首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Seismic soil-pile interaction is evaluated in this study based on back-calculated p-y loops constructed from sampled data of pile bending moments. Fundamental properties of p-y loops are implemented to derive distributed springs and dashpots, thereby quantifying soil-pile interaction in the realm of a Beam on Dynamic Winkler Foundation modeling. The procedure is validated by means of well-documented centrifuge tests of a single pile supported structure founded on a two-layer soil profile that comprises of soft clay overlying dense sand. Two shaking levels of a real earthquake motion applied at the base of the soil profile were examined and the generated seismic p-y loops were compared to cyclic p-y curves commonly used in pile design practice. The results demonstrate the strong influence of intensity of the input motion on seismic p-y loops while cyclic p-y curves established for soft clays tend to overestimate soil stiffness under strong excitation. Typical sets of recorded and computed structural response are presented, denoting the ability of the BDWF model related to p-y loops in reproducing adequately fundamental aspects of seismic soil-pile interaction.  相似文献   

2.
The present study aims to obtain p-y curves(Winkler spring properties for lateral pile-soil interaction) for liquefied soil from 12 comprehensive centrifuge test cases where pile groups were embedded in liquefiable soil. The p-y curve for fully liquefied soil is back-calculated from the dynamic centrifuge test data using a numerical procedure from the recorded soil response and strain records from the instrumented pile. The p-y curves were obtained for two ground conditions:(a) lateral spreading of liquefied soil, and(b) liquefied soil in level ground. These ground conditions are simulated in the model by having collapsing and non-collapsing intermittent boundaries, which are modelled as quay walls. The p-y curves back-calculated from the centrifuge tests are compared with representative reduced API p-y curves for liquefied soils(known as p-multiplier). The response of p-y curves at full liquefaction is presented and critical observations of lateral pile-soil interaction are discussed. Based on the results of these model tests, guidance for the construction of p-y curves for use in engineering practice is also provided.  相似文献   

3.
Owing to their simplicity and reasonable accuracy, Beam on Nonlinear Winkler Foundation (BNWF) models are widely used for the analysis of laterally loaded piles. Their main drawback is idealizing the soil continuum with discrete uncoupled springs representing the soil reactions to pile movement. Static py curves, obtained from limited full-scaled field tests, are generally used as a backbone curve of the model. However, these empirically derived p–y curves could not incorporate the effects of various pile properties and soil continuity. The strain wedge method (SWM) has been improved to assess the nonlinear p–y curve response of laterally loaded piles based on a three-dimensional soil–pile interaction through a passive wedge developed in front of the pile. In this paper, the SWM based p–y curve is implemented as the backbone curves of developed BNWF model to study the nonlinear response of single pile under cyclic lateral loading. The developed nonlinear model is capable of accounting for various important soil–pile interaction response features such as soil and pile yielding, cyclic degradation of soil stiffness and strength under generalized loading, soil–pile gap formation with soil cave-in and recompression, and energy dissipation. Some experimental tests are studied to verify the BNWF model and examine the effect of each factor on the response of laterally loaded pile embedded in sand and clay. The experimental data and computed results agree well, confirming the model ability to predict the response of piles under one-way and two-way cyclic loading. The results show that the developed model can satisfactorily simulate the pile stiffness hardening due to soil cave in and sand densification as observed in the experiment. It is also concluded from the results that the gap formation and soil degradation have significant effects on the increase of lateral pile-head deflection and maximum bending moment of the pile in cohesive soils.  相似文献   

4.
Results from experimental testing of four approximately one-third scale laterally loaded H-piles, subjected to monotonic and cyclic loading are presented. The test setups were designed to prevent torsion in the pile during testing and to eliminate the self-weight of the hydraulic actuator that could otherwise induce moment on the model piles. The tests were conducted in compacted medium dense sand and all the piles were extensively instrumented. Test results indicate that the lateral force–displacement responses under cyclic loading exhibited slight pinching behavior due to the gap that opened at the top of the soil-pile interface. Numerical simulations show that py curves based on the American Petroleum Institute (API) recommendations and that proposed by Reese et al. can reasonably predict the lateral response of the piles though slightly underestimate the ultimate capacities. The general pile behavior such as force–displacement response and moment distributions along the pile depth show slight sensitivity to the subgrade reaction modulus at large displacements.  相似文献   

5.
This paper presents a procedure to compute the values of degradation factors of p-y curves in the pseudo-static analysis of piles in liquefiable soils. Three-dimensional finite-element model was used for the computation of p and y values using OpenSees computer package. The piles were modeled using beam-column elements and elastic section. The soil continuum was modeled using brick elements and a two-surface plasticity model. By comparing the results of models in two cases of liquefiable and non-liquefiable, values of degradation factors were obtained. Validation of the degradation factors computed was conducted through the centrifuge test results. The simulation results showed a similar trend between degradation factor variation in different densities and sands. With increasing depth, the degradation factor increased. By comparing the results of pseudo-static analysis with the centrifuge test results, it was concluded that the use of the p-y curves with computed degradation factors in liquefiable sand gave reasonable results.  相似文献   

6.
A key issue in the design of pile-supported structures on sloping ground is soil–pile interaction, which becomes more complicated in case of dynamic loading. This study aimed to evaluate the effect of slope on the dynamic behavior of pile-supported structures by performing a series of centrifuge tests. Three models were prepared by varying the slope and soil density of dry sand grounds. The mass supported on 3 by 3 group piles was shaken applying sinusoidal wave with various amplitudes. Test results showed that the location of maximum values and distribution shape of the bending moment below the ground surface varied noticeably with the pile position in the slope case. The relationship between the soil resistance and pile deflection (pyp loops) was carefully evaluated by applying the piecewise cubic spline method to fit the measured bending moment curves along piles. It was found that the shape of the pyp loops was irregular due to the effect of slope, and immensely influenced by the movement of the unstable zone. In addition, the effect of the pile group in the horizontal case was evaluated by comparing with the previously suggested curves that represent the relationship between the soil resistance and pile–soil relative displacement (py curves) to propose the multiplier coefficients.  相似文献   

7.
This paper describes a quasi-static test program featuring lateral cyclic loading on single piles in sandy soil. The tests were conducted on 18 aluminum model piles with different cross sections and lateral load eccentricity ratios, e/d, (e is the lateral load eccentricity and d is the diameter of pile) of 0, 4 and 8, embedded in sand with a relative density of 30% and 70%. The experimental results include lateral load-displacement hysteresis loops, skeleton curves and energy dissipation curves. Lateral cap...  相似文献   

8.
Modern seismic design codes stipulate that the response analysis should be conducted by considering the complete structural system including superstructure, foundation, and ground. However, for the development of seismic response analysis method for a complete structural system, it is first imperative to clarify the behavior of the soil and piles during earthquakes. In this study, full‐scale monotonic and reversed cyclic lateral loading tests were carried out on concrete piles embedded into the ground. The test piles were hollow, precast, prestressed concrete piles with an outer diameter of 300 mm and a thickness of 60 mm. The test piles were 26 m long. Three‐dimensional (3D) finite element analysis was then performed to study the behavior of the experimental specimens analytically. The study revealed that the lateral load‐carrying capacity of the piles degrades when subjected to cyclic loading compared with monotonic loading. The effect of the use of an interface element between the soil and pile surface in the analysis was also investigated. With proper consideration of the constitutive models of soil and pile, an interface element between the pile surface and the soil, and the degradation of soil stiffness under cyclic loading, a 3D analysis was found to simulate well the actual behavior of pile and soil. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

9.
This paper presents a pre-shaking technique for measuring the $V_{s}$ profile of sand deposits and determining the natural frequencies of the sand bed and soil-structure system in a centrifuge model at an acceleration of 80 g. The pre-shaking technique is a non-destructive test. It uses a shaker as a wave generation source and a vertical array of accelerometers embedded in the sand bed and the accelerometers attached to the pile head as receivers. The pre-shaking method can be easily used for in-flight subsurface exploration ( $V_{s}$ profile measurements) and in-flight system identification of soil-structure systems (natural frequency measurements). A soil–pile centrifuge model is used to demonstrate the versatility of pre-shaking during a routine centrifuge shaking table test. This paper discusses the testing setup, testing procedures, related SI techniques, and signal processing for the soil–pile system. The natural frequencies measured by the pre-shaking tests are consistent with theory-based results. This technique can be conducted at any time before and after major earthquake events occur in a test.  相似文献   

10.
基于OpenSees数值分析平台,建立了群桩-土-桥墩非线性数值分析模型。模型中桩-土水平向相互作用和桩-土竖向相互作用、桩底-土竖向相互作用分别通过p-y、t-zq-z零长度弹簧单元模拟。模型中同时考虑了群桩效应与纵筋在墩底的应变渗透和粘结滑移的影响。结合群桩基础拟静力试验结果,对数值模型的准确性进行了验证,在此基础上对土体参数特性对桩基滞回性能的影响规律进行了分析。结果表明:所建立的数值分析模型可对群桩基础滞回曲线和骨架曲线进行较为准确的模拟分析,验证了模型的可靠性。反复荷载作用下,前桩处土体的反应明显大于中桩处;土体由软黏土变为硬黏土时,墩顶侧向承载力与刚度显著增加,但土体的非线性反应减弱。  相似文献   

11.
Multi-layered soil profiles, where one or more layers consist of loose liquefiable material, most commonly require pile foundations extending beyond the liquefiable layer to competent material. Under seismic loads, if the loose layer liquefies, then large localized plastic demands may be generated in the piles. To study this behavior and provide detailed data to validate numerical models, a 1-g shaking table experiment was conducted considering a single reinforced concrete pile embedded in a three-layer soil system. The model pile of 25 cm diameter was tested under increasing amplitude earthquake excitation in a sloped laminar soil box. The test specimen was designed at the lower bound of typical design to promote yielding, per ATC-32 (Applied Technology Council, 1996) [1]. The pile penetrated 7D (D=pile diameter) into a multi-layered soil configuration composed of a stiff uppermost crust overlying a saturated loose sand layer and a lower dense layer of sand. Plastic demands in the pile were characterized using curvature profiles coupled with back-calculation of the plastic hinge length and post-test physical observations. Results from this test quantify the post-yield behavior of the pile and serve as a complement to previously conducted centrifuge tests.  相似文献   

12.
Research on the action of pile groups in resisting lateral loading is usually based on analysis, field and centrifuge tests of small pile groups. The interaction between piles in these groups is modelled by modifying the lateral resistance p–y curves developed for a single pile using row dependent reduction factors or a group factor for the entire group to simulate the effect of soil–pile–soil interaction. The modifying factors for the p–y curves and the appropriate group factors for pile groups are based entirely on static tests and there is no direct verification that these factors are appropriate to handle the dynamic loading of earthquake induced ground motions. In this paper we investigate the interaction effects between piles under static and seismic loading using the computer program VERSAT-P3D, which uses an equivalent linear constitutive model for the soil. The analytical procedure is calibrated using data from a static field load test on a single pile. Several pile groups, 2 × 2, 3 × 3, 4 × 4, 5 × 5, 8 × 8, 10 × 10, 10 × 2 and 15 × 2 were analysed for the study. Each group was subjected to static pushover and earthquake loading and the distribution of static and dynamic shear forces at various lateral displacements were evaluated. The study shows that the distribution of load within a pile group under dynamic loading varies significantly from the distribution under static loading and is strongly load intensity dependent. Current practice assumes that the distributions are similar.  相似文献   

13.
A shake-table experiment on pile foundations in liquefi able soils composed of liquefi able sand and overlying soft clay is studied. A three-dimensional(3D) effective stress fi nite element(FE) analysis is employed to simulate the experiment. A recently developed multi-surface elasto-plastic constitutive model and a fully coupled dynamic inelastic FE formulation(u-p) are used to model the liquefaction behavior of the sand. The soil domains are discretized using a solid-fl uid fully coupled(u-p) 20-8 noded brick element. The pile is simulated using beam-column elements. Upon careful calibration, very good agreement is obtained between the computed and the measured dynamic behavior of the ground and the pile. A parametric analysis is also conducted on the model to investigate the effect of pile-pinning, pile diameter, pile stiffness, ground inclination angle, superstructure mass and pile head restraints on the ground improvement. It is found that the pile foundation has a noticeable pinning effect that reduces the lateral soil displacement. It is observed that a larger pile diameter and fi xed pile head restraints contribute to decreasing the lateral pile deformation; however, a higher ground inclination angle tends to increase the lateral pile head displacements and pile stiffness, and superstructure mass seems to effectively infl uence the lateral pile displacements.  相似文献   

14.
Shallow foundations supporting building structures might be loaded well into their nonlinear range during intense earthquake loading. The nonlinearity of the soil may act as an energy dissipation mechanism, potentially reducing shaking demands exerted on the building. This nonlinearity, however, may result in permanent deformations that also cause damage to the building. Five series of tests on a large centrifuge, including 40 models of shear wall footings, were performed to study the nonlinear load-deformation characteristics during cyclic and earthquake loading. Footing dimensions, depth of embedment, wall weight, initial static vertical factor of safety, soil density, and soil type (dry sand and saturated clay) were systematically varied. The moment capacity was not observed to degrade with cycling, but due to the deformed shape of the footing–soil interface and uplift associated with large rotations, stiffness degradation was observed. Permanent deformations beneath the footing continue to accumulate with the number of cycles of loading, though the rate of accumulation of settlement decreases as the footing embeds itself.  相似文献   

15.
桩-液化土相互作用p-y关系分析   总被引:2,自引:0,他引:2  
基于多工况的桩-液化土体动力相互作用振动台试验,研究地震荷载作用下液化土层中桩土间侧向相互作用力p与桩身和土体间侧向相对位移y之间的关系。将试验得到的实际p-y曲线与采用拟静力法和以API规范为基础的折减系数法计算出的p-y曲线进行对比,结果表明:(1)液化土层中试验得到的桩真实p-y响应及由拟静力法和折减系数法得到的结果都呈非线性变化,三者极限状态有接近一致的趋势,但变化过程差异明显;(2)采用拟静力法和折减系数法都会使液化土层桩基础侧向反力迅速增长,很快达到屈服极限,远远超过实际情况,会导致相当保守的结果;(3)液化进程中控制桩p-y响应的是土体位移而非惯性力,因而拟静力法和折减系数法的原理不适合桩-液化土体动力相互作用分析,不能用于液化土层中桩基础地震响应的计算。  相似文献   

16.
为研究砂-锯末混合模型土的动力参数规律特性,采用动三轴试验,研究了此类土的滞回圈特性以及其动剪切模量和阻尼比随循环加载次数的变化规律.试验结果表明:分级循环加载过程中,随着荷载级别的增加,滞回圈的面积逐渐增大,形状从柳叶形向新月形发展;模型土的动剪切模量在各循环下基本为常量而阻尼比呈上下波动;而随荷载级别的增大,动剪切...  相似文献   

17.
Dynamic response of dams is significantly influenced by foundation stiffness and dam-foundation interaction. This in turn, significantly effects the generation of hydrodynamic pressures on upstream face of a concrete dam due to inertia of reservoir water. This paper aims at investigating the dynamic response of dams on soil foundation using dynamic centrifuge modelling technique. From a series of centrifuge tests performed on model dams with varying stiffness and foundation conditions, significant co-relation was observed between the dynamic response of dams and the hydrodynamic pressures developed on their upstream faces. The vertical bearing pressures exerted by the concrete dam during shaking were measured using miniature earth pressure cells. These reveal the dynamic changes of earth pressures and changes in rocking behaviour of the concrete dam as the earthquake loading progresses. Pore water pressures were measured below the dam and in the free-field below the reservoir. Analysis of this data provides insights into the cyclic shear stresses and strains generated below concrete dams during earthquakes. In addition, the sliding and rocking movement of the dam and its settlement into the soil below are discussed.  相似文献   

18.
Compaction or densification of loose saturated soils has been the most popular method of reducing earthquake related liquefaction potential. Such compaction of a foundation soil is only economical when limited in extent, leading to a case of an ‘island’ of improved ground (surrounded by unimproved ground). The behavior of the densified sand surrounded by liquefied loose sand during and following earthquakes is of great importance in order to design the compacted area rationally and optimize both safety and economy. This problem is studied herein by means of dynamic centrifuge model tests. The results of three heavily-instrumented dynamic centrifuge tests on saturated models of side-by-side loose and dense sand profiles are discussed. The test results suggest the following concerns as relates to ‘islands’ of densified soil: (1) there is a potential strength degradation in the densified zone as a result of pore pressure increase due to migration of pore fluid into the island from the adjacent loose liquefied ground; (2) there is a potential for lateral deformation (sliding) within the densified island as the surrounding loose soil liquefies.  相似文献   

19.
微型土压力传感器标定方法研究   总被引:2,自引:0,他引:2       下载免费PDF全文
离心模型试验常用微型土压力传感器测量地基或土与结构接触边界上的土压力。传感器使用之前应进行标定。传统的液标或气标方法不能准确反映传感器埋置过程对土体的扰动或传感器周围人为土拱边界条件形成,导致测试结果不甚理想。故针对试验条件,设计制作一套标定微型土压力传感器的方法和装置,以水、粉质黏土和福建标准砂为标定介质,考虑有无刚性靠背两种工作状态对多个传感器进行室内标定,得到标定系数。结果表明:水标未出现卸载滞后,砂标和土标均出现卸载滞后,且表现为非线性;引入滞后比R评价微型土压力传感器的滞后性,认为标定介质和传感器类型是影响滞后比的两个主要因素;传感器自身材料特性和几何特性、地基土的制备和传感器放置、加载预压和加卸载循环等对土体密实度、土体强度等的改变、工作介质和状态等对标定结果有影响。建议尽量模拟试验工作介质和工作状态,逐个标定传感器,以得到更准确的土压力测量值。  相似文献   

20.
Shaking table tests were conducted by means of a large-scale laminar box with 4 m in length, 2 m in width and 2 m in height in order to investigate behavior of a soil-pile-superstructure system in liquefiable ground. A model two-storey structure, supported by a pile group, was set in a saturated sand deposit, and subjected to a sinusoidal base motion with increasing amplitude. Discussions are focused on the transient behavior until soil liquefaction occurs. Main interests are characteristics of springs used in a sway-rocking model and a multi-freedom lumped mass (MFLM) model that are frequently used in soil–pile interaction analysis. The spring constant in the sway-rocking model is represented by restoring force characteristics at the pile head, and that in the MFLM system is represented by an interaction spring connecting the pile to the free field. The transient state prior to soil liquefaction is shown to be important in the design of a pile because dynamic earth pressure shows peak response in this state. The reduction of the stiffness due to excess porewater generation and strain dependent nonlinear behavior is evaluated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号