首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
This article describes a unique flood hazard, produced by the dramatic expansion of wetlands in Nelson County, located within the North American Prairie Pothole Region of North Dakota, USA. There has been an unprecedented increase in the number, average size, and permanence of prairie wetlands, and a significant increase in the size of a closed lake (Stump Lake) due to a decade-long wet spell that began in 1993 following a prolonged drying trend. Base-line land cover information from the 1992 USGS National Land Cover Characterization dataset, and a Landsat TM scene acquired 9 July 2001 are used to assess the growth of the closed lake and wetland pond surface areas, and to analyze the type and area of various land cover classes inundated between 1992 and 2001. The open water profile in Nelson County changed from one marked by relatively comparable coverage of closed lake and wetland pond areas in 1992, to one in which wetland open water accounted for the vast majority of total open water in 2001. The bulk of the wetland pond area expansion occurred by displacing existing wetland vegetation and agricultural cropland. Producers responded to the flood hazard by filing Federal Crop Insurance Corporation (FCIC) claims and enrolling cropland in the Conservation Reserve Program (CRP), a federal land retirement program. Land taken out of agricultural production has had an enormous impact upon the agricultural sector that forms the economic base of the rural economy. In 2001 the land taken out of production due to CRP enrollment and preventive planting claims represented nearly 42% of Nelson County’s 205.2 K ha base agricultural land. The patterns obtained from this detailed study of Nelson County are likely to be the representative of the more publicized flood disaster occurring within the Devils Lake Basin of North Dakota.  相似文献   

2.
The patterns of renewal of bottom waters in Lake Baikal under the influence of deep convection and intrusion of cold waters have been considered based on the data of temperature surveys of Lake Baikal conducted in 1993–2009. The volumes of the cold bottom layer with the maximums of 200–470 km3 in individual years and the values of its total cooling (−20–60 × 109 MJ) have been determined for South, Middle, and North Baikal. The renewal process is asynchronous and proceeds with different activity in these parts of the lake, which indicates that the mechanisms that cause deep convection in the context of the great latitudinal length and differences in the climate and hydrological processes manifest themselves regionally. The volume of intrusions has been determined. Its average value for the period was higher in South Baikal (20 km3) than in Middle Baikal (9.8 km3) and North Baikal (8.6 km3). The volume of the intrusions in these parts of the lake was 30–70 km3 in some years.  相似文献   

3.
The Late Pleistocene to Middle Holocene African Humid Period (AHP) was characterized by dramatic hydrologic fluctuations in the tropics. A better knowledge of the timing, spatial extent, and magnitude of these hydrological fluctuations is essential to decipher the climate-forcing mechanisms that controlled them. The Suguta Valley (2°N, northern Kenya Rift) has recorded extreme environmental changes during the AHP. Extensive outcrops of lacustrine sediments, ubiquitous wave-cut notches, shorelines, and broad terrace treads along the valley margins are the vestiges of Lake Suguta, which once filled an 80 km long and 20 km wide volcano–tectonic depression. Lake Suguta was deep between 16.5 and 8.5 cal ka BP. During its maximum highstand, it attained a water depth of ca 300 m, a surface area of ca 2150 km2, and a volume of ca 390 km3. The spatial distribution of lake sediments, the elevation of palaeo-shorelines, and other geomorphic evidences suggest that palaeo-Lake Suguta had an overflow towards the Turkana basin to the north. After 8.5 cal ka BP, Lake Suguta abruptly disappeared. A comparison of the Lake Suguta water-level curve with other reconstructed water levels from the northern part of the East African Rift System shows that local insolation, which is dominated by precessional cycles, may have controlled the timing of lake highstands in this region. Our data show that changes of lake levels close to the Equator seem to be driven by fluctuations of spring insolation, while fluctuations north of the Equator are apparently related to variations in summer insolation. However, since these inferred timings of lake-level changes are mostly based on the radiocarbon dating of carbonate shells, which may have been affected by a local age reservoir, alternative dating methods are needed to support this regional synthesis. Between 12.7 and 11.8 cal ka BP, approximately during the Northern Hemisphere high-latitude Younger Dryas, the water level of Lake Suguta fell by ca 50 m, suggesting that remote influences also affected local hydrology.  相似文献   

4.
Zhang  Yue  Wang  Ying  Zhang  Yunxia  Luan  Qingzu  Liu  Heping 《Natural Hazards》2021,105(1):967-981

Flash flooding is one of the most devastating natural disasters in China. A quantitative flash flood hazard assessment is important for saving human lives and reducing economic losses. In this study, integrated rainfall–runoff modeling (HEC-HMS) and hydraulic modeling (FLO-2D) schemes were used to assess flash flood inundation areas and depths under 5-year, 10-year, 25-year, 50-year, 100-year, 200-year, 500-year and 1000-year rainfall scenarios in a mountainous basin (Hadahe River Basin, HRB) in northern China. The overall flash flood hazard in HRB is high. Under the eight rainfall scenarios, the total flooded area ranged from 6 to 8.73 km2; the flash flood inundation areas with depths of 1–2 m, 2–3 m, and over 3 m was 1.53–2.69 km2, 0.63–1.44 km2 and 0.33–1.11 km2, respectively; and these areas accounted for 25.5–30.8%, 10.5–16.5% and 5.5–12.7% of the whole flooded area. The total flooded area increases rapidly with the return period increasing from 5 to 200 years, and the increase gradient slows when the return period is greater than 200 years. In the downstream area of HRB, the flash flood area with inundation depths greater than 1 m accounted for 54–71% of the flooded area under the eight scenarios. In comparison to other areas in the HRB, the downstream area is at the highest risk given its extensive inundation and substantial property exposure. The quantitative hazard assessment framework presented in this study can be applied in other mountainous basins for flash flood defense and disaster management purposes.

  相似文献   

5.

Large floods are among the most hazardous natural phenomena, which in many cases cause enormous losses to the economy and lead to human casualties. Along with the use of modern instrumental data, the analysis of historical information on large past floods is widely practiced in the world. This allows obtaining qualitative and quantitative characteristics of historical floods and significantly expanding the observation series. The Selenga River is one of the largest rivers of Central Asia with catchment area equal to 447,060 km2, and also it is rather flood-prone river. The hydrological regime of the Selenga River is quite well studied in the twentieth century on the basis of gauging stations data, but there is still a lack of knowledge about past floods. In this paper, we present a list of 26 known floods within the Selenga River basin from 1730 to 1900, compiled from available historical documents (newspapers, scientific reports, diaries, memoirs, etc.). We estimated peak water levels for three catastrophic floods (1830, 1869 and 1897), the historical maximum of which was 850 cm. The reliability of our estimates is confirmed by a comparative analysis of the large 1971 flood. It was revealed that the largest floods can cause a rise of the Lake Baikal water level up to 200 cm. The inflow to Lake Baikal resulting from the largest floods in the Selenga River basin is comparable to the average annual inflow of water into the lake. We can conclude that the use of historical data for the analysis of floods in Eastern Siberia is quite acceptable, but some limitations must be taken into account.

  相似文献   

6.
为研究三峡水库运行前后洞庭湖水资源量变化情况,通过利用1994-2019年165个时相的多平台中高分辨率(15~30 m)卫星遥感数据,城陵矶多年日观测水位数据和洞庭湖区降水量、蒸发量等资料,采用掩膜处理、K-Means聚类分析提取水面信息,结合观测数据进行统计分析,研究了1994年以来洞庭湖水面面积与湖容变化情况.结果表明:三峡水库运行后洞庭湖年均水面面积由1 077.46 km2减少到857.13 km2,减幅达20.45%,但是2011年后当城陵矶水位大于26.34 m时水面有所增加;三峡水库对下泄量的调控在缓解洞庭湖洪涝灾害隐患的同时,也使得低枯水位提前1个月,且对洞庭湖枯水期的补给水量极其有限;三峡水库运行后洞庭湖湖容明显减小,且当城陵矶水位越高时,洞庭湖湖容减幅越大;当水位小于20 m时三峡水库运行前后两个时段的湖容逐渐接近.洞庭湖水资源量变化主要受出入湖径流影响,"四水"径流是影响洞庭湖水资源量的主要因素,"三口"径流的减少也对洞庭湖水资源量的变化起着重要作用.同时,湖区年均降水量的减少和蒸发量的增加也是引起洞庭湖水资源量减少的原因之一.研究成果为三峡工程运行后治湖思路调整、洞庭湖区水资源保护和长江流域生态修复提供了客观资料.   相似文献   

7.
Based on the analysis and calculation of the hazard intensity of typhoon rainstorms and floods as well as the vulnerability of flood receptors and the possibility of great losses, risk scenarios are proposed and presented in Wenzhou City, Zhejiang Province, China, using the Pearson-III model and ArcGIS spatial analyst tools. Results indicate that the elements of risk scenarios include time–space scenarios, disaster scenarios, and man-made scenarios. Ten-year and 100-year typhoon rainstorms and flood hazard areas are mainly concentrated in the coastal areas of Wenzhou City. The average rainfall across a 100-year frequency is 450 mm. The extreme water depth of a 100-year flood is 600 mm. High-vulnerability areas are located in Yueqing, Pingyang, Cangnan, and Wencheng counties. The average loss rate of a 100-year flood is more than 50%. The greatest possible loss of floods shows an obvious concentration-diffusion situation. There is an area of about 20–25% flood loss of 6–24 million Yuan RMB/km2 in the Lucheng, Longwan and Ouhai districts. The average loss of a 100-year flood is 12 million Yuan RMB/km2, and extreme loss reaches 49.33 million Yuan RMB/km2. The classification of risk scenario may be used for the choice of risk response priorities. For the next 50 years, the 10-year typhoon rainstorm-flood disaster is the biggest risk scenario faced by most regions of Wenzhou City. For the Yueqing, Ruian, and Ouhai districts, it is best to cope with a 100-year disaster risk scenario and the accompanying losses.  相似文献   

8.
A prominent thrust‐moraine system formed in the inner van Mijenfjorden, Svalbard, during a surge event in a tributary fjord, creating a large temporary lake. Based on geomorphological, sedimentological, stratigraphical and chronological data, the lake began to form shortly after 648–551 cal. a BP. At its maximum, the lake covered an estimated area of 77 km2 with a water volume of 1.2 km3. Lake sediment up to 80 cm thick was rapidly deposited on top of terrestrial and marine sediments. At its maximum extent, the short‐lived lake was the largest of any known Holocene lake in Svalbard. Modern river discharge would fill the lake to its highest shoreline at 23 m a.s.l. in only one season. Drainage was stepwise, as evidenced by four shorelines and abandoned drainage channels. This study has taken advantage of a unique suite of data available for such an ice‐dammed lake. The results demonstrate the power of a multidisciplinary approach for recognizing lake events in the geological record, which is essential given the low preservation potential of such sediments.  相似文献   

9.
Impressive flood deposits are described resulting from a catastrophic lake outburst in the Upper Chandra valley in the Lahul Himalaya, northern India. Reconstructions of the former glacial lake, Glacial Lake Batal, and the discharges were undertaken using landforms and sediment data. The glacial dam burst released 1.496 km3 of water in 0.72 days, with peak discharges of between 21000 and 27000 m3 s−1 at Batal. Dating by OSL suggests the flood occurred ca. 36.9 ± 8.4 to 43.4 ± 10.3 ka ago. This cataclysmic flood was responsible for major resedimentation and landscape modification within the Chandra valley.  相似文献   

10.
Wular Lake, one of the largest freshwater lakes of Jhelum River Basin, is showing signs of deterioration due to the anthropogenic impact and changes in the land use/land cover (LULC) and hydrometeorological climate of the region. The present study investigated the impacts of temporal changes in LULC and meteorological and hydrological parameters to evaluate the current status of Wular Lake environs using multisensor, multitemporal satellite and observatory data. Satellite images acquired for the years 1992, 2001, 2005, and 2008 were used for determining changes in the LULC in a buffer area of 5 km2 around the Wular Lake. LULC mapping and change analysis using the visual interpretation technique indicated significant changes around the Wular Lake during the last two decades. Reduction in lake area from 24 km2 in 1992 to 9 km2 in 2008 (?62.5 %) affected marshy lands, the habitat of migratory birds, which also exhibited drastic reduction from 85 km2 in 1992 to 5 km2 in 2008 (?94.117 %). Marked development of settlements (642.85 %) in the peripheral area of the Wular Lake adversely affected its varied aquatic flora and fauna. Change in climatic conditions, to a certain extent, is also responsible for the decrease in water level and water spread of the lake as witnessed by decreased discharge in major tributaries (Erin and Madhumati) draining into the Wular Lake.  相似文献   

11.
Reconstructing ice‐lake histories is of considerable importance for understanding deglacial meltwater budgets and the role of meltwater reservoirs for sea‐level rise in response to climate warming. We used the latest data on chronology and ice‐sheet extents combined with an isostatically adjusted digital elevation model to reconstruct the development of proglacial lakes in the area of the Karelian ice stream complex of the Late Weichselian Scandinavian Ice Sheet on the East European Plain. We derived the deglacial ice lake development in seven time‐slices from 19 to 13.8 ka, assuming the individual ice‐marginal positions to be isochronous throughout the studied domain. Modelling is based on mapping of critical drainage thresholds and filling the depressions that are potentially able to hold meltwater. Such an approach underestimates the real dimensions of the ice lakes, because the role of erosion at the thresholds is not considered. Our modelling approach is sensitive to the (local) ice‐margin location. Our results prove the southward drainage of meltwater during the glacier extent maxima and at the beginning of deglaciation whereas rerouting to the west had taken place already around 17.5 ka, which is some 1.5 ka earlier than hitherto supposed. The total ice‐lake volume in the study area was lowest (~300 km3) during the maximum glacier extent and highest (~2000 km3) during the highstand of the Privalday Lake at c. 14.6 ka. At 14.6–14.4 ka, the Privalday Lake drained to the early Baltic Ice Lake. The released ~1500 km3 of water approximately corresponds to 20% of the early Baltic Ice Lake water volume and therefore it is unlikely that it was accommodated there. Thus, we argue that the additional meltwater drained through the Öresund threshold area between the early Baltic Ice Lake and the sea, becoming a part of the Scandinavian Ice Sheet's contribution to the Meltwater Pulse 1A event.  相似文献   

12.
Glacial lake outburst flood (GLOF) is a powerful natural phenomenon that is very active in the Karakoram and Himalayas. This paper presents a case study from Gupis Tehsil in northern areas of Pakistan that is exposed to GLOFs from nine different glacial lakes in its upper catchment areas. Khukush Lake being the largest of all the glacial lakes has been studied and a flood attenuation model has been created for the whole Gupis Tehsil. This lake covers almost 2.2 km2 of surface area, and its calculated volume is 2.6 × 104 m3. In case of its outburst, the peak flow discharge is calculated to be 7,642 m3/s. The catchment area which contributes water and debris to the lake is 170 km2. This lake is dammed by a glacial moraine, which is not strong enough to sustain the pressure for a longer period of time. Other factors that are reducing the reliability of the dam are the secondary hazards which are in direct contact with the lake, and in case of their reactivation, they can put severe impacts on the dam. There are eight potential sites of the snow avalanche activity where debris along with snow may fall directly into the lake producing a strong wave. This strong wave of water will increase the pressure on the dam and ultimately will increase the probability for its outburst. The presense of water springs towards the downstream side of the natural dam also indicate the presence of hidden channels passing through the dam which may weaken the shear strength of the dam. Almost 24 villages settled along either sides of the Gupis River are critically studied for the expected flood from Khukush Lake. With few exceptions, almost 20–25 % area of all the villages will be affected from this flood.  相似文献   

13.
Abstract Laguna Mar Chiquita, a highly variable closed saline lake located in the Pampean plains of central Argentina, is presently the largest saline lake in South America (≈ 6000 km2). Recent variations in its hydrological budget have produced dry and wet intervals that resulted in distinctive lake level fluctuations. Results of a multiproxy study of a set of sedimentary cores indicate that the system has clearly recorded these hydrological variations from the end of the Little Ice Age (≈ ad 1770) to the present. Sedimentological and geochemical data combined with a robust chronology based on 210Pb profiles and historical data provide the framework for a sedimentary model of a lacustrine basin with highly variable water depth and salinity. Lake level drops and concurrent increases in salinity promoted the development of gypsum–calcite–halite layers and a marked decrease in primary productivity. The deposits of these dry stages are evaporite‐bearing sediments with a low organic matter content. Conversely, highstands are recorded as diatomaceous organic matter‐rich muds. Average bulk sediment accumulation rose from 0·22 g cm?2 year?1 in lowstands to 0·32 g cm?2 year?1 during highstands. These results show that Laguna Mar Chiquita is a good sensor of high‐ and low‐frequency changes in the recent hydrological budget and, therefore, document climatic changes at middle latitudes in south‐eastern South America. Dry conditions were mostly dominant until the last quarter of the twentieth century, when a humid interval without precedent during the last 240 years of the lake's recorded history started. Thus, it is an ideal system to model sedimentary and geochemical response to environmental changes in a saline lacustrine basin.  相似文献   

14.
《Applied Geochemistry》2005,20(10):1831-1847
The groundwater contribution into Green Lake and Black Lake (Vescovo Lakes Group), two cover collapse sinkholes in Pontina Plain (Central Italy), was estimated using water chemistry and a 222Rn budget. These data can constrain the interactions between sinkholes and deep seated fluid circulation, with a special focus on the possibility of the bedrock karst aquifer feeding the lake. The Rn budget accounted for all quantifiable surface and subsurface input and output fluxes including the flux across the sediment–water interface. The total value of groundwater discharge into Green Lake and Black Lake (∼540 ± 160 L s−1) obtained from the Rn budget is lower than, but comparable with historical data on the springs group discharge estimated in the same period of the year (800 ± 90 L s−1). Besides being an indirect test for the reliability of the Rn-budget “tool”, it confirms that both Green and Black Lake are effectively springs and not simply “water filled” sinkholes. New data on the water chemistry and the groundwater fluxes into the sinkhole area of Vescovo Lakes allows the assessment of the mechanism responsible for sinkhole formation in Pontina Plain and suggests the necessity of monitoring the changes of physical and chemical parameters of groundwater below the plain in order to mitigate the associated risk.  相似文献   

15.
In April 2010, an ice/rockfall into Lake 513 triggered a glacial lake outburst flood (GLOF) along the Chucchun River in the Cordillera Blanca of Peru. This paper reconstructs the hydrological characteristics of this as yet undocumented event using a 1D flood model prepared with HEC-RAS. The principle model inputs were obtained during detailed field surveys of surface characteristics and topography within the river and across the adjacent floodplain; a total of 120 cross-sections were surveyed. These inputs were refined further by eyewitness accounts and additional geomorphological observations. The flood modelling has enabled us to constrain the extent of the water surface and its elevation at each cross-section in addition to defining the peak discharge (580 m3 s?1). These modelling results show good agreement with other information about the flood including: flood marks and minimum flood levels; the lake displacement wave height; the extent of the flooded area; and the travel time from Lake 513 to the confluence with the Santa River. This demonstrates that the model offers a reliable reconstruction of the basic hydrological characteristics of the GLOF. It provides important information about the flood intensity and significantly improves our ability to model future flood scenarios along both the studied river and within neighbouring catchments. The flood hazard, defined by the flood depth during peak discharge, shows that the majority of the damaged infrastructure (houses, bridges, and a drinking water treatment plant) was only subjected to low or medium flood intensities (defined by a maximum water depth of less than 2 m). These low flood intensities help to explain why the flooding caused comparatively minor damage despite the significant public attention it attracted.  相似文献   

16.
River engineering projects are developing rapidly across the globe, drastically modifying water courses and sediment transfer. Investigation of the impact of engineering works focuses usually on short-term impacts, thus a longer-term perspective is still missing on the effects that such projects have. The ‘Jura Water Corrections’ – the largest river engineering project ever undertaken in Switzerland – radically modified the hydrological system of Lake Biel in the 19th and 20th Century. The deviation of the Aare River into Lake Biel more than 140 years ago, in 1878, thus represents an ideal case study to investigate the long-term sedimentological impacts of such large-scale river rerouting. Sediment cores, along with new high-resolution bathymetric and seismic reflection datasets were acquired in Lake Biel to document the consequences of the Jura Water Corrections on the sedimentation history of Lake Biel. Numerous subaquatic mass transport structures were detected on all of the slopes of the lake. Notably, a relatively large mass transport complex (0·86 km2) was observed on the eastern shore, along the path of the Aare River intrusion. The large amount of sediment delivered by the Aare River since its deviation into the lake likely caused sediment overloading resulting in subaquatic mass transport. Alternatively, the dumping since 1963 in a subaquatic landfill of material excavated during the second phase of river engineering, when the channels flowing into and out of Lake Biel were widened and deepened, might have triggered the largest mass transport, dated to 1964 or 1965. Additional potential triggers include two nearby small earthquakes in 1964 and 1965 (MW 3·9 and 3·2, respectively). The data for this study indicate that relatively large mass transports have become recurrent in Lake Biel following the deviation of the Aare River, thus modifying hazard frequency for the neighbouring communities and infrastructure.  相似文献   

17.
The deposits of Glacial Lake Quincy overlie a diamicton associated with the classically defined Illinoian limit in central Indiana. This lake covered at least 180 km2 with a depth of > 20 m and developed when the Illinoian ice sheet retreated 15 km from the maximum limit, causing lake impoundment against Devore Ridge. Overflow from Glacial Lake Quincy eroded across the ridge forming a number of steeped-walled outlets. A section along Mill Creek exposes a sedimentologic sequence associated with Glacial Lake Quincy from a subglacial diamicton to ice-proximal to ice-distal glacial lacustrine sediments. We report new optical ages by multiple aliquot regenerative dose procedure for the fine-grained rhythmically bedded sediments presumed to represent the lowest energy depositional facies, dominated by suspension settling, which maximized sunlight exposure. In turn, optical ages were determined on the fine-grained (4-11 μm) polymineral and quartz fractions under infrared and blue excitation, which yielded statistically similar ages. Optical ages span from ca. 170 to 108 ka, with the average of 16 optical ages indicating deglaciation at ca. 135 ka, generally coincident with Marine Oxygen Isotope Stage 6-to-5 transition and rise in global sea level.  相似文献   

18.
During the Middle Pleistocene late Saalian glaciation of northern central Europe numerous pro‐glacial lakes formed along the southwestern margin of the Scandinavian Ice Sheet. Little is known about the drainage history of these lakes, the pathways of glacial lake outburst floods and their impacts on erosion, sedimentation and landscape evolution. This study investigated the impact of the late Saalian Weser and Münsterland Lake (Germany) outburst floods. In particular, we reconstructed the routing and flow dynamics of the lake outburst flood and analysed the flood related sediments. We employed one‐dimensional hydraulic modelling to calculate glacial lake outburst flood hydrographs. We modelled the flow pathway and local flow conditions along the pathway based on the boundary conditions of two different hydrographs and two different ice‐margin positions. The modelling results were compared with geomorphological and sedimentological field data in order to estimate the magnitude and impact of the flood on erosion and sedimentation. Two major lake drainage events are reconstructed for the study area, during which approximately 90–50 km3 of water was released. Modelling results indicate that the lake outburst floods created a high‐energy flood wave with a height of 35–50 m in confined valley areas that rapidly spread out into the Lower Rhine Embayment eventually flowing into the North Sea basin. The sedimentary record of the outburst floods comprises poorly sorted coarse‐grained gravel bars, long‐wavelength bedforms and sandy bedforms deposited by supercritical and subcritical flows. Some parts of the sandy flood deposits are rich in reworked mammoth bones or mammoth and horse teeth, pointing to reworking of older fluvial sediments, hydraulic concentration and subsequent re‐sedimentation of vertebrate remains. These deposits are preserved in sheltered areas or at high elevations, well above the influence of postglacial fluvial erosion. The flood‐related erosional features include up to 80‐m‐deep scour pools, alluvial channels and streamlined hills.  相似文献   

19.
冰川、积雪和冻土变化产生的水文效应对下游水资源供给具有重要影响,近几十年来新疆区域洪水呈显著加重趋势,尤其是南疆区域洪水明显加剧. 以天山南坡黄水沟与清水河寒区流域为研究区域,通过分析水文站极端水文事件,结合流域上游山区巴伦台气象站资料,研究了高寒山地流域在气候变化背景下极端水文过程出现时间、年最大和最小径流的响应特征. 结果表明:1986年是水文过程的突变点,从1986年开始随着降水、气温的增加,河流径流量呈增加趋势;最大年径流出现时间从6月中下旬推迟到7月下旬;最大径流和最小径流与年径流量呈正相关关系,最大径流与夏季降水关系密切,而最小年径流与冬春季的气温关系密切. 随着1986年以来的气温升高,冻土退化产生的水文效应使冬季径流增加明显,也使年最小径流明显增大;1986年以来降水变化决定着年径流量增加,使年最大径流集中出现在夏季且量级增大. 总体来讲,20世纪80年代中期以后山区河流年极端洪峰量增大,洪水量增多,年际间变化幅度明显增大,从而对下游造成更严重的灾害. 因此,加强气候变化对寒区流域水资源和洪水灾害的影响评估,使科学技术在减灾方面发挥主导作用.  相似文献   

20.
基于1956-2015年洞庭湖主要控制站实测水文数据,运用Mann-Kendall检验法、主成分分析法对比分析了近60 a来洞庭湖东、南、西三个湖区水位演变特征及其影响因素。结果表明:从调弦口堵口至葛洲坝截流后,南咀和城陵矶站同流量下水位均升高,但南咀站平均水位受三口分流能力减弱而下降(0.03 m),城陵矶站平均水位受湖盆泥沙淤积和长江干流顶托作用而上升(1.33 m);三峡水库运行后,湖盆冲淤基本持平,湖泊同流量下水位基本不变,由于该时段长江流域整体为相对枯水期,因而与葛洲坝截流后相比湖泊年平均水位下降约0.31~0.58 m。近60 a来南咀站平均水位呈显著下降趋势(p<0.05),而城陵矶站水位呈显著上升趋势(p<0.01),说明湖泊水位影响因素作用存在空间异质性。洞庭湖年内水位存在涨(4-5月)~丰(6-9月)~退(10-11月)~枯(12月-次年3月)的变化特征,葛洲坝运行期丰水期水位上涨明显,三峡运行期各月水位均有下降,受水库调度方式影响7-10月水位降幅最大。洞庭湖流域降水量、四水入湖和出湖径流大小以及长江干流水情是洞庭湖水位变化的主要影响因素,三口来沙变异条件下的洞庭湖冲淤量变化是湖泊水位变化的次要因素。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号