首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
磁性基底和居里面是研究地壳和岩石圈的地质构造和热演化过程的两个重要磁性界面.为了研究南海及邻区磁性基底和居里面所反映的深部构造及其热活动的地质效应,本文在对磁异常进行化极处理的基础上,采用最小曲率位场分离方法,获得了磁性基底和居里面引起的化极磁异常,利用双界面模型快速反演方法,反演了南海及邻区的磁性基底和居里面深度,研究了磁性基底、居里面深度及其分布特征,讨论了磁性基底、居里面与新生界深度之间相关性特征及其地质意义.研究表明,磁性基底深度5~20 km,洋盆南北两侧磁性基底走向分别以NE、NEE向为主,中南半岛周缘磁性基底呈NW、NNW走向.居里面深度15~32 km,宏观表现为"洋壳浅、周缘深"及周缘"北浅南深"的特征,洋盆地区居里面深度呈现"西南浅、东部深",洋壳与陆壳接触带在居里面深度上表现为梯级带特征.新生界深度与磁性基底深度相关性(Correlation between the depth of magnetic basement and Cenozoic,CDMBC)多以不规则形状分布,在盆地的沉积中心呈现正相关;新生界深度与居里面深度相关性(Correlation between the depth of Curie surface and Cenozoic,CDCSC)多呈NE、NEE向带状正相关分布,走向与盆地走向一致;莺歌海盆地、琼东南盆地、万安盆地南部和曾母盆地CDMBC呈正相关、CDCSC呈负相关,莺歌海相关性特征推测为:居里面随岩石圈变形隆起而抬升,磁性基底张裂下沉,发生大规模沉降引起;琼东南盆地相关性特征推测为:居里面随岩石圈变形下坳而下降,沉积中心与磁性基底下沉方向一致;万安盆地和曾母盆地相关性特征推测为:深部流体沿南海西缘断裂直接进入地壳,引起该处居里面深度变浅.  相似文献   

2.
新疆伽师强震群区基底界面结构特征   总被引:3,自引:0,他引:3       下载免费PDF全文
用射线分布分析法对伽师强震群区的高分辨折射地震剖面资料进行了更进一步的分析处理, 得到了伽师强震群区更完整的基底界面结构特征. 结果表明,在伽师强震群区地壳上部存在两个明显的结构界面:第一个界面的结构连续、完整,其埋深变化不大, 在2.6~3.3 km之间,为一向天山方向逐渐抬升、 近平直的倾斜界面;第二个界面的埋深变化较大, 在8.5~11.8 km之间,为古老的塔里木盆地结晶基底. 在约37 km桩号附近结晶基底有近2.5 km的深度突变, 推断可能是伽师强震群区超基底断裂所致. 以该断裂为界,结晶基底分为西南、东北两段. 每段内界面的埋深变化不大, 西南段的埋深约11.5 km, 东北段的埋深约为8.5~9.0 km,该段在从西南向东北整体抬升的背景上略有上隆,反映出在塔里木地块西北缘特殊的构造环境下上部地壳的变形特征.   相似文献   

3.
The Central Indian region has a complex geology covering the Godavari Graben, the Bastar Craton (including the Chhattisgarh Basin), the Eastern Ghat Mobile Belt, the Mahanadi Graben and some part of the Deccan Trap, the northern Singhbhum Orogen and the eastern Dharwar Craton. The region is well covered by reconnaissance‐scale aeromagnetic data, analysed for the estimation of basement and shallow anomalous magnetic sources depth using scaling spectral method. The shallow magnetic anomalies are found to vary from 1 to 3 km, whereas magnetic basement depth values are found to vary from 2 to 7 km. The shallowest basement depth of 2 km corresponds to the Kanker granites, a part of the Bastar Craton, whereas the deepest basement depth of 7 km is for the Godavari Basin and the southeastern part of the Eastern Ghat Mobile Belt near the Parvatipuram Bobbili fault. The estimated basement depth values correlate well with the values found from earlier geophysical studies. The earlier geophysical studies are limited to few tectonic units, whereas our estimation provides detailed magnetic basement mapping in the region. The magnetic basement and shallow depth values in the region indicate complex tectonic, heterogeneity, and intrusive bodies at different depths, which can be attributed to different thermo‐tectonic processes since Precambrian.  相似文献   

4.
The seismic data obtained from high resolution seismic refraction profile in Jiashi strong earthquake swarm area in Xinjiang, China were further processed with ray hit analysis method and more complete basement interface struc-tural characteristics beneath Jiashi strong earthquake swarm area were determined. The results show that there are two clear basement interfaces at the upper crust in Jiashi strong earthquake swarm area. The first one with buried depth ranging from 2.6 km to 3.3 km presents integral and continuous structure, and it appears an inclined plane interface and smoothly rises up toward Tianshan Mountain. The second basement interface with buried depth from 8.5 km to 11.8 km, is the antiquated crystalline basement of Tarim basin. Near the post number of 37 km, the bur-ied depth of the crystalline basement changed abruptly by 2.5 km, which maybe result from an ultra crystalline basement fault. If taking this fault as a boundary, the crystalline basement could be divided into two parts, i.e. the southwestern segment with buried depth about 11.5 km, and the northeastern segment with buried depth approxi-mately from 8.5 km to 9.0 km. That is to say, in each segment, the buried depth changes not too much. The north-east segment rises up as a whole and upheaves slightly from southwest to northeast, which reflects the upper crustal deformation characteristics under the special tectonic background at the northwestern edge of Tarim basin.  相似文献   

5.
A comprehensive reinterpretation of the available gravity, magnetic, geothermal, geological and borehole information has been made of the Laguna Salada Basin to establish a 3D model of the basement and sedimentary infill. According to statistical spectral analysis, the residual gravity anomaly is due to sources with a mean regional depth of 2.8 km. The topography of the basement was obtained from a three‐dimensional inversion carried out in the wavenumber domain using an iterative scheme. The maximum density contrast of ?300 kg/m3 estimated from previous studies and the mean depth of 2.5 km finally constrained this inversion. The resulting model indicated that the sedimentary infill is up to 4.2 km thick at its deepest point. According to the gravity‐derived basement topography, the basin presents an asymmetry (i.e. it is of the half‐graben type). It is deeper to the east, where it is delimited from the Sierra Cucapah by a step fault. By contrast, the limit with the Sierra de Juarez is a gently sloping fault (i.e. a listric fault). The basement is not even, but it comprises a series of structural highs and lows. N–S to NW–SE and E–W to NE–SW faults delimit these structural units. The magnetic modelling was constrained by (i) the gravity‐derived basement topography; (ii) a Curie isotherm assumed to be between 7 km and 10 km; (iii) assuming induced magnetization only; (iv) the available geological and borehole information. The magnetic anomalies were interpreted successfully using the gravity‐derived basement/sedimentary interface as the top of the magnetic bodies (i.e. the magnetic modelling supports the gravity basement topography). An elongated N–S to NW–SE trending highly magnetized body running from south to north along the basin is observed to the west of the basin. This magnetic anomaly has no gravity signature. Such a feature can be interpreted as an intrusive body emplaced along a fault running through the Laguna Salada Basin. Treatment of the gravity and magnetic information (and of their horizontal gradients) with satellite image processing techniques highlighted lineaments on the basement gravity topography correlating with mapped faults. Based on all this information, we derived detailed geological models along four selected profiles to simulate numerically the heat and fluid flow in the basin. We used a finite‐difference scheme to solve the coupled Darcy and Fourier differential equations. According to our results, we have fluid flow in the sedimentary layers and a redistribution of heat flow from the basin axis toward its rims (Sierra de Juárez and Sierra Cucapah). Our model temperatures agree within an error of 4% with the observed temperature profiles measured at boreholes. Our heat‐flow determinations agree within an error of ±15% with extrapolated observations. The numerical and chemical analyses support the hypothesis of fluid circulation between the clay–lutite layer and the fractured granitic basement. Thermal modelling shows low heat‐flow values along the Laguna Salada Basin. Deep fluid circulation patterns were observed that redistribute such flow at depth. Two patterns were distinguished. One displays the heat flow increasing from the basin axis towards its borders (temperature increase of 20°C). The second pattern shows an increasing heat flow from south to north of the basin. Such behaviour is confirmed by the temperature measurements in the thermometric boreholes.  相似文献   

6.
Through reduction to the North Pole and upward continuation of the total field magnetic anomalies, we analyze magnetic patterns and spatial distributions of different tectonic blocks and crustal faults in eastern China and adjacent seas. Depths to the Curie isotherms are further estimated from radially averaged amplitude spectra of magnetic data reduced to the pole. Data reductions effectively enhance boundaries of regional tectonic belts, such as the Dabie ultra-high metamorphic belt, the Tanlu Fault, and the Diaoyudao Uplift. Curie depths are estimated at between 19.6 and 48.9 km, with a mean of 31.7 km. The Subei Basin and the south Yellow Sea Basin in the lower Yangtze block show relatively deep Curie isotherms, up to about 35 km in depth, whereas in the surrounding areas Curie depths are averaged at about 25 km. This implies that the lower Yangtze Block has experienced a unique tectonic evolution and/or has unique basement lithology and structures. From a regional perspective, sedimentary basins, such as the Subei Basin, the south Yellow Sea Basin, and the East China Sea Basin, normally show deeper Curie isotherms than surrounding uplifts such as the Diaoyudao Uplift and the Zhemin Uplifts. Curie isotherms also upwell significantly in volcanically active areas such as the Ryukyu Arc and the Cheju Island, confirming strong magmatic and geothermal activities at depth. Supported by National Natural Science Foundation of China (Grant Nos. 40776026 and 40876022) and National Basic Research Program of China (Grant No. 2007CB411702)  相似文献   

7.
A 3-D crustal geoelectric model of the Ukrainian Shield (USh) is constructed from magnetic variation data. High electrical conductivity anomalies with resistivities of 1–100 Ω m are located at depths of up to 30 km from the basement surface. A high conductivity layer with ρ = 25 Ω m and with its upper boundary at a depth of 70 km is supposed to exist in the upper mantle of the southwestern USh.  相似文献   

8.
利用西藏自治区林芝地区的固定地震台站与南迦巴瓦流动测震台站在2017年11月18日至2017年11月24日记录到的430个余震的直达波走时数据反演得到了震源区的三维P波速度、S波速度结构,并利用三维速度结构对余震进行了重定位.成像结果显示,米林地震震源区在0~5km深度内存在低地震波速度异常;在5~15km深度内,存在高地震波速度异常,该高速异常致使震源区西南侧的地震波速度高于东北侧.重定位结果中,余震呈条带状以NW-SE走向展布,震源深度具有西南方向深、东北方向浅的特征.主震位于11km深度处、高地震波速异常体顶部,余震主要分布在高地震波速度与低地震波速度过渡的区域.对成像结果的分析表明,震源区浅部的低速异常具有低泊松比的特性,与富石英的沉积变质杂岩体-东久杂岩单元的岩性特征有关;深部的速度结构特征则可能反映了发震断层上盘地震波速度高,下盘地震波速度低的介质特性.余震重定位结果与成像结果联合表明:此次地震发震断层从11km深度处,东久杂岩体下方的高地震波速度异常顶部开始破裂,继而在5~15km深度内发生后续破裂,后续破裂的发生区域正处于喜马拉雅构造单元与冈底斯构造单元接触的形变区内.此外,根据地震波速度计算的泊松比反映了震源区持续的低泊松比特征,暗示此次地震与流体活动并无直接关系.  相似文献   

9.
The deep seismic reflection data on profile HY2 are reprocessed by the method of simultaneous inversion of velocity distribution and interface position. By the travel-time inversion with the data of the diving wave Pg and fault plane reflection wave, we determine the geometric form and velocity of Haiyuan fault zone interior and surrounding rock down to 10 km depth. The measured data show that the amplitudes have strong attenuation in the range of stake number 37–39 km, suggesting the fault zone has considerable width in the crustal interior. The results of this paper indicate that to the north of the fault zone the crystalline basement interface upheaves gradually from southwest to northeast and becomes shallow gradually towards northeast, and that to the south of the fault zone, within the basin between Xihua and Nanhua mountains, the folded basement becomes shallow gradually towards southwest. The obliquity of the fault zone is about 70° above the 3 km depth, about 60° in the range of the 3–10 km depths. From the results of this paper and other various citations, we believe that Haiyuan fault zone is in steep state from the Earth’s surface to the depth of 10 km. Foundation item: Joint Seismological Science Foundation of China (201001) and State Key Basic Research Development and Programming Project (95-13-02-02). Contribution No. RCEG200308, Exploration Geophysical Center, China Earthquake Administration.  相似文献   

10.
塔里木盆地航磁场分析与磁源体结构   总被引:7,自引:4,他引:3       下载免费PDF全文
本文研究塔里木盆地区域磁异常图的反演及磁源体结构.由于众多异常的叠加和反演固有的多解性,区域磁异常图的准确解释是非常困难的.三维欧拉反褶积是一种确定地质体位置和埋藏深度的自动定量反演方法,比较适用于计算区域磁异常源的埋藏深度.由于大型克拉通沉积盆地地层具有上新下老的规律性,将磁异常源分解为三个深度层次,圈定它们各自的分布区域,便可将它们与形成的地质作用及时代联系起来,为准确解释区域磁异常图提供可靠的依据.本文应用三维欧拉反褶积反演方法,计算出的塔里木盆地深度为2~5 km、5~10 km、10~20 km三个等级的磁异常源,它们与形成的地质作用及时代分别为: 中生代构造运动,海西期玄武岩侵位和太古代结晶基底的变质作用;圈定了它们各自的分布区域.  相似文献   

11.
The Tobago Basin, which is located offshore northern Venezuela with a southern margin close to Trinidad and Tobago, has an area of approximately 59,600 km2. The Tobago Basin has relatively favourable hydrocarbon prospects, and to date, exploration work has mainly concentrated on small areas of the southwestern portion of the basin. To conduct a comprehensive study of the structural framework of the basin and the characteristics of the basement in order to identify prospective zones for hydrocarbon exploration, shipborne‐measured and satellite‐measured gravity data, shipborne‐measured magnetic data, and aeromagnetic survey data were analysed. A regularisation filtering method was used to separate and obtain regional and residual gravity and magnetic anomalies. Directional gradients of gravity and magnetic anomalies and the total horizontal gradient and vertical second derivative of gravity anomalies were employed to extract information about fault structures. Regression analysis methods were used to determine the basement depth. The geological significance of the gravity and magnetic fields was examined, the structural framework of the basin was assessed, the basement depth was estimated, and favourable hydrocarbon exploration prospects within the basin were identified. The results show that the Tobago Basin contains complex structures consisting mainly of two groups of faults trending in northeasterly and northwesterly directions and that the major northeasterly trending faults control the main structural configuration and depositional system within the basin. The basement of the Tobago Basin has deep rises and falls. It can be divided into the following four secondary tectonic units: the western sub‐basin, the central uplift area, the southern sub‐basin, and the northeastern sub‐basin. The central uplift area and northeastern sub‐basin are most likely to have developed hydrocarbon accumulations and should be targeted for further exploration.  相似文献   

12.
The magnetic map of Slovakia used in the paper was compiled as part of a project titled Atlas of Geophysical maps and profiles in 2001. The residual magnetic data were analyzed to produce Curie point estimates. To remove distortion of magnetic anomalies caused by the Earth’s magnetic field, reduction to pole transformation was applied to the magnetic anomalies using the magnetization angle of the induced magnetization. Anomalies reduced to the pole tend to be better correlated with tectonic structures. We applied a 3-km upward continuation to the residually compiled magnetic anomalies in order to remove effects of topography. The depth of magnetic dipoles was calculated by an azimuthally averaged power spectrum method for the entire area. Such estimates can be indicative of temperatures in the crust, since magnetic minerals lose their spontaneous magnetization according to Curie temperature of the dominant magnetic minerals in the rocks. The computed Curie point depths in the Slovakia region vary between 15.2 km and 20.9 km. Heat flow higher than 100 mWm−2 occurs at the central volcanics and eastern part of Slovakia, where the Curie point depths values are shallow. The correlation between Curie point depths, heat flow and crust depth was investigated for two E-W cross sections. Heat flow and Curie point depth values are correlated with each other however, these values could not be correlated with crust depth. The Curie point isotherm, which separates magnetic and non-magnetic parts of the crust, is represented in two cross sections.  相似文献   

13.
A constrained 3D density model of the upper crust along a part of the Deccan Syneclise is carried out based on the complete Bouguer anomaly data. Spectral analysis of the complete Bouguer gravity anomaly map of the study region suggests two major sources: short wavelength anomalies (<100 km) caused primarily due to the density inhomogeneities at shallow crustal level and long wavelength anomalies (>100 km) produced due to the sources deeper than the upper crust. A residual map of the short wavelength anomalies is prepared from the complete Bouguer anomaly using Butterworth high‐pass filter (100 km cut‐off wavelength). Utilizing the constraints from deep resistivity sounding, magnetotellurics and deep seismic sounding studies, 2.5D density models have been generated along 39 profiles of this region. The mismatch between the calculated response of the a priori 2.5D model with the residual (short wavelength) gravity anomalies is minimized by introducing high‐density intrusive bodies (≥2.81 g/cm3) in the basement. With these 2.5D density models, the initial geometry of our 3D density model, which includes alluvium, Deccan trap, Mesozoic sediment and high‐density intrusive bodies in the basement up to a depth of 7 km (upper crust), is generated. In the final 3D model, Deccan trap extends from 200 m to nearly 1700 m below the 90–150 m thick Quaternary sediment. Further down, the sub‐trappean Mesozoic sediment is present at a depth range of 600–3000 m followed by the basement. The derived 3D density model also indicates six intrusive bodies of density 2.83 g/cm3 in the basement at an average depth of about 4–7 km that best fits the residual gravity anomaly of the study area.  相似文献   

14.
Introduction The deep faults in the crust have direct relation to the occurrence of earthquakes and the dis-tribution of active seismic zones, so the researches on the geometric form and physical parametersof deep crustal faults are always an important problem in seismology. The researches are not onlysignificant to knowledge the deep tectonic background of strong earthquake and seismogenicmechanism, but also play a very important role in earthquake hazard estimation and earthquakeprevent…  相似文献   

15.
A thorough and complete understanding of the structural geology and evolution of the Cooper‐Eromanga Basin has been hampered by low‐resolution seismic data that becomes particularly difficult to interpret below the thick Permian coal measures. As a result, researchers are tentative to interpret the basement fault architecture within the basin, which is largely undefined. To provide a better understanding of the basement fault geometry, all available two‐dimensional seismic lines together with 12 three‐dimensional seismic surveys were structurally interpreted with assistance from seismic attribute analysis. The Upper Cretaceous Cadna‐owie Formation and top Permian reflectors were analysed using a common seismic attribute technique (incoherency) that was used to infer the presence of faults that may have otherwise been overlooked. Detailed basement fault maps for each seismic survey were constructed and used in conjunction with two‐dimensional seismic data interpretation to produce a regional basement fault map. Large north‐northeast–south‐southwest‐striking sinistral strike–slip faults were identified within the Patchawarra Trough appearing to splay from the main northeast–southwest‐striking ridge. These sinistral north‐northeast–south‐southwest‐striking faults, together with field‐scale southeast–northwest‐striking dextral strike–slip faults, are optimally oriented to have potentially developed as a conjugated fault set under a south‐southeast–north‐northwest‐oriented strike–slip stress regime. Geomechanical modelling for a regionally extensive system of Cretaceous polygonal faults was performed to calculate the Leakage Factor and Dilation Tendency of individual faults. Faults that extend into Lower Cretaceous oil‐rich reservoirs with strikes of between 060°N and 140°N and a high to near‐vertical dip angle were identified to most likely be acting as conduits for the tertiary migration of hydrocarbons from known Lower Cretaceous hydrocarbon reservoirs into shallow Cretaceous sediments. This research provides valuable information on the regional basement fault architecture and a more detailed exploration target for the Cooper‐Eromanga Basin, which were previously not available in literature.  相似文献   

16.
南海深部构造对研究南海构造演化和油气勘探具有重要意义.本文对南海地区的自由空气重力异常进行布格校正、海水层校正和沉积层校正,得到布格重力异常,再对布格重力异常进行区域异常和局部异常分离,利用位场界面反演方法对区域布格异常进行反演计算得到研究区域的莫霍面深度分布;采用全变倾角化极方法对研究区域的卫星磁异常数据进行化极处理,并进一步对化极磁异常作向上延拓,得到延拓后化极磁异常结果.分析布格重力异常、莫霍面深度及化极磁异常特征,结合天然地震层析成像的证据,得到以下结论:推测南海北部陆缘的古俯冲带位置是从118.5°E,24°N沿北东向延伸至109°E,15°N;红河断裂入海后经过莺歌海盆地在海南岛南部转为南北向与越东断裂相接并延伸至万安盆地;推测中特提斯洋的部分闭合位置是从110°E,2°N到101°E,21°N.  相似文献   

17.
在川滇活动地块东南边界区域完成了盐源-西昌-昭觉-马湖深地震宽角反射/折射探测剖面.利用该剖面获得的Pg初至折射波走时,采用走时特征分析、有限差分反演、时间项反演等方法,获得了沿剖面的基底P波速度结构和基底界面构造图像.结果表明,研究区基底结构呈现强烈的非均匀性,不同构造区显示出不同的地壳变形特征.盐源盆地盖层表现为推...  相似文献   

18.
Ground and aeromagnetic data are combined to characterize the onshore and offshore magnetic properties of the central Philippines, whose tectonic setting is complicated by opposing subduction zones, large-scale strike-slip faulting and arc–continent collision. The striking difference between the magnetic signatures of the islands with established continental affinity and those of the islands belonging to the island arc terrane is observed. Negative magnetic anomalies are registered over the continental terrane, while positive magnetic anomalies are observed over the Philippine Mobile Belt. Several linear features in the magnetic anomaly map coincide with the trace of the Philippine Fault and its splays. Power spectral analysis of the magnetic data reveals that the Curie depth across the central Philippines varies. The deepest point of the magnetic crust is beneath Mindoro Island at 32 km. The Curie surface shallows toward the east: the Curie surface is 21 km deep between the islands of Sibuyan and Masbate, and 18 km deep at the junction of Buruanga Peninsula and Panay Island. The shallowest Curie surface (18 km) coincides with the boundary of the arc–continent collision, signifying the obduction of mantle rocks over the continental basement. Comparison of the calculated Curie depth with recent crustal thickness models reveals the same eastwards thinning trend and range of depths. The coincidence of the magnetic boundary and the density boundary may support the existence of a compositional boundary that reflects the crust–mantle interface.  相似文献   

19.
中国陆域磁性基底深度及其特征   总被引:5,自引:2,他引:3       下载免费PDF全文
前寒武纪变质基底的起伏变化特征和沉积盖层的厚度变化对研究地质构造、能源和资源勘探具有重要意义.而前寒武纪变质基底与沉积盖层之间通常存在一定的磁性差异,这就为利用航磁资料研究磁性基底深度提供了地球物理条件.本文集合了中国国土资源航空物探遥感中心30多年来编制的中国陆域30多个盆地和地区的磁性基底深度图以及补算的部分地区磁性基底深度,经过统一坐标系、统一比例尺之后编制了1/100万比例尺的中国陆域磁性基底深度图(成图比例尺为1/250万).研究结果表明,以E105°线为界,我国西部地区沉积坳陷区盖层厚度大,集中分布在塔里木盆地、准噶尔盆地、柴达木盆地和西藏地区;东部地区沉积坳陷区盖层厚度整体上相对较薄,主要分布在松辽盆地、二连盆地、鄂尔多斯盆地、华北南部盆地、四川盆地、南黄海—苏北盆地等,但最厚处在四川盆地的西南部和鄂尔多斯盆地西缘.这些研究成果展现了我国前寒武纪变质基底和具有一定规模的岩浆岩侵入岩体的深度变化特征,同时反映了沉积盖层的厚度和赋存现状,可直观了解各种类型的沉积盆地和沉积坳陷区的深度和范围,为寻找基底之上油气藏提供了直接依据.  相似文献   

20.
Assessment of deep buried basin/basement relationships using geophysical data is a challenge for the energy and mining industries as well as for geothermal or CO2 storage purposes. In deep environments, few methods can provide geological information; magnetic and gravity data remain among the most informative and cost‐effective methods. Here, in order to derive fast first‐order information on the basement/basin interface, we propose a combination of existing and original approaches devoted to potential field data analysis. Namely, we investigate the geometry (i.e., depth and structure) and the nature of a deep buried basement through a case study SW of the Paris Basin. Joint processing of new high‐resolution magnetic data and up‐to‐date gravity data provides an updated overview of the deep basin. First, the main structures of the magnetic basement are highlighted using Euler deconvolution and are interpreted in a structural sketch map. The new high‐resolution aeromagnetic map actually offers a continuous view of regional basement structures and reveals poorly known and complex deformation at the junction between major domains of the Variscan collision belt. Second, Werner deconvolution and an ad hoc post‐processing analysis allow the extraction of a set of magnetic sources at (or close to) the basin/basement interface. Interpolation of these sources together with the magnetic structural sketch provides a Werner magnetic basement map displaying realistic 3D patterns and basement depths consistent with data available in deep petroleum boreholes. The last step of processing was designed as a way to quickly combine gravity and magnetic information and to simply visualize first‐order petrophysical patterns of the basement lithology. This is achieved through unsupervised classification of suitably selected gravity and magnetic maps and, as compared to previous work, provides a realistic and updated overview of the cartographic distribution of density/magnetization of basement rocks. Altogether, the three steps of processing proposed in this paper quickly provide relevant information on a deep buried basement in terms of structure, geometry and nature (through petrophysics). Notwithstanding, limitations of the proposed procedure are raised: in the case of the Paris Basin for instance, this study does not provide proper information on Pre‐Mesozoic basins, some of which have been sampled in deep boreholes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号