首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the past 50 years, the Sahel has experienced significant tree- and land cover changes accelerated by human expansion and prolonged droughts during the 1970s and 1980s. This study uses remote sensing techniques, supplemented by ground-truth data to compare pre-drought woody vegetation and land cover with the situation in 2011. High resolution panchromatic Corona imagery of 1967 and multi-spectral RapidEye imagery of 2011 form the basis of this regional scaled study, which is focused on the Dogon Plateau and the Seno Plain in the Sahel zone of Mali. Object-based feature extraction and classifications are used to analyze the datasets and map land cover and woody vegetation changes over 44 years. Interviews add information about changes in species compositions. Results show a significant increase of cultivated land, a reduction of dense natural vegetation as well as an increase of trees on farmer's fields. Mean woody cover decreased in the plains (−4%) but is stable on the plateau (+1%) although stark spatial discrepancies exist. Species decline and encroachment of degraded land are observed. However, the direction of change is not always negative and a variety of spatial variations are shown. Although the impact of climate is obvious, we demonstrate that anthropogenic activities have been the main drivers of change.  相似文献   

2.
Detailed spatial information on the presence and properties of woody vegetation serves many purposes, including carbon accounting, environmental reporting and land management. Here, we investigated whether machine learning can be used to combine multiple spatial observations and training data to estimate woody vegetation canopy cover fraction (‘cover’), vegetation height (‘height’) and woody above-ground biomass dry matter (‘biomass’) at 25-m resolution across the Australian continent, where possible on an annual basis. We trained a Random Forest algorithm on cover and height estimates derived from airborne LiDAR over 11 regions and inventory-based biomass estimates for many thousands of plots across Australia. As predictors, we used annual geomedian Landsat surface reflectance, ALOS/PALSAR L-band radar backscatter mosaics, spatial vegetation structure data derived primarily from ICESat/GLAS satellite altimetry, and spatial climate data. Cross-validation experiments were undertaken to optimize the selection of predictors and the configuration of the algorithm. The resulting estimation errors were 0.07 for cover, 3.4 m for height, and 80 t dry matter ha-1 for biomass. A large fraction (89–94 %) of the observed variance was explained in each case. Priorities for future research include validation of the LiDAR-derived cover training data and the use of new satellite vegetation height data from the GEDI mission. Annual cover mapping for 2000–2018 provided detailed insight in woody vegetation dynamics. Continentally, woody vegetation change was primarily driven by water availability and its effect on bushfire and mortality, particularly in the drier interior. Changes in woody vegetation made a substantial contribution to Australia’s total carbon emissions since 2000. Whether these ecosystems will recover biomass in future remains to be seen, given the persistent pressures of climate change and land use.  相似文献   

3.
Large and growing archives of orbital imagery of the earth’s surface collected over the past 40 years provide an important resource for documenting past and current land cover and environmental changes. However uses of these data are limited by the lack of coincident ground information with which either to establish discrete land cover classes or to assess the accuracy of their identification. Herein is proposed an easy-to-use model, the Tempo-Spatial Feature Evolution (T-SFE) model, designed to improve land cover classification using historical remotely sensed data and ground cover maps obtained at later times. This model intersects (1) a map of spectral classes (S-classes) of an initial time derived from the standard unsupervised ISODATA classifier with (2) a reference map of ground cover types (G-types) of a subsequent time to generate (3) a target map of overlaid patches of S-classes and G-types. This model employs the rules of Count Majority Evaluation, and Subtotal Area Evaluation that are formulated on the basis of spatial feature evolution over time to quantify spatial evolutions between the S-classes and G-types on the target map. This model then applies these quantities to assign G-types to S-classes to classify the historical images. The model is illustrated with the classification of grassland vegetation types for a basin in Inner Mongolia using 1985 Landsat TM data and 2004 vegetation map. The classification accuracy was assessed through two tests: a small set of ground sampling data in 1985, and an extracted vegetation map from the national vegetation cover data (NVCD) over the study area in 1988. Our results show that a 1985 image classification was achieved using this method with an overall accuracy of 80.6%. However, the classification accuracy depends on a proper calibration of several parameters used in the model.  相似文献   

4.
Land cover identification and monitoring agricultural resources using remote sensing imagery are of great significance for agricultural management and subsidies. Particularly, permanent crops are important in terms of economy (mainly rural development) and environmental protection. Permanent crops (including nut orchards) are extracted with very high resolution remote sensing imagery using visual interpretation or automated systems based on mainly textural features which reflect the regular plantation pattern of their orchards, since the spectral values of the nut orchards are usually close to the spectral values of other woody vegetation due to various reasons such as spectral mixing, slope, and shade. However, when the nut orchards are planted irregularly and densely at fields with high slope, textural delineation of these orchards from other woody vegetation becomes less relevant, posing a challenge for accurate automatic detection of these orchards. This study aims to overcome this challenge using a classification system based on multi-scale textural features together with spectral values. For this purpose, Black Sea region of Turkey, the region with the biggest hazelnut production in the world and the region which suffers most from this issue, is selected and two Quickbird archive images (June 2005 and September 2008) of the region are acquired. To differentiate hazel orchards from other woodlands, in addition to the pansharpened multispectral (4-band) bands of 2005 and 2008 imagery, multi-scale Gabor features are calculated from the panchromatic band of 2008 imagery at four scales and six orientations. One supervised classification method (maximum likelihood classifier, MLC) and one unsupervised method (self-organizing map, SOM) are used for classification based on spectral values, Gabor features and their combination. Both MLC and SOM achieve the highest performance (overall classification accuracies of 95% and 92%, and Kappa values of 0.93 and 0.88, respectively) when multi temporal spectral values and Gabor features are merged. High Fβ values (a combined measure of producer and user accuracy) for detection of hazel orchards (0.97 for MLC and 0.94 for SOM) indicate the high quality of the classification results. When the classification is based on multi spectral values of 2008 imagery and Gabor features, similar Fβ values (0.95 for MLC and 0.93 for SOM) are obtained, favoring the use of one imagery for cost/benefit efficiency. One main outcome is that despite its unsupervised nature, SOM achieves a classification performance very close to the performance of MLC, for detection of hazel orchards.  相似文献   

5.
Remote sensing satellite data offer the unique possibility to map land use land cover transformations by providing spatially explicit information. However, detection of short-term processes and land use patterns of high spatial–temporal variability is a challenging task.We present a novel framework using multi-temporal TerraSAR-X data and machine learning techniques, namely discriminative Markov random fields with spatio-temporal priors, and import vector machines, in order to advance the mapping of land cover characterized by short-term changes. Our study region covers a current deforestation frontier in the Brazilian state Pará with land cover dominated by primary forests, different types of pasture land and secondary vegetation, and land use dominated by short-term processes such as slash-and-burn activities. The data set comprises multi-temporal TerraSAR-X imagery acquired over the course of the 2014 dry season, as well as optical data (RapidEye, Landsat) for reference. Results show that land use land cover is reliably mapped, resulting in spatially adjusted overall accuracies of up to 79% in a five class setting, yet limitations for the differentiation of different pasture types remain.The proposed method is applicable on multi-temporal data sets, and constitutes a feasible approach to map land use land cover in regions that are affected by high-frequent temporal changes.  相似文献   

6.
Woody canopy cover (CC) is the simplest two dimensional metric for assessing the presence of the woody component in savannahs, but detailed validated maps are not currently available in southern African savannahs. A number of international EO programs (including in savannah landscapes) advocate and use optical LandSAT imagery for regional to country-wide mapping of woody canopy cover. However, previous research has shown that L-band Synthetic Aperture Radar (SAR) provides good performance at retrieving woody canopy cover in southern African savannahs. This study’s objective was to evaluate, compare and use in combination L-band ALOS PALSAR and LandSAT-5 TM, in a Random Forest environment, to assess the benefits of using LandSAT compared to ALOS PALSAR. Additional objectives saw the testing of LandSAT-5 image seasonality, spectral vegetation indices and image textures for improved CC modelling. Results showed that LandSAT-5 imagery acquired in the summer and autumn seasons yielded the highest single season modelling accuracies (R2 between 0.47 and 0.65), depending on the year but the combination of multi-seasonal images yielded higher accuracies (R2 between 0.57 and 0.72). The derivation of spectral vegetation indices and image textures and their combinations with optical reflectance bands provided minimal improvement with no optical-only result exceeding the winter SAR L-band backscatter alone results (R2 of ∼0.8). The integration of seasonally appropriate LandSAT-5 image reflectance and L-band HH and HV backscatter data does provide a significant improvement for CC modelling at the higher end of the model performance (R2 between 0.83 and 0.88), but we conclude that L-band only based CC modelling be recommended for South African regions.  相似文献   

7.
Focusing on the central Kalahari, this study utilized fractional cover of photosynthetic vegetation (fPV), non-photosynthetic vegetation (fNPV) and bare soil (fBS), derived in situ and estimated from GeoEye-1 imagery using Multiple Endmember Spectral Mixture Analysis (MESMA) and object-based image analysis (OBIA) to determine superior method for fractional cover estimation and the impact of vegetation morphology on the estimation accuracy. MESMA mapped fractional cover by testing endmember models of varying complexity. Based on OBIA, image was segmented at five segmentation scales followed by classification. MESMA provided more accurate fractional cover estimates than OBIA. The increasing segmentation scale in OBIA resulted in a consistent increase in error. Different vegetation morphology types showed varied responses to the changing segmentation scale, reflecting their unique ecology and physiognomy. While areas under woody cover produced lower error even at coarse segmentation scales, those with herbaceous cover provided low error only at the fine segmentation scale.  相似文献   

8.
In perennial and natural vegetation systems, monitoring changes in vegetation over time is of fundamental interest for identifying and quantifying impacts of management and natural processes. Subtle changes in vegetation cover can be identified by calculating the trends of a vegetation density index over time. In this paper, we apply such an index-trends approach, which has been developed and applied to time series Landsat imagery in rangeland and woodland environments, to continental-scale monitoring of disturbances within forested regions of Australia. This paper describes the operational methods used for the generation of National Forest Trend (NFT) information, which is a time-series summary providing visual indication of within-forest vegetation changes (disturbance and recovery) over time at 25 m resolution. This result is based on a national archive of calibrated Landsat TM/ETM+ data from 1989 to 2006 produced for Australia's National Carbon Accounting System (NCAS). The NCAS was designed in 1999 initially to provide consistent fine-scale classifications for monitoring forest cover extent and changes (i.e. land use change) over the Australian continent using time series Landsat imagery. NFT information identifies more subtle changes within forested areas and provides a capacity to identify processes affecting forests which are of primary interest to ecologists and land managers. The NFT product relies on the identification of an appropriate Landsat-based vegetation cover index (defined as a linear combination of spectral image bands) that is sensitive to changes in forest density. The time series of index values at a location, derived from calibrated imagery, represents a consistent surrogate to track density changes. To produce the trends summary information, statistical summaries of the index response over time (such as slope and quadratic curvature) are calculated. These calculated index responses of woody vegetation cover are then displayed as maps where the different colours indicate the approximate timing, direction (decline or increase), magnitude and spatial extent of the changes in vegetation cover. These trend images provide a self-contained and easily interpretable summary of vegetation change at scales that are relevant for natural resource management (NRM) and environmental reporting.  相似文献   

9.
From remotely sensed woody cover, we tested whether sables under hunting pressure preferred closed woodland habitats and whether those not under hunting preferred more open woodland habitats. We applied a two factorial logistic regression analysis to model the probability of occurrence of sable antelope in hunted and non-hunted areas of northwest Zimbabwe as a function of vegetation cover density (estimated by a normalized difference vegetation index (NDVI)). We validated the results by high-spatial resolution imagery derived tree canopy area. We subsequently compared the predictions from the two models in order to compare sable cover selection between hunted and non-hunted areas. Our results suggest that hunted sables are likely to select closed woodland, while non-hunted ones would prefer more open woodland habitats. We also established a significant positive relationship between NDVI and tree canopy cover, thus emphasizing the importance of remote sensing in studies that measure the impact of hunting on habitat selection of targeted species.  相似文献   

10.
This study was undertaken the use of course and moderate spatial resolution remote sensing data to assess the forest degradation in the Peninsular Malaysia. Moderate Resolution Imaging Spectroradiometer (MODIS) imagery was used as coarse spatial resolution data, while Landsat Enhanced Thematic Mapper+ (ETM+) imagery was used as moderate spatial resolution to compare the accuracy. Geometric and radiometric correction and re-sampling were performed in pre-processing to enhance the analysis and results. Canopy fractional cover was used as an approach to assess the forest degradation in this study. Then, an optimum vegetation index was selected to apply on canopy fractional cover to enhance the detection of forest canopy damage. At the same time, accuracy assessment for the approach was referred to the location of Neobalanocarpus Heimii and correlate with global evapotranspiration rate. The forest degradation analysis was also applied and compared for all of the states in the Peninsular Malaysia. In conclusion, Landsat ETM+ imagery obtained higher accuracy compare to MODIS using canopy fractional cover approach for forest degradation assessment, and can be more broadly applicable to use for forest degradation investigation.  相似文献   

11.
Availability of remote sensing data from earth observation satellites has made it convenient to map and monitor land use/land cover at regional to local scales. A land cover map is very critical for a various planning activities including watershed planning. The spectral and spatial resolutions are major constraints for mapping the crop resources at microlevel. The cropping pattern zones have been mapped using the false color composite, physiography, irrigation and toposheets. The IRS LISS-III data is classified into various categories depending on spectral reflectance from crop canopy and are overlaid on cropping zones map. The re-classified resultant map provides land use/land cover information including dominant cropping systems. The canopy cover is estimated monthly considering the crop calendar for the area.  相似文献   

12.
The demand for precise mapping and monitoring of forest resources, such as above ground biomass (AGB), has increased rapidly. National accounting and monitoring of AGB requires regularly updated information based on consistent methods. While remote sensing technologies such as airborne laser scanning (ALS) and digital aerial photogrammetry (DAP) have been shown to deliver the necessary 3D spatial data for AGB mapping, the capacity of repeat acquisition, remotely sensed, vegetation structure data for AGB monitoring has received less attention. Here, we use vegetation height models (VHMs) derived from repeat acquisition DAP data (with ALS terrain correction) to map and monitor woody AGB dynamics across Switzerland over 35 years (1983-2017 inclusive), using a linear least-squares regression approach. We demonstrate a consistent relationship between canopy height derived from DAP and field-based NFI measures of woody AGB across four inventory periods. Over the environmentally heterogeneous area of Switzerland, our models have a comparable predictive performance (R2 = 0.54) to previous work predicting AGB based on ALS metrics. Pearson correlation coefficients between measured and predicted changes in woody AGB over time increased with shorter time gaps (< 2 years) between image capture and field-based measurements, ranging between 0.76 and 0.34. A close temporal match between field surveys and remote sensing data acquisition is thus key to reliable mapping and monitoring of AGB dynamics, especially in areas where forest management and natural disturbances trigger relatively fast canopy dynamics. We show that VHMs derived from repeat DAP capture constitute a cost effective and reliable approach to map and monitor changes in woody AGB at a national extent and can provide an important information source for national carbon accounting and monitoring of ecosystem service provisioning.  相似文献   

13.
Monitoring changes in land use intensity of grazing systems in the Amazon is an important prerequisite to study the complex political and socio-economic forces driving Amazonian deforestation. Remote sensing offers the potential to map pasture vegetation over large areas, but mapping pasture conditions consistently through time is not a trivial task because of seasonal changes associated with phenology and data gaps from clouds and cloud shadows. In this study, we tested spectral-temporal metrics derived from intra-annual Landsat time series to distinguish between grass-dominated and woody pastures. The abundance of woody vegetation on pastures is an indicator for management intensity, since the duration and intensity of land use steer secondary succession rates, apart from climate and soil conditions. We used the developed Landsat-based metrics to analyze pasture intensity trajectories between 1985 and 2012 in Novo Progresso, Brazil, finding that woody vegetation cover generally decreased after four to ten years of grazing activity. Pastures established in the 80s and early 90s showed a higher fraction of woody vegetation during their initial land use history than pastures established in the early 2000s. Historic intensity trajectories suggested a trend towards more intensive land use in the last decade, which aligns well with regional environmental policies and market dynamics. This study demonstrates the potential of dense Landsat time series to monitor land-use intensification on Amazonian pastures.  相似文献   

14.
森林植被碳储量的空间分布格局及其动态变化是陆地生态系统碳收支核算的基础。作为森林地上生物量的重要指示因子,森林高度的精确估算是提高森林植被碳储量估算精度的关键。现有研究已证明,由专业星载摄影测量系统获取的立体观测数据可用于森林高度提取,但光学遥感数据最大的问题是受云雨等天气因素的影响严重。区域森林地上生物量产品的生产需要充分挖掘潜在数据源。国产高分二号卫星(GF-2)虽然不是为获取立体观测数据而设计的专业星载摄影测量系统,但其获取的图像空间分辨率可达0.8 m,且具备±35°的的侧摆能力,在重复观测区域可构成异轨立体观测。本文以分别获取于2015年6月20日和2016年7月19的GF-2数据作为立体像对,其标称轨道侧摆角分别为0.00118°和20.4984°,以激光雷达数据获取的林下地形(DEM)和森林高度(CHM)为参考,对利用GF-2立体观测数据进行森林高度提取进行了研究。通过对立体处理得到的摄影测量点云的栅格化得到DSM,以激光雷达数据提供的DEM作为林下地形,得到了GF-2的CHM。结果表明GF-2提取的CHM与激光雷达CHM空间分布格局较为一致,两者之间存在明显的相关性,像素对像素的线性相关性(R2)达到0.51,均方根误差(RMSE)为3.6 m。研究结果表明,在林下地形已知的情况下,GF-2立体观测数据可用于森林高度估算。  相似文献   

15.
After 110 years of sustained fire suppression, the 2000 Jasper fire consumed about 33,785 ha (83,500 acres), or 12% of the Black Hills National Forest. We mapped the severity of the Jasper fire using Landsat imagery and then investigated post-fire vegetation regeneration conditions using field data, Quickbird imagery, and regression modeling. We found that fire scar and severity could be delineated and mapped accurately based on remotely sensed and field-acquired data. Results also revealed that vegetative recovery relative to burn severity, topography, and soil factors could be modeled effectively using local geographically weighted regression (GWR). Further regeneration assessment revealed that severely or heavily burned areas were more rapidly re-vegetated with grasses, forbs, and woody shrubs in the short term. The field survey showed that prescribed burns retard crown fires and that after eight years ponderosa pine seedlings have not re-established.  相似文献   

16.
Reliable quantification of savanna vegetation structure is critical for accurate carbon accounting and biodiversity assessment under changing climate and land-use conditions. Inventories of fine-scale vegetation structural attributes are typically conducted from field-based plots or transects, while large-area monitoring relies on a combination of airborne and satellite remote sensing. Both of these approaches have their strengths and limitations, but terrestrial laser scanning (TLS) has emerged as the benchmark for vegetation structural parameterization – recording and quantifying 3D structural detail that is not possible from manual field-based or airborne/spaceborne methods. However, traditional TLS approaches suffer from similar spatial constraints as field-based inventories. Given their small areal coverage, standard TLS plots may fail to capture the heterogeneity of landscapes in which they are embedded. Here we test the potential of long-range (>2000 m) terrestrial laser scanning (LR-TLS) to provide rapid and robust assessment of savanna vegetation 3D structure at hillslope scales. We used LR-TLS to sample entire savanna hillslopes from topographic vantage points and collected coincident plot-scale (1 ha) TLS scans at increasing distances from the LR-TLS station. We merged multiple TLS scans at the plot scale to provide the reference structure, and evaluated how 3D metrics derived from LR-TLS deviated from this baseline with increasing distance. Our results show that despite diluted point density and increased beam divergence with distance, LR-TLS can reliably characterize tree height (RMSE = 0.25–1.45 m) and canopy cover (RMSE = 5.67–15.91%) at distances of up to 500 m in open savanna woodlands. When aggregated to the same sampling grain as leading spaceborne vegetation products (10–30 m), our findings show potential for LR-TLS to play a key role in constraining satellite-based structural estimates in savannas over larger areas than traditional TLS sampling can provide.  相似文献   

17.
The urban heat island (UHI) is increasingly recognized as a serious, worldwide problem because of urbanization and climate change. Urban vegetation is capable of alleviating UHI and improving urban environment by shading together with evapotranspiration. While the impacts of abundance and spatial configuration of vegetation on land surface temperature (LST) have been widely examined, very little attention has been paid to the role of vertical structure of vegetation in regulating LST. In this study, we investigated the relationships between horizontal/vertical structure characteristics of urban tree canopy and LST as well as diurnal divergence in Nanjing City, China, with the help of high resolution vegetation map, Light Detection and Ranging (LiDAR) data and various statistical analysis methods. The results indicated that composition, configuration and vertical structure of tree canopy were all significantly related to both daytime LST and nighttime LST. Tree canopy showed stronger influence on LST during the day than at night. Note that the contribution of composition of tree canopy to explaining spatial heterogeneity of LST, regardless of day and night, was the highest, followed by vertical structure and configuration. Combining composition, configuration and vertical structure of tree canopy can take advantage of their respective advantages, and best explain variation in both daytime LST and nighttime LST. As for the independent importance of factors affecting spatial variation of LST, percent cover of tree canopy (PLAND), mean tree canopy height (TH_Mean), amplitude of tree canopy height (TA) and patch cohesion index (COHESION) were the most influential during the day, while the most important variables were PLAND, maximum height of tree canopy (TH_Max), variance of tree canopy height (TH_SD) and COHESION at night. This research extends our understanding of the impacts of urban trees on the UHI effect from the horizontal to three-dimensional space. In addition, it may offer sustainable and effective strategies for urban designers and planners to cope with increasing temperature.  相似文献   

18.
<正>Land cover is a fundamental variable that links many facets of the natural environment and a key driver of global environmental change.Alterations in its status can have significant ramifications at local,regional and global levels.Hence,it is imperative to map land cover at a range of spatial and temporal scales with a view to understanding the inherent patterns for effective characterization,prediction and management of the potential environmental impacts.This paper presents the results of an effort to map land cover patterns in Kinangop division,Kenya,using geospatial tools.This is a geographic locality that has experienced rapid land use transformations since Kenya's independence culminating in uncontrolled land cover changes and loss of biodiversity.The changes in land use/cover constrain the natural resource base and presuppose availability of quantitative and spatially explicit land cover data for understanding the inherent patterns and facilitating specific and multi-purpose land use planning and management.As such,the study had two objectives viz.(i) mapping the spatial patterns of land cover in Kinangop using remote sensing and GIS and;(ii) evaluating the quality of the resultant land cover map.ASTER satellite imagery acquired in January 23,2007 was procured and field data gathered between September l0 and October 16,2007.The latter were used for training the maximum likelihood classifier and validating the resultant land cover map.The land cover classification yielded 5 classes,overall accuracy of 83.5%and kappa statistic of 0.79,which conforms to the acceptable standards of land cover mapping. This qualifies its application in environmental decision-making and manifests the utility of geospatial techniques in mapping land resources.  相似文献   

19.
Abstract

A methodology is presented for estimating percent coverage of impervious surface (IS) and forest cover (FC) within Landsat thematic mapper (TM) pixels of urban areas. High-resolution multi-spectral images from Quickbird (QB) play a key role in the sub-pixel mapping process by providing information on the spatial distributions of ISs and FCs at 2.4 m ground sampling intervals. Thematic classifications, also derived from the Landsat imagery, have then been employed to define relationships between 30 m Landsat-derived greenness values and percent IS and FC. By also utilizing land cover/land use classification derived from Landsat and defining unique relationships for urban sub-classes (i.e. residential, commercial/industrial, open land), confusion between impervious and fallow agricultural lands has been overcome. Test results are presented for Ottawa-Gatineau, an urban area that encompasses many aspects typical of the North American urban landscape. Multiple QB scenes have been acquired for this urban centre, thereby allowing us to undertake an in-depth study of the error budgets associated with the fractional inference process.  相似文献   

20.
This article's goal is to explore the benefits of using Digital Surface Model (DSM) and Digital Terrain Model (DTM) derived from LiDAR acquisitions for characterizing the horizontal structure of different facies in forested areas (primary forests vs. secondary forests) within the framework of an object-oriented classification. The area under study is the island of Mayotte in the western Indian Ocean. The LiDAR data were the data originally acquired by an airborne small-footprint discrete-return LiDAR for the “Litto3D” coastline mapping project. They were used to create a Digital Elevation Model (DEM) at a spatial resolution of 1 m and a Digital Canopy Model (DCM) using median filtering. The use of two successive segmentations at different scales allowed us to adjust the segmentation parameters to the local structure of the landscape and of the cover. Working in object-oriented mode with LiDAR allowed us to discriminate six vegetation classes based on canopy height and horizontal heterogeneity. This heterogeneity was assessed using a texture index calculated from the height-transition co-occurrence matrix. Overall accuracy exceeds 90%. The resulting product is the first vegetation map of Mayotte which emphasizes the structure over the composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号