首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
利用一个较高分辨率的全球海洋环流模式在COADS 1945~1993年逐月平均资料的强迫下对海温和环流场进行了模拟,分析了北太平洋海温和环流场的年代际变化特征,同时诊断了1976-77年代际跃变过程中海温场变化的机制.模式模拟出了北太平洋海温年代际异常的主要模态以及1976-77年跃变前后的演变特征,模拟的北太平洋中部、加州沿岸和KOE区的海温异常的强度和演变趋势均和观测比较一致;同时,模式重现了分别始于20世纪70和80年代的中纬度海温异常信号沿等密度面向低纬地区的两次潜沉过程.在表层,流场的异常主要表现为与风应力异常基本符合Ekman关系的一个异常海洋涡旋,而整个上层海洋平均的流场异常则表现为两个海洋涡旋的异常,其中副热带海洋涡旋的异常的强度要显著于副极地海洋涡旋的异常,而副极地海洋涡旋异常出现的时间比副热带海洋涡旋晚3a左右的时间.对1976-77年前后3个区域上层海温各贡献项的诊断结果表明,北太平洋中部变冷主要是水平平流和热通量异常贡献的结果;而加州沿岸变暖主要归因于热通量的贡献;在KOE区,垂直平流、热通量和水平平流三者都起了重要作用,其中水平平流异常对这一区域海温年代际跃变出现的时间起了至关重要的作用.  相似文献   

2.
1IntroductionAvariety of observational evidences have shownthe existence of decadal-to-interdecadal variabilitiesin the Pacific Ocean.The phase transition for thosevariabilities could be gradual or abrupt.A strikingexample for abrupt change is the so-call…  相似文献   

3.
北太平洋海表温度及各贡献因子的变化   总被引:2,自引:0,他引:2  
刘珊  王辉  姜华  金啟华 《海洋学报》2013,35(1):63-75
采用1958年1月至2007年12月SODA海洋上层温度的月平均资料,基于海温变化方程和统计分析方法,分析了北太平洋海表面温度(SST)异常特征及各局地因子贡献比例的变化。结果表明,伴随着1976/1977风场最强中心位置的南北移动,形成了两个北太平洋SST年际-年代际变化的异常中心:一个是位于30°N附近的副热带海盆内区,SST异常主要受风应力强度的主导;一个是位于40°N附近的副热带和副极地环流交汇区,SST异常主要受风应力旋度的位置即风场位置的影响。在副热带海盆内区,最强降温发生在1978-1982年,SST异常的主要局地贡献因子为海表热通量和经向平流,二者所占比例和约为50%~60%,均为同相增温或降温作用,余项所占比例约为20%~50%。在副热带和副极地环流交汇区,海盆内区和西部边界区的SST异常的跃变时间同为1975年,但是内区的垂直混合项的跃变时间早于西部5年左右。SST异常的主要贡献因子为海表热通量和经向平流,但在1983-1988年海温强降温期间,经向平流项贡献大于海表热通量项的贡献。两个区域的垂直混合项均为降温贡献,虽然量值小却显示出很强的年代际变化信号。平流项中经向平流最大,垂直平流最小。  相似文献   

4.
Various statistical methods (empirical orthogonal function (EOF), rotated EOF, singular value decomposition (SVD), principal oscillation pattern (POP), complex EOF (CEOF) and joint CEOF) were applied to low-pass filtered (>7 years) sea surface temperature (SST), subsurface temperature and 500 hPa geopotential height in order to reveal standing and propagating features of decadal variations in the North Pacific. Four decadal ocean-atmosphere covariant modes were found in this study. The first mode is the well-known ENSO-like mode associated with the “Pacific-North American” atmospheric pattern, showing SST variations reversed between the tropics and the extratropics. In the western tropical Pacific, subsurface temperature variations were found to be out of phase with the SST variations. The other three modes are related to the oceanic general circulation composed of the subtropical gyre, the Alaskan gyre and the subpolar gyre, respectively. The 1988/89 event in the northern North Pacific was found to be closely associated with the subtropical gyre mode, and the atmospheric pattern associated with this mode is the Arctic Oscillation. An upper ocean heat budget analysis suggests that the surface net heat flux and mean gyre advection are important to the Alaskan gyre mode. For the subpolar gyre mode, the mean gyre advection, local Ekman pumping and surface net heat flux play important roles. Possible air-sea interactions in the North Pacific are also discussed. The oceanic signals for these decadal modes occupy a thick layer in the North Pacific, so that accumulated heat content may in turn support long-term climate variations. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
The seasonal variability of sea surface height (SSH) and currents are defined by analysis of altimeter data in the NE Pacific Ocean over the region from Central America to the Alaska Gyre. The results help to clarify questions about the timing of seasonal maxima in the boundary currents. As explained below, the long-term temporal mean of the SSH values must be removed at each spatial point to remove the temporally invariant (and large) signal caused by the marine geoid. We refer to the resulting SSH values, which contain all of the temporal variations, as the ‘residual’ SSH. Our main findings are:
1. The maximum surface velocities around the boundaries of the cyclonic Alaska Gyre (the Alaska Current and the Alaska Stream) occur in winter, at the same time that the equatorward California Current is weakest or reversed (forming the poleward Davidson Current); the maximum surface velocities in the California Current occur in summer. These seasonal maxima are coincident with the large-scale atmospheric wind forcing over each region.
2. Most of the seasonal variability occurs as strong residuals in alongshore surface currents around the boundaries of the NE Pacific basin, directly connecting the boundaries of the subpolar gyre, the subtropical gyre and the Equatorial Current System.
3. Seasonal variability in the surface velocities of the eastward North Pacific Current (West Wind Drift) is weak in comparison to seasonal changes in the surface currents along the boundaries.
4. There is an initial appearance next to the coast and offshore migration of seasonal highs and lows in SSH, alongshore velocity and eddy kinetic energy (EKE) in the Alaska Gyre, similar to the previously-described seasonal offshore migration in the California Current.
5. The seasonal development of high SSH and poleward current residuals next to the coast appear first off Central America and mainland Mexico in May–June, prior to their appearance in the southern part of the California Current in July–August and their eventual spread around the entire basin in November–December. Similarly, low SSH and equatorward transport residuals appear first off Central America and Mexico in January–February before spreading farther north in spring and summer.
6. The maximum values of EKE occur when each of the boundary currents are maximum.

Article Outline

1. Introduction and background
2. Data and methods
2.1. Altimeter and tide gauge data
2.2. Atmospheric forcing—sea level pressure
2.3. Statistical gridding
3. Results
4. Summary and discussion
4.1. Alaska Gyre
4.2. Connections around the boundaries of the subarctic and subtropical gyres
4.3. Connections to the North Pacific Current
4.4. Offshore ‘propagation’ of the seasonal height and transport signals
4.5. Connections to the equatorial current systems along the boundaries
Acknowledgements
References

1. Introduction and background

This is the first of a two-part analysis of temporal variability of the NE Pacific Ocean’s surface circulation, as measured by satellite altimeters. Here we examine the seasonal variability. In Part 2 (Strub & James, 2002) we analyze the non-seasonal anomalies of the surface circulation over the 1993–1998 period, during which the 1997–1998 El Niño creates the largest signal. Formation of the seasonal cycles discussed here is the first step in creating the non-seasonal anomalies. The seasonal cycles themselves, however, provide new information on the response of the NE Pacific to strong seasonal forcing, on scales not previously addressed. This analysis quantifies the degree of connection, on seasonal time scales, between the boundary currents in the eastern subarctic and subtropical gyres, as well as the connection between the boundaries and the interior NE Pacific. It further shows a connection to the equatorial current system.Numerous papers describe aspects of the seasonal cycles for certain parameters in subregions of our larger domain. Chapters in Robinson and Brink (1998) review some of the past results from the coastal ocean in the regions between the Equator and the Alaska Gyre ( Badan; Hickey and Royer). Fig. 1 presents the climatological surface dynamic height field (relative to 500 m) in the NE Pacific, calculated from the long-term mean climatological temperature and salinity data of Levitus and Gelfeld (1992). The 500 m reference level is used to concentrate on the surface flow seen by altimeters. Although this climatology is overly smooth, it shows the major currents in the area. The broad, eastward North Pacific Current (also called the West Wind Drift) splits into the counterclockwise Alaska Gyre and the equatorward California Current. South of 20°N in summer, the California Current turns westward and flows into the North Equatorial Current, while in winter–spring, part of it continues along the Mexican mainland before turning westward ( Badan; Fiedler and Fiedler). The long-term climatology shows both paths. The North Equatorial Countercurrent (NECC) flows eastward between 5° –10°N to approximately 120°W, but is only weakly seen in the annual climatology from there to the cyclonic flow around the Costa Rica Dome near 8°N, 92°W. The NECC is a shallow current (found in the upper 200 m) and might appear more strongly if a shallower reference were used, but it is also seasonally intermittent. When the Intertropical Convergence Zone (ITCZ) is in its northern location near 10°N (summer), surface divergences and upwelling create a zonal trough in surface height, driving the NECC along the southern side of the trough. When the ITCZ moves south in winter, the NECC weakens or reverses.  相似文献   

6.
综述了近20年来国内外学者在研究北太平洋西边界流的平均结构及NEC分叉动力机制、NM K流系平均输运的分配及变化、NM K流系季节及年际变化规律及其与EN SO之间的关系、NM K流系在热带和亚热带水交换中的作用以及水团的平均分布特征等方面所取得的主要成果。通过分析,发现东亚季风、R ossby波和K e lv in波等是影响北太平洋西边界流的主要因素;而缺乏长期直接的海流观测资料是深入研究北太平洋西边界流遇到的最大障碍。  相似文献   

7.
Decadal variations of the transport and bifurcation latitude of the North Equatorial Current (NEC) in the northwestern tropical Pacific Ocean over 1959–2011 are investigated using outputs of the Ocean Analysis/Reanalysis System 3 prepared by the European Centre for Medium-Range Weather Forecasts. The results indicate that the NEC transports at different longitudes have different decadal fluctuations, which are strongest around 139°E. The NEC bifurcation latitude (NBL) has its largest decadal variations around 150 m. Extremes of the decadal NEC transport and NBL before 1975 correspond to different circulation anomalies from those after 1975. The regression map against decadal NBL exhibits negative sea surface height (SSH) anomalies and a cyclonic gyre anomaly over the northwestern tropical Pacific Ocean, while that against the decadal NEC transport exhibits a dipole structure, with positive/negative SSH anomalies to the north/south of about 13°N. Furthermore, decadal variations of the NEC transport and NBL over the whole period have different correlations with Pacific Decadal Oscillation (PDO) and Tropical Pacific Decadal Variability (TPDV). Generally, the decadal NEC transport shows higher correlations with PDO than with TPDV, while the NBL has higher correlations with TPDV than with PDO. The high correlation of decadal NEC transport with PDO mainly comes from that of its northern branch with PDO, while its southern branch shows higher correlation with TPDV.  相似文献   

8.
We survey the recent progress in studies of North Pacific Intermediate Water (NPIW) in SAGE (SubArctic Gyre Experiment), including important results obtained from related projects. Intensive observations have provided the transport distributions relating to NPIW and revealed the existence of the cross-wind-driven gyre Oyashio water transport that flows directly from the subarctic to subtropical gyres through the western boundary current as well as the diffusive contribution across the subarctic front. The anthropogenic CO2 transport into NPIW has been estimated. The northern part of NPIW in the Transition Domain east of Japan is transported to the Gulf of Alaska, feeding the mesothermal (intermediate temperature maximum) structure in the North Pacific subarctic region where deep convection is restricted by the strong halocline maintained by the warm and salty water transport originating from NPIW. This heat and salt transport is mostly balanced by the cooling and freshening in the formation of dense shelf water accompanied by sea-ice formation and convection in the Okhotsk Sea. Intensive observational and modeling studies have substantially altered our view of the intermediate-depth circulation in the North Pacific. NPIW circulations are related to diapycnal-meridional overturning, generated around the Okhotsk Sea due to tide-induced diapycnal mixing and dense shelf water formation accompanied by sea-ice formation in the Okhotsk Sea. This overturning circulation may possibly explain the direct cross-gyre transport through the Oyashio along the western boundary from the subarctic to subtropical gyres. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
This study compares the seasonal and interannual-to-decadal variability in the strength and position of the Kuroshio Extension front(KEF) using high-resolution satellite-derived sea surface temperature(SST) and sea surface height(SSH) data. Results show that the KEF strength has an obvious seasonal variation that is similar at different longitudes, with a stronger(weaker) KEF during the cold(warm) season. However, the seasonal variation in the KEF position is relatively weak and varies with longitude. In contrast, the low-frequency variation of the KEF position is more distinct than that of the KEF strength even though they are well correlated. On both seasonal and interannual-to-decadal time scales, the western part of the KEF(142°–144°E) has the greatest variability in strength, while the eastern part of the KEF(149°–155°E) has the greatest variability in position. In addition, the relationships between wind-forced Rossby waves and the low-frequency variability in the KEF strength and position are also discussed by using the statistical analysis methods and a wind-driven hindcast model. A positive(negative) North Pacific Oscillation(NPO)-like atmospheric forcing generates positive(negative) SSH anomalies over the central North Pacific. These oceanic signals then propagate westward as Rossby waves, reaching the KE region about three years later, favoring a strengthened(weakened) and northward(southward)-moving KEF.  相似文献   

10.
本文利用区域海气耦合模式FROALS(Flexible Regional Ocean-Atmosphere-Land System)对西北太平洋地区1984-2007年连续积分结果,对比SODA(Simple Ocean Data Assimilation)同化资料讨论了西北太平洋海表温度和表层洋流的气候态及年际变率。结果表明,FROALS基本能够再现冬、夏季季节平均的海温型,但均存在一个明显的冷偏差;FROALS对气候平均态的表层洋流有较高的模拟技巧,对于冬、夏季的表层洋流型都能够再现。另外,表层洋流的模拟偏差与海表高度的模拟偏差直接相关。由于模式模拟的黑潮热输送较观测偏强,使得模式模拟的海洋热输送倾向于使黑潮路径上的海温呈现正偏差。从表层洋流的年际变率来看,模式模拟的与ENSO(El Nio-South Oscillation)相联系的年际变率信号与观测相似:在El Nio年,北赤道流和棉兰老流增强,低纬度西太平洋海表高度降低,而在La Nia年则呈现出相反的形态,但是在模式中这种信号稍强于观测。  相似文献   

11.
A water mass characterized by the pycnostad on the bottom of the ventilated portion in the central subtropical North Pacific is described through the comparison with the Subtropical Mode Wate (STMW). In this paper, this water mass is called the North Pacific Central Mode Water (CMW), because of its vertical homogeneity. The distribution of CMW is examined based on the climatological maps of annual mean potential vorticity. On the other hand, its formation area is examined based on the climatological winter temperature data set and the STD sections across the Kuroshio Extension in early spring of individual years. The main results are summarized as follows: 1) STMW is formed in the deep winter mixed layer south of the main path of the Kuroshio Extension (termed 12°C Front in this paper). On the other hand, CMW is formed in the deep winter mixed layer in the east-west band surrounded by a branch of the Kuroshio Extension (termed 9°C Front in this paper) and the boundary of two water masses representing the subtropical and subpolar gyres. 2) The winter mixed layer between the 12°C Front and the 9°C Front is shallower than that in the CMW and STMW formation areas. 3) These geographical features of the winter mixed layer depths near the subarcticsubtropical transition zone result in two pycnostads (STMW and CMW) in the main thermocline of the subtropical North Pacific through the advection caused by the subtropical gyre.  相似文献   

12.
本文利用Hadley中心的海表面温度、海洋再分析资料ORAS4(Ocean Reanalysis System 4)的海表面高度、NCEP(National Centers for Environmental Prediction)的海气界面风场及热通量等数据,分析了1948-2018年期间副热带南、北太平洋经向模(S...  相似文献   

13.
The role of Mediterranean Overflow Water (MOW) in creating subsurface salinity anomalies within the Rockall Trough, a gateway to high latitude areas of deep convection, has been examined closely in recent years. Eulerian investigations of high latitude property fields have suggested that these subsurface anomalies are likely the result of variability in the zonal extent of the eastern limb of the subpolar gyre: when expanded into the eastern North Atlantic, the gyre is presumed to limit the extent to which MOW is able to penetrate northward to subpolar latitudes. However, though the depth of the subsurface salinity anomalies in the Rockall Trough supports the hypothesis that the intermittent presence of MOW is involved in creating the anomalies, MOW pathways to the Rockall Trough have not yet been established. Here, Lagrangian trajectories from floats released in the eastern North Atlantic between 1996 and 1997 and synthetic trajectories launched within an eddy-resolving ocean general circulation model are used to demonstrate that two main density neutral transport pathways lead to the Rockall Trough. One pathway involves the transport of relatively fresh waters as part of the North Atlantic Current and the other involves the transport of relatively salty waters from the eastern reaches of the subtropical North Atlantic. The results from this study indicate that changes in these pathways over time can explain the subsurface salinity variability in the Rockall Trough.  相似文献   

14.
本文基于实测温盐数据等资料,利用水团的浓度混合分析等方法,揭示了热带中东太平洋海域10°N断面的水团构成自上而下分别为东部赤道–热带水团、北太平洋中央水团、加利福尼亚流系水团、南太平洋中央水团、太平洋亚北极水团和太平洋深层水团。分析发现,受热带辐合带影响,9°~10°N海域常年持续的正风应力旋度诱发上升流出现,北太平洋中央水团、加利福尼亚流系水团、南太平洋中央水团和太平洋亚北极水团4个通风潜沉水团经向运动至该纬度带时被抽吸至次表层和中层,并散布在不同深度。以往研究仅指出上述4个水团在海表通风形成后将潜沉并向赤道方向运动,本研究进一步阐明了4个水团潜沉后向热带海域运动的动力机制及其在热带中东太平洋10°N断面的散布深度。研究成果揭示了热带中东太平洋水团与北太平洋副热带、亚极地和南太平洋副热带海区中上层水团间的循环过程,对认识北太平洋高–中–低纬度间物质和能量的交换和再分配具有重要科学价值。  相似文献   

15.
The influence of changes in the rate of deep water formation in the North Atlantic subpolar gyre on the variability of the transport in the Deep Western Boundary Current is investigated in a realistic hind cast simulation of the North Atlantic during the 1953–2003 period. In the simulation, deep water formation takes place in the Irminger Sea, in the interior of the Labrador Sea and in the Labrador Current. In the Irminger Sea, deep water is formed close to the boundary currents. It is rapidly exported out of the Irminger Sea via an intensified East Greenland Current, and out of the Labrador Sea via increased southeastward transports. The newly formed deep water, which is advected to Flemish Cap in approximately one year, is preceded by fast propagating topographic waves. Deep water formed in the Labrador Sea interior tends to accumulate and recirculate within the basin, with a residence time of a few years in the Labrador Sea. Hence, it is only slowly exported northeastward to the Irminger Sea and southeastward to the subtropical North Atlantic, reaching Flemish Cap in 1–5 years. As a result, the transport in the Deep Western Boundary Current is mostly correlated with convection in the Irminger Sea. Finally, the deep water produced in the Labrador Current is lighter and is rapidly exported out of the Labrador Basin, reaching Flemish Cap in a few months. As the production of deep-water along the western periphery of the Labrador Sea is maximum when convection in the interior is minimum, there is some compensation between the deep water formed along the boundary and in the interior of the basin, which reduces the variability of its net transport. These mechanisms which have been suggested from hydrographic and tracer observations, help one to understand the variability of the transport in the Deep Western Boundary Current at the exit of the subpolar gyre.  相似文献   

16.
The principal meeting point of the subtropical and subpolar gyres of the North Atlantic is at the Tail of the Grand Banks where the two western boundary currents, the Gulf Stream and Labrador Current, join forces as the North Atlantic Current, which flows northeast almost 10° in latitude before turning east as the Subpolar Front, ultimately feeding the Labrador and Nordic Seas and the thermohaline overturning. After the Gulf Stream turns into the North Atlantic Current at the Grand Banks, its role shifts from a wind-driven current to a link in the large-scale thermohaline circulation. The processes governing this transition, in particular the continued transport north of mass and heat, are questions of considerable climatic importance. The North Atlantic Current is a very unusual western boundary current in that its mass transport decreases in the downstream direction.The mean path and annual shifting of the eastward flowing Gulf Stream is conjectured to result from a time-varying shelf-Slope Water overflow of waters from the Labrador shelf. As the volume transport increases in fall and deepens the Slope Water pycnocline, it forces the Gulf Stream south and deepens the Sargasso Sea thermocline as well. The timing of these steps governs the June maximum in baroclinic transport. There is some evidence that this ‘back-door’ gyre interaction may operate on interannual time scales as well. The question then arises whether the shelf-to-Slope Water Sea transport also plays a role in governing the separation of the Gulf Stream.The widely observed robustness of the width of the Gulf Stream appears to result from a tight balance between the release of available potential energy and the kinetic energy of the current. A broader current would release more energy than can be ‘disposed of’, while a narrower current requires more kinetic energy than is available to sustain it. It is shown that for plausible dissipation rates in the recirculation gyres, the amount of energy that needs to be expelled from the Gulf Stream is such a small fraction of that advected through as to be vitually undetectable, hence the stiffness of the current.  相似文献   

17.
The interdecadal climate variability affects marine ecosystems in both the subtropical and subarctic gyres, consequently the position of the Transition Zone Chlorophyll Front (TZCF). A three-dimensional physical-biological model has been used to study interdecadal variation of the TZCF using a retrospective analysis of a 30-year (1960–1990) model simulation. The physical-biological model is forced with the monthly mean heat flux and surface wind stress from the COADS. The modeled winter mixed layer depth (MLD) shows the largest increase between 30°N and 40°N in the central North Pacific, with a value of 40–60% higher during 1979–90 relative to 1964–75 values. The winter Ekman pumping velocity difference between 1979–90 and 1964–75 shows the largest increase located between 30°N and 45°N in the central and eastern North Pacific. The modeled winter surface nitrate difference between 1979–90 and 1964–75 shows increase in the latitudinal band between 30°N and 45°N from the west to the east (135°E–135°W), the modeled nitrate concentration is about 10 to 50% higher during the period of 1979–90 relative to 1964–75 values depending upon locations. The increase in the winter surface nitrate concentration during 1979-90 is caused by a combination of the winter MLD increase and the winter Ekman pumping enhancement. The modeled nitrate concentration increase after 1976–77 enhances primary productivity in the central North Pacific. Enhanced primary productivity after the 1976–77 climatic shift contributes higher phytoplankton biomass and therefore elevates chlorophyll level in the central North Pacific. Increase in the modeled chlorophyll expand the chlorophyll transitional zone and push the TZCF equatorward. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

18.
北太平洋经向翻转环流是北太平洋所有经向翻转环流圈的总称,目前它拥有五个环流圈,即副热带环流圈(the subtropical cell,STC)、热带环流圈(the tropical cell,TC)、副极地环流圈(the subpolar cell,SPC)、深层热带环流圈(the deep tropical cell,DTC)和温跃层环流圈(the thermohaline cell,THC)。这些环流圈是北太平洋经向物质和能量交换的重要通道,它们的变化对海洋上层热盐结构和气候变化皆有重要影响。迄今,人们已对STC、TC和DTC的结构形态、变化特征与机理开展了广泛而深入的研究,并对STC的极向热输送特征也做了一些初步分析。但应指出的是,关于SPC和THC的研究仍较少,迄今尚不清楚这两个环流圈的三维结构和变异机理;而且,对北太平洋经向翻转环流的热盐输送研究尚处于起步阶段,目前对各环流圈的热盐输送特征、变化规律和变异机理仍知之甚少,这些科学问题亟待深入研究。  相似文献   

19.
The adjustment of the North Pacific Subtropical and Subpolar Gyres towards changes in wind stress leads to different time-scale variabilities, which plays a significant role in climate changes. Based on the Simple Ocean Data Assimilation (SODA) and Global Ocean Data Assimilation System (GODAS) datasets, the variations of the Subtropical and Subpolar Gyres are diagnosed using "three-dimension Ocean Circulation Diagnostic Method", and established three types of index series describe the strength, meridional and depth center of the Subtropical and Subpolar Gyres. The above indices present the seasonal, interannual and interdecadal variabilities of the Subtropical and Subpolar Gyres, which proves well. Both the Gyres are the strongest in winter, but the Subtropical Gyre is the weakest in summer and the Subpolar Gyre is the weakest in autumn. The Subtropical Gyre moves northward from February to March, southward in October, and to the southernmost in around January, while the Subpolar Gyre moves northward in spring, southward in summer, northward again in autumn and reaching the extreme point in winter to the south. The common feature of the interannual and interdecadal variabilities is that the two gyres were weaker and to the north before 1976-1977, while they were stronger and to the south after 1976-1977. The Subpolar Gyre has made a paramount contribution to the variability on interdecadal scales. As is indicated with the Subpolar Gyre strength indices, there was an important shift from weak to strong around 1976-1977, and the correlation coefficient with the North Pacific Decadal Oscillation (PDO) indices was 0.45, which was far better than that between the Subtropical Gyre strength indices and the PDO. Tests show that influenced by small and mesoscale eddies, the magnitude of large-scale gyres strength is strongly dependent on data resolution. But seasonal interannual and interdecadal large-scale variabilities of the two gyres presented with indices is less affected by model resolution.  相似文献   

20.
INTRODUCTIONBeing a current of high temperature and high salinity, the Kuroshio carries a large amount ofheat from low latitude tropical ocean to high latitude ocean, and plays an imPOrtant role in theheat balance in East Asia. The variability of the Kurosl,io can affect the climate of East Asia, aswell as the ocean environment and the fishery resources. A lot of studies showed that the variabilitiies of the Kuroshio were related to the global changes especially to the onset of ENSO.…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号