首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 307 毫秒
1.
塔里木盆地一次浮尘天气的卫星云图特征   总被引:3,自引:2,他引:3       下载免费PDF全文
王旭  陈洪武马禹 《气象科技》2003,31(2):80-83,F003
根据常规气象观测资料、GMS-5静止气象卫星的红外云图和可见光图像,分析了1999年4月25至5月4日塔里木盆地浮尘天气。分析结果表明,红外云图和可见光图像能够监测盆地浮尘的变化,浮尘呈灰色,纹理均匀,边界清晰。浮尘区的TBB在0~-15℃之间变化,与地面能见度有着较好的对应关系,大范围浮尘区的反射率在30%~36%之间,浮尘区反射率等值线稀疏,云区反射率等值线密集。  相似文献   

2.
2010年杭州地区一次持续浮尘天气成因分析   总被引:1,自引:0,他引:1  
利用National Centers for Environmental Prediction及环境监测站大气成分监测资料,分析了2010年3月21—22日杭州地区浮尘天气的影响系统及污染特征,得出"3.21"浮尘天气发生时,空气质量等级为重度污染,吸入颗粒物的浓度达到罕见的高值;浮尘天气源自北方蒙古的沙尘暴,并随着强冷空气先自西向东、后自北向南先后影响到我国西北、华北、东北至华东北部地区、长江中下游等地区。当700 hPa高空槽过境,干冷空气侵入且配合下沉运动时,大量沙砾被带到近地面,"浮尘"天气爆发;之后在高压系统控制下,近地面风向的迅速变化,较湿的偏东气流阻滞及弱的湍流作用,使得沙尘粒子难以扩散,不易沉降,浮尘天气维持。  相似文献   

3.
各种天气现象都是在一定的天气条件下产生的,反映着大气中不同物理过程,是天气变化的体现.在地面气象观测中,有些天气现象不易判断,以致造成记录错误,例如霾与浮尘这两种天气现象的观测就往往容易混淆,难以判断,有时将霾记为浮尘,有时把浮尘记成了霾,尤以后者为多.其原因主要有以下两个方面:1 天气现象的特征无明显差异造成判断  相似文献   

4.
浮尘天气及其评价   总被引:4,自引:0,他引:4  
就浮尘天气的特征、分类、监测、评价指标及其灾害性进行分析阐述,为利用气象资料或其他资料源研究浮尘天气现象提供了比较可靠的依据。  相似文献   

5.
利用1999年11月至2000年4月,2000年11月至2001年4月两年干季拉萨民航观测站供航观测资料进行统计分析,试图反映本场干季风沙、浮尘天气的一般特征,并对风沙、浮尘天气的产生进行了形势分析和预报.  相似文献   

6.
浮尘天气对区域气候、生态环境及社会生产具有重要影响。热力浮尘(沙尘气溶胶来源于热力起沙)作为浮尘天气的重要组成部分,尚未受到广泛关注。基于塔克拉玛干沙漠塔中气象站常规地面观测资料和PM10浓度资料,初步分析了研究区热力浮尘天气的基本特征。结果表明:(1)典型热力浮尘天气过程中,气温呈现显著的上升趋势,最高温差可达5.0℃以上;气压则呈现显著的下降趋势,最高气压差可达5.0 hPa以上;(2)热力浮尘天气仅出现在5—9月,其中6月发生频次最高,占总发生频次的47.1%;92.9%的热力浮尘天气发生在夜间(20:00—8:00),最大值出现在3:00—4:00,占日发生总频次的21.4%;(3)热力浮尘天气平均持续时长为598.5 min,最长可达1120 min。尽管热力浮尘在发生频次和时长上均低于动力浮尘,但该研究结果将有助于提升人们对浮尘天气的全面认识,为后续深入研究提供支撑。  相似文献   

7.
2013年3月8~9日甘肃省出现了一次区域性的大风沙尘暴天气过程,此后到14日甘肃中东部一直维持浮尘天气,这样范围广、持续时间长的沙尘天气为近年来罕见。本文分析了此次沙尘天气过程的天气气候特征以及特殊气象条件对连续浮尘天气的影响,并以兰州市为例基于HYSPLIT-4轨迹模式探讨了浮尘天气过程的沙尘颗粒传输特征。结果表明:(1)前期暖干的气候背景有利于此次大范围沙尘天气的发生;(2)8~9日冷锋后的偏北大风引发甘肃省出现区域性大风沙尘暴天气,11日河西再次出现扬沙、沙尘暴天气,沙尘粒子沿西北气流向下游地区输送,致使12日河东出现浮尘天气的站数明显增多;(3)9日大风沙尘暴天气过后,甘肃省中东部边界层处在弱的偏东风环境中,大气层结长时间较稳定,沙尘污染物不易扩散;(4)在连续浮尘天气期间,甘肃省各地上空频繁出现逆温层,且逆温层高度在9日沙尘暴天气过后有明显抬升,阻挡了低层空气的上升运动,以致沙尘粒子聚集在700 h Pa以下。同时还发现,边界层上部逆温层的逆温温差越大,厚度越厚,造成浮尘天气的强度越强;(5)兰州市9~10日出现的浮尘天气起源于8日河西走廊及蒙古地区的沙尘暴,11日河西走廊再次爆发的沙尘暴天气对河东的浮尘天气影响较大。此外,10~13日陕西南部也出现了浮尘天气,"东高西低"的地面形势使此地上空漂浮的沙尘粒子处在偏东风的环境中,对甘肃中东部地区的浮尘天气有一定的回流输送作用。  相似文献   

8.
浮尘是鄯善地区主要天气现象之一,同大风、雷暴等一起,严重危及飞行训练的安全,影响飞行任务的完成.浮尘受季节性变化很明显,春季是鄯善地区出现浮尘的旺季.本文取1985年3-5月共92天天气资料作为样本,用权重回归的方法作次日06-08时有无浮尘的尝试性预报.所选用的因子是根据气象学原理和预报员的经验引入的. 样本资料统计:凡次日06-08时有小于  相似文献   

9.
“4.5”西北区浮尘沙尘暴天气初析   总被引:1,自引:0,他引:1  
初步分析了1994年4月5日-11日西北区浮尘和沙尘暴天气,指出这次天气具有持续时间长、范围广、强风时间短、沙尘密、沉降量大和地域性显著的特征。它是在天气环流热力和动力作用下形成的,主要成因是热浪进入青藏高原加强,西北区上空大气异常增温,地面气旋性热环流发展是浮尘天气的启动因子,蒙古冷高压底部强气压梯度力的作用激化了浮尘和沙尘暴天气,沙尘暴消散后大气层结稳定使浮尘得以维持呈准静止状态,在强冷空气影响下浮尘天气结束。  相似文献   

10.
阿尔山位于大兴安岭腹地,地表植被较好,森林覆盖率高达62%以上,在有气象记录以来也没有出现过强沙尘天气;但扬沙、浮尘会影响本地区,尤其与降水天气同时产生时会严重污染市政设施破坏生态环境.本文主要以2006年4月10日、5月16-17日出现的浮尘天气为例,做了初步的分析.……  相似文献   

11.
A comparative study on the vertical distributions of aerosol optical properties during haze and floating dust weather in Shanghai was conducted based on the data obtained from a micro pulse lidar.There was a distinct difference in layer thickness and extinction coefficient under the two types of weather conditions.Aerosols were concentrated below 1 km and the aerosol extinction coefficients ranged from 0.25 to 1.50km-1 on haze days.In contrast,aerosols with smaller extinction coefficients(0.20 0.35 km-1) accumulated mainly from the surface to 2 km on floating dust days.The seasonal variations of extinction and aerosol optical depth(AOD) for both haze and floating dust cases were similar greatest in winter,smaller in spring,and smallest in autumn.More than 85%of the aerosols appeared in the atmosphere below 1 km during severe haze and floating dust weather.The diurnal variation of the extinction coefficient of haze exhibited a bimodal shape with two peaks in the morning or at noon,and at nightfall,respectively.The aerosol extinction coefficient gradually increased throughout the day during floating dust weather.Case studies showed that haze aerosols were generated from the surface and then lifted up,but floating dust aerosols were transported vertically from higher altitude to the surface.The AOD during floating dust weather was higher than that during haze.The boundary layer was more stable during haze than during floating dust weather.  相似文献   

12.
The annual distribution and variations in dust weather occurrence (DWO) have been analyzed using monthly DWO data from 26 stations over the Tarim Basin during the period of 1961 to 2010. The results show that the DWO presents a significant decreasing trend for different parts of the Tarim Basin in recent decades. The monthly DWO has two peaks in the east and west. In the first half of the year, the peak is in April, but in the second half of the year, the peak is in September. According to the concentration period and concentration degree (CD) of DWO, we can find that the maximum DWO occurs in April in the eastern, western, and northern parts of the basin, but it occurs in May in the southern part. The dust weather season is shorter for the northern and eastern parts of the basin than those of the remaining parts. On average, the dust weather season initiates in April in the northeast and in May for the rest of the region. As an indicator for the length of dust weather season, the CD is significantly related to DWO, with a correlation coefficient of ?0.51, revealing an interesting feature of regional climate change with declining DWO and declining dust weather season over the Tarim Basin. The correlation analysis exhibits that all the Arctic Oscillation, Antarctic Oscillation, and North Atlantic Oscillation have a negative relation with the DWO but a positive relation with the length of dust weather season.  相似文献   

13.
利用2006—2019年南疆地区55个国家站的逐日观测和自动站小时数据资料,研究沙尘发生的精细化特征及沙尘暴起沙风速指标阈值。结果表明:南疆沙尘中心位于塔里木盆地中部至其南缘的民丰和且末一线,表现为中部多,东部西部少的分布特点,浮尘和沙尘暴的中心在民丰,而扬沙中心在塔中站;沙尘天气季节差异明显,秋、冬季沙尘最少,以浮尘为主,春、夏季是沙尘天气的高发季节,浮尘日与扬沙日数接近,约为沙尘暴的2倍,沙尘暴、扬沙的季节差异比浮尘天气更为明显;沙尘日变化呈白天多于夜间,下午多于上午的分布特点,18—20时是南疆地区出现沙尘暴、扬沙天气的高频时段;扬沙和沙尘暴的平均持续时间短,一般不超过3 h,巴州东南部平均持续时间最长;南疆不同地区沙尘天气发生的最小风速差异较大,存在区域性规律,而极大风速分布呈东部大于西部,北部大于南部,塔里木盆地中部和南部最小,春季的极大风速平均值大于夏季,差值较小的地区在和田地区,春季的极大风速离散度也较夏季大,各站极大风速的最小值范围在1.6—9.8 m·s-1之间。  相似文献   

14.
塔里木河流域下游的气候变化与生态环境   总被引:31,自引:0,他引:31  
在了解塔里木河水量变化事实的基础上,使用塔里木河干流沿线11个气象站37年(1961~1997)的气候观测资料,揭示了塔里木河流域的气候变化特征,着重分析了沙尘暴、浮尘和大风等灾害的时空分布特征,认为近30年尤其是90年代以来塔里木河流域上中游气候条件总的来说是向好的方向变化,其自然降水的增加十分有利于塔里木流域内各河流水量的稳定增加和地表面植被的生物,但塔里木河流域下游气候变化与上中游并不完全一  相似文献   

15.
利用南疆西部15个国家气象站1961—2019年逐日沙尘天气资料,采用气候倾向率和统计检验等方法对南疆西部沙尘天气的时空变化特征进行分析。研究表明:春季为南疆西部沙尘暴及浮尘天气出现最多的季节、扬沙天气出现次多的季节,分别占全年沙尘暴、扬沙、浮尘的49%、38%、43%;夏季为扬沙天气出现最多的季节、是沙尘暴、浮尘天气出现次多的季节,分别占全年沙尘暴、扬沙、浮尘的35%、43%、35%;冬季为低频季节,发生占比分别为7%、6%、14%。南疆西部沙尘天气呈东多西少特征,山区沙尘天气日数明显少于平原,浮尘天气平原地区分布均匀,沙尘暴、扬沙平原东部和南部区域多于平原腹地。沙尘天气日数年际变化振幅较大,沙尘暴、扬沙、浮尘日数整体呈明显减少趋势。浮尘年际变化周期显著,其次为扬沙与沙尘暴,1984和1977年为沙尘暴、浮尘统计定义上的突变年份,扬沙存在2个突变点,分别为1982和1992年。沙尘暴和扬沙的主导风向为偏西北风,浮尘主导风向为偏东北风,主导风向与地形影响关联密切。  相似文献   

16.
根据1961—2018年喀什地区9个国家站浮尘日数逐日观测资料,利用气候学统计、M-K突变检验等方法分析喀什地区浮尘日数的时空分布等气候特征,分析2019年3月19—25日喀什地区出现的强浮尘造成的重污染天气成因。结果表明:喀什地区年平均浮尘日数为71 d,浮尘日数总体呈减少趋势,并于1997年前后发生了显著减少性突变。2019年3月19—25日出现的强浮尘天气过程,持续时间长,影响范围广,乌拉尔山高压脊发展,脊前横槽转竖,在新疆东部回流东灌冷空气是造成此次沙尘过程的天气背景。浮尘天气造成21—24日喀什地区空气污染指数AQI指达500,属严重污染,首要污染物PM_(2.5)和PM_(10)在21日、22日达到峰值,分别为494、1 175μg/m~3。热力、动力条件以及近地面存在逆温层均不利于污染物的扩散。污染过程前后喀什市本站气压与PM_(10)、PM_(2.5)浓度均呈正相关,相关系数为0.762、0.507,均通过0.05显著性水平检验;气温与PM_(10)浓度呈负相关,与PM_(2.5)相关性不明显;相对湿度跟PM10和PM2.5呈正相关,表明气象因子在大气污染过程中对大气环境影响明显。  相似文献   

17.
北京地区沙尘天气的气候特征分析   总被引:6,自引:4,他引:6       下载免费PDF全文
利用1954~2001年北京地区(20个气象站)逐月沙尘资料,重点对北京地区沙尘天气的空间分布特征、沙尘日数的年际变化规律、沙尘日数的月变化进行分析;分析了近3年北京地区出现的沙尘天气特点及成因;对近48年的沙尘天气出现日数变化规律进行了小波分析,浮尘天气有12~14年超长周期和2~4年短周期,扬沙天气有8-12年超长周期。  相似文献   

18.
2011年长春市一次持续浮尘天气成因分析   总被引:1,自引:0,他引:1  
利用气象探测资料和环境监测数据,采用统计分析、环流演变分析、物理量诊断以及后向轨迹法分析了长春市浮尘发生气候特征和2011年5月12日长春市出现的一次持续时间较长、污染程度较重的浮尘天气过程。结果表明:长春地区浮尘天气整体上呈波动性减少趋势,3-5月是主要发生时期;本次浮尘天气过程沙源来自蒙古国中部和内蒙古中东部,并随高空急流的输送影响东北地区,本地沙源没有补充;高空急流明显、地面风速较小、温度露点差较大、内蒙古东部辽宁省北部存在弱风区、整层大气稳定是该区域未出现沙尘暴而出现浮尘的主要原因。  相似文献   

19.
本文通过1970年至2000年山西省扬沙和沙尘暴发生日数的统计分析,总结出山西省沙尘天气的时空特征,并对比近几年沙尘天气的情况,从环流特征和气候背景人手,分析2003年沙尘天气偏少的原因。  相似文献   

20.
利用1981—2019年气象观测资料,分析了四川霾日的时空变化特征,并分析了污染物排放量和气象条件变化对霾日的影响。结果表明:(1)四川盆地为霾日高发区,年均霾日达53.7 d,其中轻、中、重度霾日数分别为26.9、24.1和2.7 d,川西高原年均霾日数不足1 d。霾日高值区主要分布在盆地的中部、东部及南部,轻、中、重度霾日高值区分布与霾日基本一致。(2)近39 a盆地霾日总体呈下降趋势,气候倾向率为-0.03 d/10 a,霾日数及霾分布范围在20世纪90年代达到最大,进入21世纪后霾日数和霾范围呈减小趋势。(3)霾在冬季发生频繁,冬季年均霾日数达24.7d,且盆地大部地区超过30 d。(4)近39 a盆地共发生持续性霾12 782次,自贡市、德阳市、内江市、乐山市为持续性霾的高发区;盆地共发生区域持续性霾509次,其中10 d的区域持续性霾发生的次数最多,占比为87.8%。(5)盆地霾天气的主要贡献污染物为PM2.5和PM10。二者排放量在20世纪90年代达到最大,进入21世纪后开始减少,21世纪10年代减少最为明显。21世纪10年代前盆地平均气温升高、相对湿度下降,污染物的排放与气象条件的共同作用,导致霾事件出现频率较高。随着城市生态文明的建设与治理,在21世纪10年代,盆地区域污染物排放减少,区域升温率减小,相对湿度显著升高,霾出现频率有所降低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号