首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
选取4次伊犁河谷、天山北坡暴雨天气过程,利用地面逐时降水、常规、NCEP/NCAR 1°×1°再分析及地基GPS遥感的大气水汽总量资料(GPS-PWV),通过合成分析方法得到暴雨期间大气环流的基本配置,阐明了伊犁河谷、天山北坡地区强降水期间环流形势及水汽输送的异同,结果表明:(1)强降水过程中暴雨区上空200 h Pa强辐散气流、500 h Pa槽前正涡度平流、西南气流利于垂直运动的发展,低层偏西、偏东和偏北气流为暴雨区提供水汽和不稳定能量,低层辐合、高层辐散,配合地形辐合抬升,上升运动进一步增强,造成强降水发生;(2)深厚的西西伯利亚低涡低槽系统移速缓慢,停滞时间长,造成强降水前暴雨站增湿时间更长,比较发现强降水发生前暴雨站GPS-PWV均存在1~3 d的增湿过程,暴雨期间测站GPS出现明显跃变,峰值可达到气候平均值的2倍左右;(3)GPS大气可降水量的演变与大尺度的水汽输送、聚集有较好的对应关系,但GPS高值区并不代表降水大值区,还应和动力热力等条件综合判断降水的强弱。  相似文献   

2.
2016年7月31日至8月1日,新疆伊犁河谷发生了一次极端强降水事件,多站突破降水极值。利用NCEP/NCAR 1°×1°和2.5°×2.5°再分析资料、中国地面卫星雷达三源融合逐小时降水产品、新疆地区常规观测资料、基于地基GPS观测的大气可降水量资料及基于拉格朗日方法的HYSPLIT轨迹模式结果,通过对水汽输送流函数、势函数、水汽输送轨迹和暴雨区水汽收支计算,结合伊犁河谷GPS观测分析,揭示了此次强降水期间的大尺度水汽输送、辐合特征及伊犁河谷局地水汽变化特点。结果表明:(1)强降水期间大西洋及红海均对伊犁河谷的水汽供应具有贡献,河谷处于水汽通量辐合区,向西开口的地形辐合和抬升为局地暴雨的发生提供有利的动力辐合条件。低纬度印度夏季风环流和中纬度大西洋向东输送的气流共同构成伊犁河谷极端降水天气的水汽输送通道,其中印度夏季风西南水汽输送主要集中在对流层低层,对流层中层水汽的输送以大西洋向东气流和低槽自身水汽输送为主。(2)HYSPLIT模拟结果表明暴雨区3000 m中纬度偏西路径的水汽输送最为强盛,偏南路径水汽源于阿拉伯海,对流层底层偏西、偏东路径和中层偏北路径水汽通过垂直运动补充对流层低层的水汽;5000 m水汽输送轨迹以偏西路径和低槽自身携带的水汽为主。(3)降水期间水汽集中在对流层低层,通过垂直输送项向高层输送;强降水时段暴雨区对流层低层南边界水汽流入量迅速增强,中高层水汽流入主要集中在西边界。(4)降水前槽前西南气流造成伊犁河谷测站GPS-PWV明显跃升,强降水时段受印度西南季风影响,测站PWV快速增高并维持,局地GPS-PWV的增加与大尺度水汽输送辐合增强有关。  相似文献   

3.
一次西南涡持续暴雨的GPS大气水汽总量特征   总被引:2,自引:0,他引:2       下载免费PDF全文
利用成都地区地基GPS遥感的大气水汽总量资料 (GPS-PWV)、NCEP再分析资料、自动站降水量资料和探空站比湿资料,对2010年7月15—18日发生在四川盆地东北部的一次持续性暴雨的水汽变化特征进行综合分析,重点探究这次大暴雨的影响系统 (西南涡) 发生、发展前后GPS-PWV的演变特征及其与降水的关系。结果表明:降水发生时,GPS-PWV通常在短时间内有急剧的上升,并在西南涡形成前达到最大值;西南涡完全形成时,GPS-PWV急升结束;西南涡东移,GPS-PWV继续下降到最低,降水趋于结束。与水汽通量散度相比较,水汽散度垂直通量能更好地描述暴雨过程中的强上升、辐合辐散运动以及水汽输送情况,它与GPS-PWV变化趋势基本一致。因此,GPS-PWV的急升与陡降对大暴雨的形成与减弱有一定指示意义。  相似文献   

4.
邓佳  李国平 《高原气象》2012,31(2):400-408
利用成都地区4个地基GPS站遥感的大气可降水量(GPS-PWV)数据,结合自动气象站雨量和NCEP再分析等资料,对2008年7月20~22日一次由高原涡诱生西南涡引发的四川盆地暴雨过程的水汽变化进行了分析。结果表明,降水开始前GPS-PWV有一个急升过程,且与过程1h最大雨量有较好的对应关系,GPS-PWV的增幅和所达到的最大值可以较好地反映西南暖湿气流对四川盆地水汽的影响程度;而GPS-PWV的骤降则预示降水即将结束。西南涡在GPS-PWV急速上升之后形成于盆地;在其发展强盛时段,盆地处于低空水汽通量大值区和水汽辐合中心,随着西南涡的东移,GPS-PWV逐渐减小至最低水平。  相似文献   

5.
应用常规天气图资料、郑州站探空层结资料、FY-2E红外云图和濮阳站降水实况等资料,对2016年7月14—15日发生在濮阳市的区域性暴雨、大暴雨天气过程进行综合分析。结果表明:(1)此次大暴雨过程是由500hPa和700hPa的低涡及其分裂东移的低槽、700hPa和850hPa的切变线、地面辐合线及南下的冷空气共同影响造成的。(2)500hPa槽前西南气流与584dagpm线外围的西南气流叠加加强了西南暖湿气流的输送,为降水提供了水汽来源;地面辐合线的存在加强了动力抬升作用。(3)涡度场和散度场同时表现出的低层辐合、高层辐散的配置,为暴雨的产生提供了有利的动力条件。(4)FY-2E红外云图上,对流云团的持续影响,使降水较长时间维持,造成濮阳市出现区域性的暴雨、大暴雨天气。  相似文献   

6.
乌鲁木齐夏季强降水过程GPS-PWV的演变特征   总被引:2,自引:0,他引:2  
杨莲梅  王世杰  史玉光  赵玲 《高原气象》2012,31(5):1348-1355
利用乌鲁木齐GPS观测站数据反演得到1h间隔GPS遥测的大气可降水量(GPS-PWV)和乌鲁木齐自动气象站逐时降水资料,分析了乌鲁木齐地区夏季10次中雨以上降水过程的GPS-PWV演变特征。结果表明,乌鲁木齐地区的强降水过程中GPS-PWV呈现出明显的1~3天增湿过程和1~2次跃变过程,且降水时GPS-PWV几乎约为气候平均值的2倍,跃变过程与降水发生和结束有较好的关系,可为干旱区降水短期预报提供一个明确的水汽演变指标。  相似文献   

7.
利用常规观测资料、NCEP1°×1°再分析资料以及加密区域自动站降水资料,对2012年7月16日贵州西部局地暴雨天气过程的环境条件和动力条件进行诊断分析。结果表明:暴雨发生前,500 hPa层有高空槽东南移,700 hPa层有西南低涡沿切变线向南移动;大气层处于高能不稳定的状态下,水汽输送通道畅通,有充沛的水汽向暴雨区上空输送,有利于强降水的持续。在此次局地暴雨过程中,韭菜坪主峰(2 901 m)引导天气系统由其东侧向下游移动,同时贵州西部的水城东部与六枝西部之间为河谷地形,使水汽在此处积聚,有利于此处的上升运动增强;700 hPa上的西南低涡沿切变线移动是造成暴雨的直接系统。结合加密区域自动站降水资料分析,该中小尺度天气系统的演变对贵州西部局地强降水落区具有重要的指示意义。  相似文献   

8.
杨莲梅  杨涛 《干旱气象》2004,22(2):11-16
阿克苏北部绿洲是强对流天气的高发区,虽然强对流暴雨和冰雹均为强对流天气,研究表明它们均发生在副热带锋区上,而影响系统、物理量特征均有显著不同:(1)暴雨的影响系统主要以西方路径的锋区小槽和中亚低槽为多,北支槽最少,冷空气弱且湿;冰雹以锋区小槽和北支槽为主,中亚低槽为少,冷空气相对强且干;(2)强对流暴雨的高空急流比冰雹弱,且存在一支低空偏东急流,冰雹不存在;(3)均位于湿舌区,但暴雨区湿度从低层到中层比雹区大,暴雨区850~500hPa均有明显的水汽输送,尤其低空急流输送充沛的水汽。雹区水汽输送较弱,且以天山山区向雹区的局地水汽输送为主。二者均有强的水汽辐合,暴雨区的水汽辐合比雹区强;(4)均有强的上升运动,冰雹850hPa的上升运动比暴雨强,700hPa二者相当,500hPa暴雨比冰雹略强。(5)均有强的不稳定性,暴雨的不稳定性强于冰雹。  相似文献   

9.
利用常规观测资料、风云卫星资料、多普勒天气雷达资料、地面自动站资料、NECP/NCAR(1°×1°)再分析资料,对2015年6月23—26日南疆西部一次暴雨强对流过程的中尺度特征进行分析。结果表明:(1)南亚高压由带状分布向双体型调整、中亚低涡形成后发展移入南疆是此次暴雨强对流发生的天气背景。强对流发生前各种对流参数变化明显,较强的对流有效位能、强烈的垂直风切变、0℃层和-20℃层高度适宜,这些均有利于短时大冰雹和短时强降水的发生;(2)除中亚低涡自身携带水汽外,孟加拉湾、阿拉伯海和南海水汽输送为强降水区提供了充足水汽源,尤其是中低层的东南风急流辐合为短时强降水提供了水汽辐合的动力条件;(3)23日短时大冰雹和短时强降水天气由生命史达7 h、最低TBB达-36℃的中-β尺度对流云团相继造成,其中,造成短时大冰雹的中-β尺度超级单体最强回波(60 d BZ)高度达4 km、50 d BZ回波高度达-20℃层高度,而短时强降水由断裂弓形回波、飑线型弓形回波下的中-β尺度对流风暴造成;25日短时强降水由层积混合云中2个最低TBB达-44℃的中-β尺度对流云团快速移过造成。  相似文献   

10.
利用NCEP1°×1°再分析资料,对新疆夏季两次塔什干低涡天气过程进行对比分析,从天气尺度环流系统配置、动力和水汽输送的角度探讨造成南疆不同降水强度的塔什干低涡特征差异。结果表明:当南亚高压中心位于70°E,南疆位于200 hPa急流轴出口辐散区,500 hPa塔什干低涡东移携带强西南气流时,700 hPa盆地有显著东风急流,偏西地区中低层切变辐合长时间维持,同时通过接力输送的阿拉伯海水汽与中低层东风急流携带的水汽强烈辐合,导致大范围暴雨,高层正MPV1、负MPV2向下伸展,中低层不稳定性、斜压性增强,配合700 hPa以下负MPV1、正MPV2激发垂直涡度增长,对流性降水加强;当南亚高压中心始终维持偏东(90°E),南疆位于200 hPa急流轴上,500 hPa里海脊和新疆东部高压脊势力相当时,塔什干低涡减弱为槽影响南疆,700 hPa南疆盆地东风气流弱且位置偏西,南疆地区无明显高层辐散、中低层切变辐合,不利于垂直上升运动的发展和水汽的集中辐合,难以造成显著降水。  相似文献   

11.
不同下垫面条件下土壤含水量时空变化特征的对比分析   总被引:6,自引:1,他引:6  
根据淮河三站1998-05-21-08-31逐日土壤水分6层观测资料和黑河1991-06-20-08-21、1990-12-17-1991-02-15逐日土壤水分4层观测资料,分析了邻近绿洲的沙漠区、河网区(湿润区)几种典型下垫面土壤水分含量的时空变化特征。结果表明,不同类型的下垫面条件下,夏季土壤水分在湿润研究区呈明显的单峰偏态分布,且以β分布拟合效果为最好;而在邻近绿洲的沙漠研究区则呈多峰分布,冬季呈Γ分布,且湿润的研究区域夏季土壤水分在时间上呈显著的10-25d的周期变化。  相似文献   

12.
简要比较了中国科学院大气物理研究所对2005年夏季中国降水跨季度预测与实况的异同,并对2005年夏季我国主要雨带及降水偏少区的形成与东亚热带、副热带以及中高纬度大气环流系统的配置进行了分析。对2005年夏季西太平洋副高的异常活动预测不好,这是造成跨季度降水预测有失误之处的主要原因之一。2005年夏季在亚洲对流层中高层,沿着副热带急流轴准静止Rossby波有几次能量传播过程,西太平洋副高的北抬与西伸与副热带急流中Rossby波的活动强度有一定的对应关系,因而产生了亚洲不同地区高影响性的灾害性天气。  相似文献   

13.
国内民航机场主要使用的雨量观测设备为芬兰维萨拉公司生产的RG13型雨量传感器,为保证雨量测量数据的真实可靠,对其测量结果的不确定度分析很有必要。根据自动气象站现场校准方法,分别进行大雨强和小雨强的重复测试,并依据JJF1059.1-2012测量不确定度的评定与表示要求,进行A类不确定度评定。分析测量过程中的B类不确定度来源,进行B类评定,最终给出扩展不确定度。结果表明:在小雨强下,测量不确定度为U95=0.17mm,包含因子k=2。在大雨强下,测量不确定度为U95=0.16mm,包含因子k=2。该研究完善了雨量传感器的现场校准工作流程,对雨量传感器测量结果的可信度评定具有参考价值。  相似文献   

14.
热带气旋眼墙非对称结构的研究综述   总被引:2,自引:0,他引:2  
热带气旋的眼墙非对称结构与其发展过程密切相关。在热带气旋移动过程中,非对称风场伴随着边界层内非对称摩擦而引起的辐合,影响着热带气旋眼墙内的对流分布。此外,风垂直切变作为影响热带气旋强度的重要因子,将上层暖心吹离表层环流,引起眼墙垂直运动的非对称,导致云、降水在方位角方向的非均匀分布。当存在平均涡度的径向梯度时,罗斯贝类型的波动可以存在于涡旋内核区域,影响眼墙非对称结构。海洋为热带气旋提供潜热和感热形式的能量,是热带气旋发展的重要能量来源,关于海洋如何影响热带气旋眼墙非对称结构的相关研究较少。文中着重回顾了热带气旋与海洋相互作用的研究成果,并提出海洋影响热带气旋眼墙非对称结构的机制。海洋对热带气旋最显著的响应特征是冷尾效应,该效应通过降低海表温度,减少海洋向大气输送的潜热和感热,从而影响热带气旋眼墙非对称结构。此外,海浪改变海表粗糙度,通过边界层影响移动热带气旋的眼墙结构。  相似文献   

15.
从纵横两个方面对乌鲁木齐市空气污染现状进行了系统分析,包括与全国其它重点城市之间的比较分析、季节变动分析和趋势变动分析。  相似文献   

16.
利用玉屏国家地面气象观测站1961—2016年逐日平均气温资料,采用《气候季节划分》(QX/T15—2012)方法,对玉屏县四季起始日期及长度进行分析。结果表明:(1)玉屏县常年四季起始日期:入春3月5日,入夏5月23日,入秋9月22日,入冬11月28日;四季长度:春季79 d,夏季122 d,秋季67 d,冬季97 d。(2)56 a来玉屏县春季起始日期呈提前趋势,长度呈增加趋势,两者均在20世纪90年代前后出现了转折,但未发生气候突变;夏季起始日期及长度趋势变化不明显;秋季起始日期呈推后趋势,长度变化不明显;冬季起始日期变化不明显,长度呈减少趋势;春季长度增加、冬季长度减少主要为春季起始日期提前所致。(3)玉屏县四季起始日期的年际变幅大,起始日期比常年偏早(晚)连续2候以上的异常年份,春季为23%,夏季为27%,秋季为32%,冬季为25%。(4)玉屏县春季开始后出现低于季节指标≥1候的概率达41%,表明玉屏县春季出现倒春寒天气的概率很大。(5)比较气象行标法与稳定通过法的四季起始日期及长度,气象行标法对玉屏县的四季划分更能满足于农业生产的需要。  相似文献   

17.
对1959—2000年广西汛期(4~9月)暴雨的年、月分布和广西汛期暴雨天气过程的季节分布及主要影响天气系统进行深入分析,得到了广西汛期暴雨的若干重要特征,对广西汛期划分提出了改进意见。  相似文献   

18.
基于球载式下投北斗探空仪测风观测试验,建立了针对下投式的测风试验评估方法.试验结果表明上升段北斗测风的准确度接近RS92探空仪的探测准确度要求,两者一致性较好;下降段RS92测风误差基本上与上升段的属于同一量级水平,下降初期测风数据在使用时需要做预处理或者有效控制;下降段BD探空仪测风误差与下降段RS92的基本相当,除了球炸初期外,基本上接近WMO的测量要求,此外初期的急速下降对导航定位测风提出了更高的技术要求.整体而言,球载式下投探空观测在时间上可以实现对原有的1次探空进行加密,在空间上可以增加1个区域的探测,并为对现有探空站网分布进行合理优化提供依据,具有良好的应用前景.  相似文献   

19.
The global UK Met office Unified Model (UM) is currently operational at National Centre for Medium Range Weather Forecasting (NCMRWF), the global model named as NCUM. An inter-comparison of two different versions of NCUM has been carried out for simulating the track and intensity of Tropical Cyclones (TCs), which formed over the Bay of Bengal (BoB). For this purpose, two series of numerical experiments named as NCUM25 (New Dynamical core with NCUM N512 resolution) and NCUM17 (ENDGame core with NCUM N768 resolution and upgraded physics and data assimilation scheme) are carried out with seven different initial conditions (ICs) for two TCs. The results suggested that the location, intensity, and vertical structure of the TCs are reasonably well predicted by the NCUM17 over the NCUM25. The Direct Position Error (DPE) and landfall error of TCs are reduced in the NCUM17 in comparison to the NCUM25 for all initial conditions. The mean DPEs and intensity error are reduced by 21–41% and 18–21% in NCUM17 over NCUM25 in both the cases respectively. Improvements in mean landfall position errors are shown to range from 43 to 65% in the NCUM17 as compared to the NCUM25. The mean statistical skill scores for rainfall are considerably improved in NCUM17.  相似文献   

20.
以全天空数字成像仪的等角投影成像原理为基础,将云型简化为正方体及圆柱体云体。模拟了相同云体在不同空间位置的移动轨迹情况,对其所占面积变化(云量)进行了计算,并对云在移动过程中云体侧面成像情况做了分析研究。结果表明,云量随空间位置变化情况与云的宽高比相关,当宽高比大于某一值时云量随天项角(云所处位置)的增大先增大而后减小,反之则随着天顶角的增大而减小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号