elevations in the region, and supposedly much less extended terranes lie at lower elevations. Adjacent to the Santa Catalina-Rincon metamorphic core complex, within the Tucson Basin, stratigraphic-sequence geometries evident in a large suite of 2-D seismic reflection data suggest a two-phase basin-evolution model controlled by the emplacement and subsequent uplift of the core complex. In its earliest stage, Phase I of basin formation was characterized by extensive faults forming relatively small-scale proto-basins, which coalesced with the larger basin-bounding detachment fault system. Synextensional sedimentation within the enlarging basin is evidenced by sediment-growth packages, derived from adjacent footwall material, fanning into brittle hanging-wall faults. During this phase, volcanism was widespread, and growth packages contain interbedded sediments and volcanic products but, paradoxically, no mylonitic clasts from the adjacent metamorphic core complex. Phase II of basin evolution begins after a significant tectonic hiatus and consists of a symmetric deepening of the central basin with the introduction of mylonitic clasts in the basin fill. This is coupled with the activation of a series of high-angle normal faults ringing the core complex. These observations suggest a two-phase model for metamorphic core complex evolution, with an initial stage of isostatic core complex emplacement during detachment faulting that resulted in little topographic expression. This was followed, after a significant tectonic hiatus, by late-stage exhumation and flexural uplift of the Santa Catalina-Rincon metamorphic core complex through younger high-angle faulting. Moreover, the geometry of upper basin fill units suggests an extremely low effective elastic thickness in the region and that flexural uplift of the core complex induced asymmetric transfer of ductile mid-crustal rocks from beneath the subsiding Tucson Basin to the uplifting mountain range.  相似文献   

8.
辽西医巫闾山地区瓦子峪变质核杂岩的厘定   总被引:9,自引:0,他引:9  
以前未被发现的辽西医巫闾山地区瓦子峪变质核杂岩主要由一条向西倾的低角度正断层———瓦子峪拆离断层组成 ,它将由早白垩世沉积岩和火山岩组成的上盘与糜棱岩化和未变形的下盘分开。瓦子峪拆离断层 (以前称之为孙家湾—稍户营子断裂 )位于变质核杂岩的西侧 ,倾角 10~ 4 0°,构造标志指示向北西方向 (约 2 90°)剪切。与早白垩世地壳伸展相伴生的下盘糜棱岩剪切方向也是北西向 ,这与瓦子峪拆离断层运动相关。已经发表的和未发表的锆石U Pb年龄、40 Ar/3 9Ar热年代学和上盘阜新盆地中生物地层的时代研究表明 ,地壳伸展和变质核杂岩形成时代为早白垩世 (约 12 7~ 116Ma)。我们未发现以前文献报道的医巫闾山是一对称的变质核杂岩的任何证据。瓦子峪变质核杂岩以及WNW侧的拆离断层的厘定会加深我们对华北克拉通早白垩世伸展作用的理解和认识 ,下一步的研究重点包括野外构造研究以确定拆离断层和下盘糜棱岩的空间展布 ,进一步采集样品以研究变质核杂岩的地质 /热年代学和变质核杂岩范围内的岩体成因。我们认为瓦子峪变质核杂岩的形成是太平洋板块边界重组、早白垩世岩浆作用致使地壳升温 ,从而导致经造山作用而加厚的地壳垮塌的结果。  相似文献   

9.
中蒙边界区亚干变质核杂岩的组成与结构   总被引:4,自引:5,他引:4  
亚干核杂岩的变质核由条带状片麻岩、大理岩-糜棱状片(麻)岩、糜棱片麻状花岗岩、石英片岩等单位组成,拆离带由糜棱岩带、绿泥石化带、微角砾岩-假熔岩带、拆离断层面、断层泥和断层角砾构成,上盘岩系主要有二叠系、侏罗系、白垩系以及白云质大理岩异地块体.这些单位从构造角度可归结为3层结构并发育2个拆离带,显示了多层构造岩片由多个韧性拆离带经过长期递进伸展抬升叠置的特点,可能揭示了一种大陆内部多层伸展构造体系的特征.  相似文献   

10.
On the basis of the previous regional geological survey, based on the macroscopic and microscopic structural survey, combined with the comprehensive analysis of the regional magmatic activity and dating data, the authors in this paper revealed that there is another metamorphic core complex structure in Lizifang area of Southern Liaoning, namely Lizifang metamorphic core complex. A typical three-layer structure and five parts exist in the core complex, which are the footwall composed of Neo-archean metamorphic plutonic rocks and mesozoic granite intrusive rocks, the detachment fault zone composed of different levels of tectonic rocks, and the upper plate composed of Precambrian sedimentary cap and Cretaceous extensional basin. Lizifang metamorphic core complex formed in the Early Cretaceous Epoch, and the upper plate moved from NWW to SEE relaive to the footwall, which was similar with Jinzhou metamorphic core complex and Wanfu metamorphic core complex in geometry, kinematics polarity and formation time, indicating the same dynamic background. The determination of the metamorphic core complex may provide a basis for the late Mesozoic lithospheric thinning process and the mechanical and rheological properties of the lithosphere in the east of North China Craton. At the same time, the metamorphic core complex is closely related to the mineralization of gold deposits. So the detachment fault zone of Lizifang metamorphic core complex can serve as the key work area for further gold exploration, which may possess large mineralization potential.  相似文献   

11.
在区域地质调查资料基础上,根据宏观与微观构造测量,通过分析区域岩浆活动性及其测年资料等,揭示了在辽南庄河栗子房地区存在另一个变质核杂岩构造,即栗子房变质核杂岩。该核杂岩具有3层结构和5个部分,即由新太古代变质深成岩及中生代花岗岩侵入体构成的下盘、由不同层次的构造岩组成的中部拆离断层带以及由前寒武纪沉积盖层和白垩纪伸展盆地构成的上盘。栗子房变质核杂岩形成于早白垩世,运动方向为上盘相对下盘由NWW向SEE方向运动,与辽南金州变质核杂岩和万福变质核杂岩在几何学、运动学极性和形成时间等方面具有很多相似性,形成于同一动力学背景。该变质核杂岩的厘定可为阐明华北克拉通东部晚中生代岩石圈减薄过程及岩石圈的力学和流变学属性提供依据。同时,变质核杂岩与金矿床成矿关系密切,栗子房变质核杂岩的拆离断层带附近可作为下一步金矿勘查的重点工作区,成矿潜力较大。  相似文献   

12.
小秦岭金矿田中生代构造演化与矿床形成   总被引:23,自引:4,他引:23  
作为中国金矿主产地之一,小秦岭变质核杂岩经历两期不同性质的伸展。第一期为沿周缘拆离断层发育、方向与造山带平行的同造山伸展,上盘向WNW运动,活动时代为距今135~123Ma,属燕山期陆内造山形成的地壳增厚和岩浆活动共同作用的结果。第二期为退化变质糜棱岩带和正断层组成的变质核杂岩内部伸展构造,代表造山后进一步隆升导致的垮塌,时代为距今120~106Ma。小秦岭变质核杂岩内部发育与垮塌伸展同期的挤压性逆冲断层,由造山后残余挤压作用和构造剥蚀导致的伸展驱动力降低所致。小秦岭中蚀变千糜岩型金矿受退化变质糜棱岩带控制,成因为典型的伸展控矿机制,石英脉型金矿产于内部逆冲断层,成矿机制与小秦岭变质核杂岩垮塌伸展过程中的构造反转相关。  相似文献   

13.
错那洞穹隆属于北喜马拉雅片麻岩穹隆带(NHGD)的东南部重要组成部分,是本次研究首次发现并确立的穹隆构造。穹隆位于藏南扎西康矿集区南部,由外向内被两条环形断裂划分为三个岩石-构造单元:特提斯喜马拉雅沉积岩系上部单元、中部单元以及核部,其中内侧断裂为下拆离断层,外侧为上拆离断层。上部单元主要由侏罗系日当组的泥质粉砂质板岩和片岩组成,由外向穹隆中心靠近,根据变质矿物组合特征,其岩性呈较明显的渐变过程,即含或者不含变质矿物的泥质粉砂质板岩、含堇青石粉砂质板岩、含石榴石堇青石粉砂质板岩和含石榴石黑云母粉砂质板岩;中部单元从上至下岩石变质程度逐渐加深,构造变形依次增强,岩性依次为日当组低-高变质的片岩(包括含石榴石黑云母石英片岩、含蓝晶石-十字石二云母石英片岩、含矽线石二云母二长片麻岩)、含电气石(化)花岗质黑云母片麻岩、石榴石云母片麻岩和糜棱状石英二云母片麻岩,其典型变质矿物有石榴石、十字石、矽线石和蓝晶石;核部主要由糜棱状花岗质片麻岩夹少量的副片麻岩和错那洞淡色花岗岩组成。错那洞穹隆主要发育四期线理构造:近N-S向逆冲、N-S向伸展线理、近E-W向线理和围绕核部向四周外侧倾伏线理,分别对应了穹隆构造经历的四期主要变形:初期向南逆冲、早期近N-S向伸展、主期近E-W向伸展和晚期滑塌构造运动,其中主期近E-W向伸展对应于错那洞穹隆的形成,其动力学背景可能是印度板块斜向俯冲及由俯冲引起的中地壳向东流动双重作用。错那洞穹隆的发现和确立丰富了NHGD近E-W向伸展构造,进一步将NHGD划分为由近N-S向伸展所形成的穹隆带(简称NS-NHGD)和近E-W向伸展所形成的穹隆带(EW-NHGD)。  相似文献   

14.
张八岭隆起广泛分布的平缓韧性剪切带与郯庐断裂带平移作用形成的陡立韧性剪切带明显不同。通过对平缓韧性剪切带的几何学、运动学分析,结合早白垩世盆地特征、中国东部变质核杂岩伸展拆离断层和同构造岩浆岩同位素定年结果,厘定出张八岭隆起早白垩世变质核杂岩。该变质核杂岩上盘由南华纪-奥陶纪沉积地层和早白垩世盆地组成,下盘为新元古代浅变质碎屑沉积岩、变海相火山岩(基底)以及早白垩世侵入岩,上下盘之间被一条主伸展拆离断层所分隔。变质核杂岩长轴为NE-SW向,指示构造反映上盘向SE剪切滑动,与中国东部变质核杂岩的伸展方向完全一致。通过本次变质核杂岩的厘定,结合野外地质事实,笔者认为管店-马厂断裂是郯庐断裂带的次级断裂,是对郯庐断裂带早白垩世末第三次左行平移的响应。在综合研究的基础上,建立了区域构造-岩浆-成矿关系模型,揭示了张八岭隆起早白垩世经历了早期伸展(变质核杂岩阶段)-挤压走滑(管店-马厂断裂形成阶段)-晚期伸展(闪长质脉岩侵位阶段)3个构造阶段,多期构造、岩浆的叠加作用下,形成了本区的金多金属矿产。  相似文献   

15.
The Northern Snake Range is a classic example of a metamorphic core complex, Basin-and-Range province, United States. It is composed of a plastically deformed footwall and a brittlely deformed hanging wall, separated by the Northern Snake Range low-angle detachment (NSRD). Brittle deformation, however, is not confined to the hanging wall.This paper focuses on exposures in Cove Canyon, located on the SE flank of the Northern Snake Range, where penetrative, homogeneous faults are well exposed throughout the hanging wall, footwall and NSRD, and overprint early plastic deformation. These late-stage fault sets assisted Eocene-Miocene extension. Detailed analysis of the faults reveals the following: (1) The shortening direction defined by faults is similar to the shortening direction defined by the stretching lineation in the footwall mylonites, indicating that the extensional kinematic history remained unchanged as the rocks were uplifted into the elastico-frictional regime. (2) After ∼17 Ma, extension may have continued entirely within elastic-frictional regime via cataclastic flow. (3) This latest deformation phase may have been accommodated by a single, continuous event. (3) Faults within NSRD boudins indicate that deformation within the detachment zone was non-coaxial during the latest phase of extension.  相似文献   

16.
辽南中生代造山期缩短滑脱与晚造山伸展拆离构造   总被引:1,自引:0,他引:1       下载免费PDF全文
该区的构造格局主要由早期近东西向紧闭的褶皱带和晚期北北东向构造组成。早期的南北向缩短构造以龙王庙平卧褶皱和大小长山岛的直立紧闭褶皱为代表,分别具有扇状间隔性压溶劈理和透入性轴面片理,褶面倒向以北为主。北北东向构造切割近东西向构造,表层表现为北西西向薄皮逆冲推覆构造,浅层构造具有扇状压溶劈理的紧闭褶皱,深层表现为基底与盖层间的拆离断层及其下的韧性剪切带。早期的研究者将该断层作为辽南推覆构造底部的滑脱面,现今则压倒性地采用变质核杂岩的构造理念。根据相关剪切带早期面内褶皱发育,晚期伸展褶劈理发育,通过运动学涡度和应力状态分析,论证早期滑脱-推覆到晚期伸展拆离的演化过程。野外观测证明,辽南基底变质岩西侧的金州断层为一伸展拆离断层,它切割东侧的董家沟断层,前者平行于下伏糜棱岩中的同向伸展褶劈理,后者平行下伏糜棱岩的糜棱面理。金州拆离断层的形成及其东侧的隆起标志着辽南构造体制从缩短到伸展的转折。根据相关的年代学研究,这一构造体制转化发生在早白垩世(约120~107 Ma)。该区最新的构造事件是北东-南西向的缩短,相关的北北东向的右行走滑断层与晚白垩世以来的郯庐断层活动方式一致。  相似文献   

17.
http://www.sciencedirect.com/science/article/pii/S1674987110000022   总被引:9,自引:0,他引:9  
<正>The Early Cretaceous Hohhot metamorphic core complex(mcc) of the Daqing Shan(Mtns.) of central Inner Mongolia is among the best exposed and most spectacular of the spatially isolated mcc's that developed within the northern edge of the North China "craton".All of these mcc's were formed within the basement of a Late Paleozoic Andean-style arc and across older Mesozoic fold-and-thrust belts of variable age and tectonic vergence.The master Hohhot detachment fault roots southwards within the southern margin of the Daqing Shan for an along-strike distance of at least 120 km.Its geometry in the range to the north is complicated by interference patterns between(1) primary,large-scale NW-SE-trend-ing convex and concave fault corrugations and(2) secondary ENE-WSW-trending antiforms and synforms that folded the detachment in its late kinematic history.As in the Whipple Mtns.of California, the Hohhot master detachment is not of the Wernicke(1981) simple rooted type:instead,it was spawned from a mid-crustal shear zone,the top of which is preserved as a mylonitic front within Carboniferous metasedimentary rocks in its exhumed lower plate.~(40)Ar—~(39)Ar dating of siliceous volcanic rocks in basal sections of now isolated supradetachment basins suggest that crustal extension began at ca.127 Ma, although lower-plate mylonitic rocks were not exposed to erosion until after ca.119 Ma.Essentially synchronous cooling of hornblende,biotite.and muscovite in footwall mylonitic gneisses indicates very rapid exhumation and at ca.122—120 Ma.Contrary to several recent reports,the master detachment clearly cuts across and dismembers older,north-directed thrust sheets of the Daqing Shan foreland fold-and-thrust belt.Folded and thrust-faulted basalts within its foredeep strata are as young as 132.6±2.4 Ma,thus defining within 5—6 Ma the regional tectonic transition between crustal contraction and profound crustal extension.  相似文献   

18.
辽东半岛广泛分布变质核杂岩构造,作为华北克拉通破坏的浅部响应,具有重要的构造演化研究意义.新房变质核杂岩是近年来新发现的伸展构造单元,具备典型的三层结构:上盘主要包括新元古代-古生代弱变形沉积岩层和早白垩世庄河断陷盆地,下盘包括新太古代变质基底和同构造中生代花岗质侵入岩体,二者接触部位为拆离断层带.野外宏观运动学及显微构造特征明显,均指示上盘具由SEE向NWW的运动学特征,与太平洋板块早白垩世早-中期运动方向相吻合.本次工作通过锆石LA-ICP-MS U-Pb同位素及常量、稀土和微量元素测试,将新房变质核杂岩的形成时代大致限定于早白垩世早期(123~125 Ma),并进一步明确为华北克拉通破坏事件的早期产物.该变质核杂岩控制了区内新房大型金矿的生成,在辽东半岛变质核杂岩控矿、成矿较差的现状下,研究意义较大.   相似文献   

19.
Quantitative thermobarometry in pelites and garnet amphibolites from the Bitterroot metamorphic core complex, combined with U–Pb dating of metamorphic monazite and zircon from footwall rocks, provide new constraints on the P – T  – t evolution of footwall rocks. The thermobarometric and geochronological results, when correlated with observations from other regions bordering the Bitterroot batholith, define a regional metamorphic history for the northern margin of the Bitterroot batholith consisting of three distinct events beginning with early prograde metamorphism (M1) coincident with arc-related magmatism and crustal shortening at c .  100–80 Ma. Magmatism and crustal thickening led to regional upper-amphibolite facies metamorphism (M2) and anatectic melting between 64 and 56 Ma. Mineral textures related to high-temperature isothermal decompression (M3), coincident with late stages of magmatism in the Bitterroot complex footwall (56–48 Ma), are only preserved in areas adjacent to extensional structures. The close temporal relationship between peak metamorphism and the onset of footwall decompression indicates that thermal weakening was an important factor in the initiation of Early Eocene regional extension and tectonic denudation of the Bitterroot complex and possibly the Boehls Butte metamorphic terrane. The morphology of the decompressional P – T  – t path derived for Bitterroot footwall rocks is similar to other trajectories reported for Cordilleran core complexes and may represent a transition in the deformational style of core-bunding detachments responsible for exhumation.  相似文献   

20.
Low‐angle detachment faults are common features in areas of large‐scale continental extension and are typically associated with metamorphic core complexes, where they separate upper plate brittle extension from lower plate ductile stretching and metamorphism. In many core complexes, the footwall rocks have been exhumed from middle to lower crustal depths, leading to considerable debate about the relationship between hangingwall and footwall rocks, and the role that detachment faults play in footwall exhumation. Here, garnet–biotite thermometry and garnet–muscovite–biotite–plagioclase barometry results are presented, together with garnet and zircon geochronology data, from seven locations within metapelitic rocks in the footwall of the northern Snake Range décollement (NSRD). These locations lie both parallel and normal to the direction of footwall transport to constrain the pre‐exhumation geometry of the footwall. To determine P–T gradients precisely within the footwall, the ΔPT method of Worley & Powell (2000) has been employed, which minimizes the contribution of systematic uncertainties to thermobarometric calculations. The results show that footwall rocks reached pressures of 6–8 kbar and temperatures of 500–650 °C, equivalent to burial depths of 23–30 km. Burial depth remains constant in the WNW–ESE direction of footwall transport, but increases from south to north. The lack of a burial gradient in the direction of footwall transport implies that the footwall rocks, which today define a sub‐horizontal datum in the direction of fault transport, also defined a sub‐horizontal datum at depth in Late Cretaceous time. This suggests that the footwall was not tilted about the normal to the fault transport direction during exhumation, and hence that the NSRD did not form as a low‐angle normal fault cutting down through the lower crust. Instead, the following evolution for the northern Snake Range footwall is proposed. (i) Mesozoic contraction caused substantial crustal thickening by duplication and folding of the miogeoclinal sequence, accompanied by upper greenschist to amphibolite facies metamorphism. (ii) About half of the total exhumation was accomplished by roughly coaxial stretching and thinning in Late Cretaceous to Early Tertiary time, accompanied by retrogression and mylonitic deformation. (iii) The footwall rocks were then ‘captured’ from the middle crust along a moderately dipping NSRD that soled into the middle crust with a rolling‐hinge geometry at both upper and lower terminations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号