首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
This work investigated the natural variability of several biomarkers in Tapes philippinarum and Mytilus galloprovincialis, sampled from Northern Adriatic where these organisms are important sentinel species for future environmental impact assessment. Levels of metallothioneins, peroxisomal enzymes and acetylcholinesterase, showed a significant seasonality and marked differences between clams and mussels. Among antioxidant enzymes, catalase and GST decreased during the warmer period, the latter enzyme activity resulting particularly high in clams. The total oxyradical scavenging capacity toward peroxyl radicals decreased in mussels from winter to summer, indicating a prooxidant challenge due to higher seawater temperature and intensity of light irradiance. Lysosomal membrane stability did not exhibit significant seasonal variations, while some variations were observed for DNA damages. Overall results indicated a significant influence of seasonal variability on several biomarkers and species-specific differences which should be considered to discriminate the appearance of anthropogenic disturbance.  相似文献   

2.
The prokaryotic community, both in terms of abundance and activity (exoenzymatic hydrolysis of proteins, polysaccharides and phosphorylated molecules and leucine uptake), was investigated seasonally for a 3‐year period (2004–2006) in the Gulf of Venice (northern Adriatic Sea). By focusing on spatial and temporal variability, the prokaryote dynamics showed significant variations on a horizontal and seasonal scale, but no substantial differences were observed among years. The basin‐scale variability was mainly influenced by allochthonous inputs from the Po river and the Venice Lagoon, which were the main source of nutrients, acting as a ‘bottom up’ control on prokaryotes. On a seasonal scale, all the microbial parameters (except the polysaccharide degradation) showed significant variations following the temperature fluctuations. The annual rate of change was very low for all the chemical, physical and biological parameters and only the abundance and phosphatase activity of the prokaryotes differed significantly among years.  相似文献   

3.
Month-to-month fluctuations in the abundance of bacteria and heterotrophic nanoflagellates (HNF) and bacterial production, as well as various chemical (nutrients, oxygen) and physical (salinity, temperature) parameters were analysed at a station located in the open middle Adriatic Sea during one decade (1997-2006). Being influenced by both coastal waters and open Adriatic circulation in the surface layer, and by the deep Adriatic water masses in the deep layers (100 m), this station is quite suitable for detecting the environmental changes occurring in the open Adriatic Sea with respect to the circulation of its water masses and their long-term changes and anomalies. Multivariate methods were used to identify seasonal and inter-annual changes of the investigated parameters, associating observed changes to the changes in Adriatic water masses and circulation regimes. The analyses showed that bacterial abundance and production were controlled by different water mass dynamics during 1997-2001 compared to 2002-2006 period, particularly noticeable in different seasonal patterns of biological parameters. The interplay between North Adriatic Dense Water (NAdDW) and Levantine Intermediate Water (LIW) resulted in a change in the available nutrients (NAdDW is poor in orthophosphates), and as a consequence different bacterial abundance and production. A few periods were examined in detail, such as 2004, when LIW inflow was particularly strong and was accompanied by an increase of bacterial and HNF abundances, as well as of bacterial production.  相似文献   

4.
High-resolution underway temperature and conductivity measurements collected by R/V Knorr during winter and spring 2003 are used to characterize errors associated with spatial aliasing in the northern and central Adriatic Sea. During winter, 99th percentile temperature, salinity and density errors were 0.62 °C, 0.25 and 0.12 kg/m3 (0.25 °C, 0.10 and 0.05 kg/m3) for sampling at 10 km (5 km) horizontal resolution, respectively. The corresponding values in spring were 1.31 °C, 0.50 and 0.40 kg/m3 (0.93 °C, 0.25 and 0.22 kg/m3) for the 10 km (5 km) sample spacing, respectively. The largest errors were associated with energetic regions over the shallow, western Adriatic, in front of the Po River mouth and off the tip of the Istrian peninsula. The deeper eastern basin exhibited smaller errors. The variability of errors in time and space reflected the variability of small-scale density features, characterized by wavelengths as small as 2 km in winter and 1 km in spring and being more pronounced in the western and northern parts of the Adriatic. As these results indicate that errors associated with undersampling can be considerable, they should be taken into account while planning future CTD measurements in the region.  相似文献   

5.
Abstract. The temporal dynamics of three seagrasses, Posidonia oceanica, Cymodocea nodosa and Zostera marina, was studied in different areas of the Adriatic Sea by analysing phenological parameters and biomass trends in different compartments of seagrass systems. For this purpose, samplings were conducted in 1997 once per season at each station, Otranto (southern Adriatic Sea) and Grado (northern Adriatic Sea). Structural parameters and biomass of plant compartments differed among seagrasses both in absolute values and in seasonal variability. P. oceanica was the largest plant, showing the highest number of leaves per shoot, highest leaf surface, Leaf Area Index and shoot weight. Z. marina was intermediate in size and had the longest leaves, whereas C. nodosa was the smallest seagrass. P. oceanica accounted for the highest total biomass (mean ± SE: 1895.9 ± 180.2 g DW · m–2; CV = coefficient of variation: 19.0 %), considerably more than C. nodosa (mean ± SE: 410.4 ± 88.4 g DW·m–2; CV: 43.1 %) and Z. marina (mean ± SE: 312.1 ± 75.1 g DW · m–2; CV: 48.1 %), although the two latter species displayed a higher seasonal variability. Similarly, other features, such as shoot density, leaf surface, LAI, shoot weight and relative contributions of above‐ and below‐ground compartments, were less variable across seasons in P. oceanica than in the two other seagrasses, while leaf length showed the highest seasonal fluctuation in P. oceanica. As for biomass partitioning, C. nodosa showed a higher proportion of the below‐ground relative to above‐ground biomass (up to 90 %), with a distinct seasonality, whereas in P. oceanica the proportion of below‐ground biomass (around 80 %) was fairly constant during the year. We infer that in P. oceanica the seasonal forcing is probably buffered by the availability of internal resources stored permanently during the year in the below‐ground. In C. nodosa and Z. marina, instead, growth processes seem to be amplified by a greater influence of environmental factors.  相似文献   

6.
The seasonal variability of surface chlorophyll in the northern Humboldt Current System is studied using satellite data, in situ observations and model simulations. The data show that surface chlorophyll concentration is highest in austral summer and decreases during austral winter, in phase opposition with coastal upwelling intensity. A regional model coupling ocean dynamics and biogeochemical cycles is used to investigate the processes which control this apparently paradoxical seasonal cycle. Model results suggest that the seasonal variability of the mixed layer depth is the main controlling factor of the seasonality. In winter, the mixed layer deepening reduces the surface chlorophyll accumulation because of a dilution effect and light limitation. In summer, biomass concentrates near the surface in the shallow mixed layer and nitrate limitation occurs, resulting in a biomass decrease in the middle of summer. Intense blooms occur during the spring restratification period, when winter light limitation relaxes, and during the fall destratification period, when the surface layer is supplied with new nutrients. Model sensitivity experiments show that the seasonal variations in insolation and surface temperature have little impact on the surface chlorophyll variability.  相似文献   

7.
The Adriatic basin-wide circulation and its temporal variability are reviewed on the basis of results from the analysis of hydrographic data collected during four POEM cruises. Major well known features in the circulation are revealed in the data set which covers the period from October 1985 to April 1987. A prominent signal associated with the seasonal variability is identified in the water outflowing along the Italian coast. Differences between autumn and spring in the vein of cold and fresh water flowing along the Italian shelf manifest mainly in the temperature field. During the stratified season the fresh water spreads over the entire surface layer of the southern Adriatic. On the other hand, during spring, when the sea is vertically homogeneous, the fresh water remains confined to the surface longshore boundary layer over the entire length of the Italian coast. Layers below the seasonal thermocline at the eastern portion of the sea display very weak seasonal signals. A strong signal associated with the inter-annual variations also has been documented from the analysed data set; it mainly appears in the salinity field. It is shown that in spring 1986, the salinity averaged over the entire water column north of the Palagruza Sill is lower by 0.3 psu than in spring 1987. A similar, but less prominent difference is noted in the southern Adriatic. An attempt is made to associate these differences with variations in climatic conditions over the area, the river runoff and the Mediterranean water inflow.  相似文献   

8.
We compare insolation results calculated from two well-known empirical formulas (Seckel and Beaudry’s SB73 formula and the original Smithsonian (SMS) formula) and a radiative transfer model using input data predicted from meteorological weather-forecast models, and review the accuracy of each method. Comparison of annual mean daily irradiance values for clear-sky conditions between the two formulas shows that, relative to the SMS, the SB73 underestimates spring values by 9 W m-2 in the northern Adriatic Sea, although overall there is a good agreement between the annual results calculated with the two formulas. We also elucidate the effect on SMS of changing the ‘Sun-Earth distance factor (f)’, a parameter which is commonly assumed to be constant in the oceanographic context. Results show that the mean daily solar radiation for clear-sky conditions in the northern Adriatic Sea can be reduced as much as 12 W m-2 during summer due to a decrease in thef value. Lastly, surface irradiance values calculated from a simple radiative transfer model (GM02) for clear-sky conditions are compared to those from SB73 and SMS. Comparison within situ data in the northern Adriatic Sea shows that the GM02 estimate gives more realistic surface irradiance values than SMS, particularly during summer. Additionally, irradiance values calculated by GM02 using the buoy meteorological fields and ECMWF (The European Centre for Medium Range Weather Forecasts) meteorological data show the suitability of the ECMWF data usage. Through tests of GM02 sensitivity to key regional meteorological factors, we explore the main factors contributing significantly to a reduction in summertime solar irradiance in the Adriatic Sea.  相似文献   

9.
Abstract. This paper describes a new Ocean Acoustic Tomography (OAT) methodology - a passive tomography - presently in an advanced development phase. This technique has been developed for long-term, extensive, remote monitoring of the seawater temperature spatial distribution, which is estimated from the received noise emitted from ships of opportunity. To test the passive tomographic processor under controlled conditions, the components of the naval noise from different kinds of vessels was analysed and realistic naval noise was simulated. The feasibility of the proposed methodology was confirmed by test-runs on semi-synthetic data; its capability to resolve temperature profiles will be better assessed with the use of real acoustic and environmental data collected during the INTIMATE00 experiment performed in October 2000 in the Atlantic Ocean off the Portuguese coast. An analysis of the space and time variability of the Empirical Orthogonal Function (EOF) decomposition of the sound speed (SSP) in the Mediterranean Sea has been carried out to identify areas where acoustic tomography can be successfully applied. Results from simulations in the South Adriatic Sea, which was identified as a region with a high sound speed variability associated with the seasonal cycle and with the main oceanographic processes, are reported.  相似文献   

10.
Eight ophiuroid species, six from the northern Kattegat-eastern Skagerrak and three from the northern Adriatic Sea, were examined for regeneration of arms. The species were separated into groups based upon mode of feeding and habitat. Comparison between groups collected in the northern Kattegat-eastern Skagerrak showed that infaunal suspension- and deposit-feeding species (Amphiura filiformis and A. chiajei) had significantly more scars per arm (mean number 0.78) than epibenthic suspension feeders (Ophiothrix fragilis and Ophiocomina nigra, 0.29) or epibenthic carnivores and deposit feeders (Ophiura ophiura and O. albida, 0.13). Spatial variation in arm regeneration incidence was found between sampling sites in the northern Kattegat-eastern Skagerrak for Amphiura filiformis and in the northern Adriatic Sea for Ophiothrix quinquemaculata. The ash-free dry weight (AFDW) and nitrogen (N) contents were measured in arms of six species of brittle-stars from the northern Kattegat-eastern Skagerrak. Differences between species were found, with highest concentrations of AFDW and N in Amphiura filiformis, intermediate in A. chiajei, Ophiocomina nigra and Ophiothrix fragilis, and lowest in Ophiura ophiura and O. albida. As the infaunal suspension- and deposit-feeding brittle-stars (Amphiura spp.) had the highest proportions of damaged arms and highest AFDW and N contents in their arms in this comparison, it is suggested that selective cropping of arms by demersal fish is the main cause of arm damage on Amphiura spp. in this area.  相似文献   

11.
In this paper, effort is made to demonstrate the quality of high-resolution regional ocean circulation model in realistically simulating the circulation and variability properties of the northern Indian Ocean(10°S–25°N,45°–100°E) covering the Arabian Sea(AS) and Bay of Bengal(BoB). The model run using the open boundary conditions is carried out at 10 km horizontal resolution and highest vertical resolution of 2 m in the upper ocean.The surface and sub-surface structure of hydrographic variables(temperature and salinity) and currents is compared against the observations during 1998–2014(17 years). In particular, the seasonal variability of the sea surface temperature, sea surface salinity, and surface currents over the model domain is studied. The highresolution model's ability in correct estimation of the spatio-temporal mixed layer depth(MLD) variability of the AS and BoB is also shown. The lowest MLD values are observed during spring(March-April-May) and highest during winter(December-January-February) seasons. The maximum MLD in the AS(BoB) during December to February reaches 150 m (67 m). On the other hand, the minimum MLD in these regions during March-April-May becomes as low as 11–12 m. The influence of wind stress, net heat flux and freshwater flux on the seasonal variability of the MLD is discussed. The physical processes controlling the seasonal cycle of sea surface temperature are investigated by carrying out mixed layer heat budget analysis. It is found that air-sea fluxes play a dominant role in the seasonal evolution of sea surface temperature of the northern Indian Ocean and the contribution of horizontal advection, vertical entrainment and diffusion processes is small. The upper ocean zonal and meridional volume transport across different sections in the AS and BoB is also computed. The seasonal variability of the transports is studied in the context of monsoonal currents.  相似文献   

12.
The organic matter (OM) pool has been studied in two sub-arctic north Norwegian fjords, Balsfjord and Ullsfjord, in July 2001 and June 2003. Besides general OM parameters such as dissolved organic carbon (DOC), particulate organic carbon and nitrogen (POC and PON), the distribution of specific compounds such as folic acid and surface active substances (SAS) was followed. The results are supported with data of salinity, temperature, and chlorophyll a (Chl a). This approach allowed assessment of the fate of the OM pool, and its distinct vertical, spatial, and seasonal variations. Fjord waters could be vertically divided into two layers: the upper mixed layer (UML), until 40 m depth, and the deep aphotic layer. Spatial variability between the two fjords is a consequence of different influences of shelf waters on the fjords. Significant enrichment of POC and PON concentrations (3–5 times), as well as those of particulate SAS and folic acid (up to 3.2 times) in the UML was recorded during the period of new production, in early June. Depletion of particulate OM in deep waters was ascribed to fast dissolution or remineralization in the UML or upper part of aphotic layer. OM in July 2001 was characterized with 15.9% higher DOC pool compared to June 2003, and had refractory properties, suggesting the fjords to be an important source of organic matter for the continental shelf ecosystem. The DOC pool in these subarctic fjords represents the major component of the OM pool. The DOC concentrations in fjords are lower than those in previously studied warmer seas (e.g. the Adriatic Sea), whereas the concentrations of folic acid and SAS are comparable to those in the Adriatic Sea.  相似文献   

13.
Time-series of condition factor (CF) and gonadosomatic index (GSI) were generated using general linear models (GLM) for sardine Sardinops sagax stocks in the northern and southern Benguela ecosystems over the period 1984–1999. During this period the biomass of sardine in the northern Benguela remained at relatively low levels of <500 000 tons, whereas that of southern Benguela sardine increased 40-fold to 1.3 million tons. The GLMs explained 27 and 45% of the observed variation in CF, and 32 and 28% of the observed variation in GSI, for sardine in the northern and southern Benguela subsystems respectively. Whereas the sardine CF in the northern Benguela remained stable over time, that for the southern Benguela stock declined steadily during the study period. Sardine CF showed a seasonal cycle in the southern but not in the northern Benguela. Time-series of GSI showed high interannual variability but no trends in either subsystem, and the seasonal pattern was similar for both stocks. The lack of coherence between the CF time-series for sardine in the two subsystems further suggests that sardine stocks in the northern and southern Benguela subsystems are independent.  相似文献   

14.
The North-Adriatic basin shows typical shallow water mass characteristics which in a first approach, can be considered independent of the Middle and the Southern basins, being more affected by seasonal temperature and salinity variability. Primary production estimates represent the main quantitative assessments of the trophic conditions of a marine system, resulting from the combined effect of a large number of oceanographic factors. In this paper the results from three EUROMARGE AS (EEC-MAST II-MTP project) field trips carried out in 1994 are presented as a contribution to the better understanding of the factors controlling the trophic balance in the Northern Adriatic basin. These results include: depth profiles of salinity, nutrients and chlorophyll a concentrations, oxygen saturation, phytoplankton taxonomy and abundance, estimated biomass and primary production measurements by the 14C in-situ incubation method. The field trips were carried out in three seasons (February, July, September 1994) and the results reported belong to three stations in the northern basin, 5 miles off Ravenna, Cesenatico and Ancona, respectively. As expected, the physical situation of the water column was different in the three periods: the water was mixed in February and stratified in July and September. Nutrient concentrations were higher in winter, whilst the maximum of primary production was measured in September. The phytoplankton was composed predominantly of diatoms. The correlations between primary production and salinity reflect a difference in the factors controlling primary production. During February and September nutrients coming from rivers play an important role, although with a decreasing influence from station 1, nearest to the Po delta, towards station 3. Depth profiles of nutrient concentrations and O2 saturation measured during summer in the water column suggest that regeneration of nutrients in the water column down to the bottom boundary layer must play an important role in the nutrient cycling and dynamics in the basin.  相似文献   

15.
The Mediterranean endemic Cladocora caespitosa (Linnaeus, 1767) is a colonial scleractinian coral belonging to the family Faviidae and the only zooxanthellate coral from Mediterranean whose colonies may fuse in reef‐like structures (hermatypic). Recent surveys are focused on three locations where banks occur in the Adriatic Sea (Croatia): near Prvi? Island in the northern Adriatic, near Pag Island in the central Adriatic and in Veliko jezero (Mljet National Park) in the southern Adriatic. The C. caespitosa bank in Veliko jezero covers an area more than 650 m2 and is thus the largest bank of C. caespitosa found to date. The strong sea currents, which occur as a result of tidal exchange in the channel, appear to favour the growth of the bank. The goal of the study was to present the influence of major environmental factors upon the build‐up process of the coral bank. Biometrical parameters in the C. caespitosa colonies like diameter of the calyces, polyp ash free dry weight (AFDW), corallite linear growth rate and index of sphericity were investigated and compared from these three locations. The morphology of coral banks from the Adriatic Sea and the disposition of the biometrical values are affected by the sea currents, temperature and sedimentation.  相似文献   

16.
The copepod Acartia tonsa appeared in Europe in the first half of the 20th century and colonized progressively European seas and estuaries, possibly transferred from North Atlantic Coast of America. It had been reported in the polyhaline area of the Gironde estuary for a long time but was first recorded in the oligo-mesohaline area in 1983. Its abundance has been increasing significantly. High abundances of A. tonsa were reported since 1999, supplanting the abundances of its autochthonous congeneric species, Acartia bifilosa. This colonization was characterized by analyzing the mean seasonal variability: (1) for three 5-year periods corresponding to three different steps of A. tonsa appearance (1978–1982, A. tonsa was absent; 1988–1992, low abundances of the species; and 1999–2003, high abundances of A. tonsa) in the oligo-mesohaline area and (2) for three stations distributed along the salinity gradient during the recent period. The aim of this work was to define if this colonization was due to natural or anthropogenic forcing and to evaluate its possible impact on autochthonous zooplanktonic community.Both natural and anthropogenic forcings seem to explain the colonization of Acartia tonsa in the oligo-mesohaline area of the Gironde estuary. First records (1983–1988) could be due to marine water inputs caused by high values of the North Atlantic Oscillation index. The global warming which caused the increase of the summer warm period, the marinisation of the system and the local decrease of the turbidity should have been the key factors favoring the establishment of the species. Anthropogenic forcings as the establishment of the nuclear power plant which locally causes warmer conditions are also important factors explaining the differences of seasonal cycle observed between oligo-mesohaline area and other stations: the seasonal pattern of A. tonsa in the oligo-mesohaline area was indeed characterized by an autumnal peak of abundances which has been observed in other stations and in many North European estuaries, and by a second spring peak that had only been observed in Southern estuaries.The introduction of Acartia tonsa in the Gironde estuary significantly changed the seasonal pattern of autochthonous copepods, by limiting their seasonal abundances without affecting their long-term population stability. Finally, the successful colonization of A. tonsa had led to the spread of the seasonal zooplanktonic production which could have had an impact on fish and shrimp productions.  相似文献   

17.
Temporal variability and population structure of planktonic ostracods were investigated for the first time in the South Adriatic Sea during 1996. The maximal total ostracod abundance (1167 ind·100 m−3; 69% juveniles, 18% females and 13% males) was recorded in February. Thirteen species of marine planktonic ostracods were identified. Porroecia spinirostris and Archiconchoecia striata dominated the ostracod assemblage, accounting respectively for 62% and 18% of the total abundance. Their annual peaks were recorded during the cold season, which was the period of their intense reproduction, with favourable temperature conditions and lack of predators. The females surpassed the males in abundance in most species. The presence of the mesopelagic species indicated a strong influence of intermediate layer water masses from the Eastern Mediterranean Sea.  相似文献   

18.
Electrochemical methods based on adsorption of organic molecules at the mercury electrode-solution interface were used to investigate surfactant production by marine phytoplankton. Six species of marine phytoplankton, representing the classes of Bacillariophyceae, Haeptophyceae, Chlorophyceae and Cryptophyceae, were studied in batch cultures.Our experimental results showed that surfactants were produced in culture media by healthy exponential growing cells. The measured response was found to depend on the particular species and the age of the culture.Total surfactant content in culture media generally increased with cell density, while surfactants per cell showed an inverse relation to cell density. However, we found that in Cryptomonas culture medium, during the exponential growth, excretion of the insoluble surfactant material per cell was independent of cell concentration.In addition to culture experiments, surfactant activity at several northern Adriatic stations was measured during various stages of phytoplankton bloom. It was concluded that a significant part of surfactant activity in a seawater column is due to phytoplankton production.  相似文献   

19.
During the 2006 Italian Antarctic expedition a diel sampling was performed close to Cape Hallett (Ross Sea) during the Austral summer. Under-ice seawater samples (4 m) were collected every 2 h for 28 h in order to estimate prokaryotic processes' variability and community structure dynamics. Prokaryotic and viral abundances, exoenzymatic activities (β-glucosidase, chitinase, lipase, alkaline phosphatase and leucine aminopeptidase), prokaryotic carbon production (3H-leucine incorporation) and community structure (Denaturing Gradient Gel Electrophoresis – DGGE fingerprints) were analysed. Results showed that the diel variability of the prokaryotic activity followed a variation in salinity, probably as a consequence of the periodical thawing of sea ice (driven by solar radiation and air temperature cycles), while negligible variation in viral and prokaryotic abundances occurred. The Bacterial and Archaeal community structures underwent an Operational Taxonomic Units (OTUs) temporal shift from the beginning to the end of the sampling, while Flavobacteria-specific primers highlighted high variations in this group possibly related to sea ice melting and substrate release.  相似文献   

20.
Cross-shelf distribution and abundance of copepod nauplii and copepodids were measured during three summer upwelling seasons (2000–2002) in a coastal upwelling zone off northern California. These 3 years varied considerably in the intensity of winds, abundance of chlorophyll, and water temperature. The cruises in 2000 were characterized by relaxation conditions, with generally high levels of chlorophyll and high water temperature. The cruises in 2001 and 2002 were dominated by strong and persistent upwelling events, leading to lower chlorophyll and water temperatures. The copepod assemblage was dominated by Oithona spp., Acartia spp. and Pseudocalanus spp., with Metridia pacifica (lucens), Microsetella rosea, Oncaea spp. and Tortanus discaudatus also common during all 3 years. The cross-shelf distribution of copepods was generally shifted offshore during upwelling and onshore during relaxation events, although some variability between species occurred. Abundance of all life stages generally exhibited a negative correlation with cross-shelf transport averaged over at least 1–4 days and lagged by 0–3 days, indicating lower abundances during and immediately after active upwelling. However, copepod nauplii seemed to respond positively to wind events lasting 1–5 days followed by a period of relaxation lasting 6 or 7 days. These rapid rates of change in abundance are probably too great to be due to in situ growth and reproduction alone; physical processes must also play a role. These results suggest a highly dynamic relationship between copepods and upwelling events off northern California, with species-specific responses to upwelling to be expected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号