首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
乌鲁木齐市大降水特征分析   总被引:1,自引:0,他引:1  
通过对乌鲁木齐市45年的降水资料分析,探讨大降水的气候统计特征以及形成大降水的天气形势特点,通过分析数值预报格点值的变化,得出了大降水产生时96s剖面图和48s小时格点温度值的变化与乌鲁木齐大降水的关系。  相似文献   

2.
以大降水过程中触发高潜能量释放的天气系统为背景条件,以高潜能场为起报信息,对40个大降水个例进行统计、分析和归纳,概括出阿勒泰夏季大降水过程中,高潜能场的时空变化特征,从中得出预报阿勒泰夏季大降水的新指标,进一步提高了大降水预报的准确率。  相似文献   

3.
分析了博乐大降水天气过程的规律,确定影响大降水的关键区,提出了一种适合本地区的大降水预报思路。  相似文献   

4.
南疆西部大降水天气过程的统计分析   总被引:5,自引:0,他引:5  
对南疆西部1970-1999年大降水天气过程的分析表明,大降水集中出现在夏季,中亚低涡是造成南疆西部大降水的主要影响系统。  相似文献   

5.
通过对莎车县37年的降水资料分析,探讨大降水的气候统计特征以及形成大降水的天气形势特点,最后通过年际降水的周期分析,发现有3年的准周期震荡,并用自回归模式法给出年降水量的趋势预报方程。  相似文献   

6.
地形降水试验和背风回流降水机制   总被引:7,自引:2,他引:7  
李子良 《气象》2006,32(5):10-15
利用中尺度数值模式(ARPS模式)研究了湿气流过山脉地形和地形降水的产生机制。研究结果表明,地形降水是水汽、气流和地形相互作用而形成的。小山脉地形降水主要发生在山脉的迎风坡,表现出典型的迎风降水和背风雨影特征。而回流降水天气是湿气流过大的山脉地形的产物,大的山脉地形有利于风切变临界层的产生,地形降水并不只是简单的上坡降水,还有背风回流和背风波降水机制。  相似文献   

7.
介绍了乌鲁木齐地区夏季大降水专家系统的知识库,包括从天气学角度对影响乌鲁木齐地区大降水的天气系统的分型、因子的挑选及规则库的建立等,试图通过制作单站大降水专家系统来提高单站大降水的预报准确率。  相似文献   

8.
对延安市大降水时空分布特征及其与副高活动关系进行统计分析,在归纳出延安市大降水高空环流形势概念模型的基础上,进一步应用物理量诊断分析,得出了基于T106数值预报产品释用方法的延安市大降水预报流程。  相似文献   

9.
使用NOAA/AVHRR数字化的云顶温度和未来12小时降水量资料,对新疆地区大降水落区进行了探讨,得出新疆地区大降水落区与云团的云顶温度之间的关系,并得到了新疆地区降水的云团天气模式。  相似文献   

10.
选取哈密站30年夏季>10mm降水天气过程的资料,应用有限元插值法,计算分析大降水天气过程中近地层散度场的演变特征,并以此探讨大降水落区预报方法。  相似文献   

11.
利用云南和贵州188个气象台站1980~2014年的逐日降水资料,得到了云贵高原的年平均总降水量、年平均暴雨量、暴雨频率、暴雨贡献率和暴雨的月分布情况,探讨了近35年云贵高原暴雨的分布特征和年际变化特征。结果表明:云贵高原的年降水量分布大体上呈南多北少,整体上由南向北递减。暴雨的贡献率占16%左右,云贵高原最早1月就会出现暴雨,最晚6月出现暴雨天气,暴雨集中出现在4~11月,夏季平均暴雨日数2.5天。1980~2014年暴雨降水量偏多年与暴雨降水量偏少年差别不大,暴雨量在近35年内未出现明显的变化趋势。通过小波分析得出云贵高原的年降水,年暴雨都存在多时间尺度特征,不同的时间尺度表现出不同的循环交替。至今暴雨增多的等值线未出现闭合,降水还有增加的趋势。   相似文献   

12.
地球工程作为人类影响全球气候的重要工程手段,具有重要的现实意义和科学价值。目前学界在地球工程对极端降水的影响研究方面还处于初始阶段。在这种背景下,基于BNU-ESM模式中地球工程(G4实验)和非地球工程(RCP4.5)情景下的日值降水数据,以95%和99%分位数作为强降水和极端强降水的阈值,分别对比分析两种情景下中国及七大地理分区的强降水和极端强降水在2010—2099年(整个研究时段)、2020—2069年(地球工程实施期间)和2070—2099年(地球工程实施结束)的差异特征。结果表明:(1) 2010—2099年地球工程有利于中国多数地区强降水量和极端强降水量的增加;(2)在实施地球工程的2020—2069年,整体上抑制了中国多数地区强降水量和极端强降水量;(3)在地球工程实施结束后的2070—2099年,地球工程后续影响整体上有利于中国多数地区强降水量和极端强降水量的增加;(4)不同研究时段中国七大地理分区的强降水量和极端强降水量变化趋势均有一定区域差异,且这种差异特征在不同研究时期表现在不同地区。   相似文献   

13.
基于中国6个代表站5-9月的逐日降水资料,利用二维Gumbel-Logistic分布,研究了中国不同区域的过程降水量和日最大强降水雨量的联合概率特征。结果表明,各代表性台站的过程雨量和强降水雨量的联合分布均符合二维Gumbel分布。强降水雨量与过程降雨量联合分布所描述的极端事件是更小的小概率事件。相同强降水雨量条件下,过程雨量越大,重现期越长当强降水雨量增大时,同一过程雨量的重现期也延长。在同级强降水雨量出现的条件下,各地过程降雨量往往是愈往南方其条件概率愈大,而其出现的过程雨量也随之增大。这为研究强降水极端状况的全方位特征做出了新的试验.也曼加客观地揭示了极端气候事件的多方面概率特征.  相似文献   

14.
为了研究短时强降水过程与雷电活动过程的相关性,统计了 2012-2016年云南省126个国家级气象站的短时强降水次数和降水量,以及强降水时段内、强降水前1小时站点周边50公里、30公里、10公里半径范围内的地闪次数.运用概率统计理论分析强降水过程发生时、过程前1小时周边不同尺度范围内地闪发生的概率.同时应用相关回归方法...  相似文献   

15.
利用短时强降水概率预报模型生成短时强降水(≥20mm/h)概率预报产品,并对其进行“点对面”模糊检验试验。结果表明:短时强降水(≥20mm/h)概率预报和SWC_WARMS模式最大小时雨量(≥20mm/h)的“点对面”TS评分均明显高于相应的“点对点”评分,短时强降水(≥20mm/h)预报结果可在30~40km范围内进行调整;短时强降水(≥20mm/h)概率预报在概率为30%时TS评分达到最大,Bias接近为1,预报偏差最小;短时强降水(≥20mm/h)概率预报比SWC_WARMS模式最大小时雨量(≥20mm/h)预报更具有参考价值。   相似文献   

16.
利用北京地区1977-2013年18个站点逐小时降水资料,将小时降水分为弱降水(第50百分位值以下)、中等强度降水(第50至90百分位值)以及强降水(第90百分位值以上)3个等级,对北京地区山区、郊区以及城区夏季不同强度等级降水变化特征进行了深入细致的分析。结果表明,北京地区夏季降水量存在显著的减少趋势,这种减少趋势主要是由于弱降水和中等强度降水的显著减少引起的,强降水没有表现出明显的增多或减少趋势;与郊区相比,2004年之后城区的强降水对夏季总降水量的贡献越来越大而弱降水的贡献减小。在降水日变化上,不同地区、不同等级的降水存在差异。弱降水存在清晨和夜间双峰值特征,中等强度和强降水只存在夜间单峰值特征。清晨峰值时刻,山区、郊区和城区弱降水都表现出一致的显著减少趋势;夜间峰值时刻,山区的各等级降水变化不显著,而在2004年之后,城区弱降水少于郊区,强降水则多于郊区。北京地区降水过程不对称性特征(降水过程峰值前后差异性)十分明显,其中以强降水的不对称性最强,相对于郊区和山区来说,城区强降水过程的不对称性有增大的趋势。  相似文献   

17.
利用锦州地区的逐日降水量观测资料对逐日降水量的概率分布进行了统计分析,采用最大似然估计法得到Gamma函数分布的形状参数α和尺度参数β,通过Gamma概率分布模拟观测站点逐日降水的概率分布。结果表明:锦州地区逐日降水频率整体趋势先上升后下降,基本呈对称式分布,降水概率有一定的振荡,个别日会出现远超相邻日期的降水频率,7月21日降水频率最高,在不计微量降水的情况下,最低逐日降水概率有多个日期为0。各季降水频率偏低是造成义县地区干旱的原因之一;北镇夏季平均降水频率最低,但其夏季平均降水量却为锦州地区最高,说明北镇可能易出现较大量级降水或易出现极端降水天气。清明期间降水频率在50%以上、高考期间降水频率在80%以上,符合大众日常对特殊日期降水情况的认知;逐日降水频率可以为公众气象服务提供新的思路。凌海、北镇更容易出现极端降水天气;锦州地区日降水出现小雨天气概率最高,暴雨以上降水概率较低,锦州地区各站极少出现大暴雨以上量级降水,对锦州降水量级预报,尤其是暴雨或大暴雨以上降水量级的预报起到一定的指示作用。  相似文献   

18.
基于2013~2020年乐山地区9个国家自动站和136个区域自动站逐小时降水资料,应用诊断分析方法,系统研究了乐山地区短时强降水的时空分布及变化特征,探讨了短时强降水发生频次与地形因子的关系。结果表明:乐山地区短时强降水年均频次和极值均呈增加的趋势,强度较为稳定,变率不大。短时强降水在3~10月均有发生,其频次月分布呈现出单峰型的特征,集中发生在7~8月,占全年的77.7%,7月下旬~8月上旬发生频次又占7~8月总量的49.8%。短时强降水频次日变化呈单峰单谷结构,夜间发生概率最大,白天发生概率相对较小,22时~次日04时是短时强降水集中高发时段,虽然短时强降水在午后和傍晚的发生概率相对较小,但其强度较强,也应当引起重视。乐山地区短时强降水空间分布差异较大,存在两级分化的特点,与地形关系密切,总体呈西南部和东北部少、西北部—中部—东南部多的分布特征。短时强降水的发生与经纬度、海拔高度等地形因子显著相关,高发区主要集中在山谷喇叭口、岷江流域的河谷地带及城市热岛区。   相似文献   

19.
辽宁长历时强降水的环境特征分析   总被引:2,自引:1,他引:1       下载免费PDF全文
利用NCEP 1°×1°格点再分析、FY-2E相当黑体亮温TBB和地面加密自动气象站等资料,分析了辽宁3次典型长历时强降水TBB值与降水强度的关系、中尺度环境场特征及维持机制,并初步建立了辽宁长历时强降水概念预报模型。结果表明:在副热带高压的形态、位置和强度有利于辽宁产生强降水的大尺度形势下,副热带高压西侧低空急流持续输送的充沛暖湿空气与高空干冷空气在同一地点长时间相互作用,为强降水的发生和维持提供了有利的环境背景条件。强降水持续时间与其上空的强垂直速度持续时间有很好的对应关系,强降水持续时高空一般为弱的不稳定或中性层结。强降水不仅可出现在对流云团发展旺盛的冷云区内部或边缘,也可发生在TBB值较小的暖云区内。TBB值的大小与降水强度没有必然的关系,但TBB值的快速减小都预示强降水即将发生。这些结论有利于深化认识辽宁地区长历时强降水的成因并为预报提供线索。  相似文献   

20.
山西地形复杂,汛期降水集中,短时强降水易引发地质灾害及城市内涝,是制约社会经济发展和人民安居的重要因素。本文通过分析山西省2011~2016年290个高密度自动气象站逐时降水资料,结合本地强降水预警业务规定,根据致灾风险程度将短历时强降水分为四级,全面细致分析了各级强降水的时空变化特征,对强降水的精细化预报有指示意义。结果表明:短时强降水主要受纬度和地形影响,各级强降水的累计降水量和降水小时数大值区一般沿太行山脉和吕梁山脉展布;短时强降水在每日15~18时高发,到了夜间20~23时,出现第二峰值;城区一般性强降水比乡村区域偏多偏强。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号