首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract A series of paleogeographic maps of the Japanese Islands, from their birth at ca 750–700 Ma to the present, is newly compiled from the viewpoint of plate tectonics. This series consists of 20 maps that cover all of the major events in the geotectonic evolution of Japan. These include the birth of Japan at the rifted continental margin of the Yangtze craton ( ca 750-700 Ma), the tectonic inversion of the continental margin from passive to active ( ca 500 Ma), the Paleozoic accretionary growth incorporating fragments from seamounts and oceanic plateaux ( ca 480-250 Ma), the collision between Sino-Korea and Yangtze (250–210 Ma), the Mesozoic to Cenozoic accretionary growth (210 Ma-present) including the formation of the Cretaceous paired metamorphic belts (90 Ma), and the Miocene back-arc opening of the Japan Sea that separated Japan as an island arc (25-15 Ma).  相似文献   

2.
The belt boundary thrust within the Cretaceous–Neogene accretionary complex of the Shimanto Belt, southwestern Japan, extends for more than ~ 1 000 km along the Japanese islands. A common understanding of the origin of the thrust is that it is an out of sequence thrust as a result of continuous accretion since the late Cretaceous and there is a kinematic reason for its maintaining a critically tapered wedge. The timing of the accretion gap and thrusting, however, coincides with the collision of the Paleocene–early Eocene Izanagi–Pacific spreading ridges with the trench along the western Pacific margin, which has been recently re‐hypothesized as younger than the previous assumption with respect to the Kula‐Pacific ridge subduction during the late Cretaceous. The ridge subduction hypothesis provides a consistent explanation for the cessation of magmatic activity along the continental margin and the presence of an unconformity in the forearc basin. This is not only the case in southwestern Japan, but also along the more northern Asian margin in Hokkaido, Sakhalin, and Sikhote‐Alin. This Paleocene–early Eocene ridge subduction hypothesis is also consistent with recently acquired tomographic images beneath the Asian continent. The timing of the Izanagi–Pacific ridge subduction along the western Pacific margin allows for a revision of the classic hypothesis of a great reorganization of the Pacific Plate motion between ~ 47 Ma and 42 Ma, illustrated by the bend in the Hawaii–Emperor chain, because of the change in subduction torque balance and the Oligocene–Miocene back arc spreading after the ridge subduction in the western Pacific margin.  相似文献   

3.
Yo-Ichiro  Otofuji 《Island Arc》1996,5(3):229-249
Abstract Paleomagnetic studies facilitate an understanding of the evolution of the Japan Arc in Cenozoic times from the perspective of tectonic movement. The Japan Arc rifted from the Asian continent in the middle Miocene, while East Asia, including the Japan Arc, moved northward at the same time. The rifting phenomenon of the Japan Arc is described by differential rotation of Southwest and Northeast Japan. Southwest Japan was rotated clockwise through about 45° and Northeast Japan was rotated counter-clockwise through about 40°. This differential rotation occurred concurrently at about 15 Ma. Eighty percent of the rotation was completed during a period of 1.8 million years. These factors lead us to propose a'double door'opening mode with a fast spreading rate of 21 cm/yr for the evolution of the Japan Sea, suggesting that the asthenosphere with a low viscosity was injected beneath the Japan Sea area. The large northward motion of East Asia in relation to Europe is expected from the apparent polar wander path constructed from the paleomagnetic data of the Japan Arc. East Asia may have moved northward by more than 1700 km between 20 Ma and 10 Ma accompanied by a slightly clockwise rotation of 10°. The eastern part of the Eurasian plate was subjected to extreme geodynamic conditions in late Cenozoic times.  相似文献   

4.
Satoru  Honda  Takeyoshi  Yoshida  Kan  Aoike 《Island Arc》2007,16(2):214-223
Abstract   Arc volcanism of the past 10 my in the northeast Honshu and Izu-Bonin Arcs shows several notable features. In the northeast Honshu Arc, the spatial distribution of volcanism exhibits several clusters elongated nearly perpendicular to the arc and the possible migration of volcanism from the back-arc side to the volcanic front side, at least, during the past 5 my. The pattern of clusters seems to have flip-flopped around 5 Ma. In the Izu-Bonin Arc, there are a series of across-arc seamount chains, in which volcanic activity occurred from ca 17 Ma to ca 3 Ma, similar to the clusters of the northeast Honshu Arc, although the recent active rifting occurs almost parallel to the arc. On the basis of studies of numerical modeling, these features might be explained, at least qualitatively, by the small-scale convection under the island arc. Several inferences can be made from our modeling results for the tectonics of the Izu-Bonin Arc. The angle of dip of subducting plate in the Izu-Bonin Arc might have increased. This can explain the disappearance of volcanism along the seamount chains and the recent along-arc volcanism with narrow rifting. The trend of seamount chains, which is oblique to the arc, might not be their intrinsic feature but rather a result of the lateral movement of the back-arc region after their formation. These inferences can be tested by the future detailed morphological and chronological studies of the Izu-Bonin Arc.  相似文献   

5.
PETER D.  CLIFT  ROBYN  HANNIGAN  JERZY  BLUSZTAJN  AMY E.  DRAUT 《Island Arc》2002,11(4):255-273
Abstract   The Dras 1 Volcanic Formation of the Ladakh Himalaya, India, represents the eastern, upper crustal equivalent of the lower crustal gabbros and mantle peridotites of the Kohistan Arc exposed in Pakistan. Together these form a Cretaceous intraoceanic arc now located within the Indus Suture zone between India and Eurasia. During the Late Cretaceous, the Dras–Kohistan Arc, which was located above a north-dipping subduction zone, collided with the south-facing active margin of Eurasia, resulting in a switch from oceanic to continental arc volcanism. In the present study we analyzed samples from the pre-collisional Dras 1 Volcanic Formation and the postcollisional Kardung Volcanic Formation for a suite of trace elements and Nd isotopes. The Kardung Volcanic Formation shows more pronounced light rare earth element enrichment, higher Th/La and lower ɛNd values compared with the Dras 1 Volcanic Formation. These differences are consistent with an increase in the reworking of the continental crust by sediment subduction through the arc after collision. As little as 20% of the Nd in the Dras 1 Volcanic Formation might be provided by sources such as the Karakoram, while approximately 45% of the Nd in the Kardung Volcanic Formation is from this source. However, even before collision, the Dras–Kohistan Arc shows geochemical evidence for more continental sediment contamination than is seen in modern western Pacific arcs, implying its relative proximity to the Eurasian landmass. Comparison of the lava chemistry in the Dras–Kohistan Arc with that in the forearc turbidites suggests that these sediments are partially postcollisional, Jurutze Formation and not all pre-collisional Nindam Formation. Thus, the Dras–Eurasia collision can be dated as Turonian–Santonian (83.5–93.5 Ma), older than it was previously considered to be, but consistent with radiometric ages from Kohistan.  相似文献   

6.
Yanbin  Zhang  Fuyuan  Wu  Simon A.  Wilde  Mingguo  Zhai  Xiaoping  Lu  Deyou  Sun 《Island Arc》2004,13(4):484-505
Abstract   The Yanbian area is located in the eastern part of the Central Asian Orogenic Belt (CAOB) of China and is characterized by widespread Phanerozoic granitic intrusions. It was previously thought that the Yanbian granitoids were mainly emplaced in the Early Paleozoic (so-called 'Caledonian' granitoids), extending east–west along the northern margin of the North China craton. However, few of them have been precisely dated; therefore, five typical 'Caledonian' granitic intrusions (the Huangniling, Dakai, Mengshan, Gaoling and Bailiping batholiths) were selected for U–Pb zircon isotopic study. New-age data show that emplacement of these granitoids extended from the Late Paleozoic to Late Mesozoic (285–116 Ma). This indicates that no 'Caledonian' granitic belt exists along the northern margin of the North China craton. The granitoids can be subdivided into four episodes based on our new data: Early Permian (285 ± 9 Ma), Early Triassic (249–245 Ma), Jurassic (192–168 Ma) and Cretaceous (119–116 Ma). The 285 ± 9 Ma tonalite was most likely related to subduction of the Paleo-Asian Oceanic Plate beneath the North China craton, followed by Triassic (249–245 Ma) syn-collisional monzogranites, representing the collision of the CAOB orogenic collage with the North China craton and final closure of the Paleo-Asian Ocean. The Jurassic granitoids resulted from subduction of the Paleo-Pacific plate and subsequent collision of the Jiamusi–Khanka Massif with the existing continent, assembled in the Triassic. The Early Cretaceous granitoids formed in an extensional setting along the eastern Asian continental margin.  相似文献   

7.
Tadashi  Usuki  Hiroshi  Kaiden  Keiji  Misawa  Kazuyuki  Shiraishi 《Island Arc》2006,15(4):503-516
Abstract   In order to define the timing of granulite facies metamorphism, sensitive high-resolution ion microprobe (SHRIMP) U-Pb analyses were performed on zircons of three pelitic granulites from the lower metamorphic sequence of the Hidaka Metamorphic Belt, southern central Hokkaido, Japan. Both rounded and prismatic zircons were found in the granulite samples. The rounded zircons had thin (10–20 µm) concentric overgrowth rims on detrital cores, while the prismatic zircons did not have detrital cores. Both the overgrowth rims on the rounded zircons and the entire prismatic zircons were formed under granulite facies metamorphism and consistently yield Latest Oligocene–Early Miocene ages (23.7 ± 0.4 Ma to 17.2 ± 0.5 Ma; 206Pb/ 238U ages ( n  = 31) with low Th/U ratios, mostly <0.1). The internal structure of zircons and their SHRIMP U-Pb ages provide strong evidence in support of the granulite facies event occurring during the Latest Oligocene-Early Miocene. The detrital cores of rounded zircons show a huge variety of ages; Mesoarchean to Paleoproterozoic, Paleozoic to Mesozoic and Paleogene. The interior and marginal portions of the Eurasian continent including cratonic areas are suggested for their source provenances. These wide variations in age suggest that the protolith of the granulites of the lower metamorphic sequence were deposited near the trench of the Eurasian continental margin during Paleogene. The protolith of the lower metamorphic sequence of the Hidaka metamorphic belt was thrust under the upper metamorphic sequence, which had already been metamorphosed in early Paleogene. The Latest Oligocene-Early Miocene Hidaka high-temperature metamorphic event is presumed to have been caused by asthenospheric upwelling during back-arc rifting of the Kuril and Japan basins.  相似文献   

8.
欧亚东边缘的双向板块汇聚及其对大陆的影响   总被引:1,自引:1,他引:0       下载免费PDF全文
自3 Ma至现今,在欧亚东缘太平洋、菲律宾海板块以较大速率朝NWW方向运动,并沿海沟向欧亚大陆俯冲;同时欧亚板块以较小速率朝SEE方向移动,构成双方向的板块汇聚格局.沿日本岛弧东侧,海洋板片以较小的倾角插入欧亚大陆下面,在浅部产生的挤压变形扩展到日本海东边缘.琉球岛弧的中、北部,菲律宾海俯冲板片的倾角较大,其西南段由NE向转变为EW向,正经历活动的海沟后退与弧后扩张.台湾是3种板块汇聚的交点:欧亚沿马尼拉海沟向东俯冲,吕宋弧与台湾碰撞,使台湾岛陆壳东西向缩短与隆升,形成年轻的造山带,菲律宾海板块沿琉球海沟的西南段向北俯冲到欧亚下面.位于南海与菲律宾海之间的菲律宾群岛是宽的变形过渡带,两侧被欧亚向东、菲律宾海向西俯冲夹击,中间是大型左旋走滑断层.总体上,现今时期的太平洋、菲律宾海板块的西向俯冲运动所产生的变形主要分布在俯冲板片内部及岛弧,未扩散到弧后地区,可能这种俯冲运动产生的水平应力较小,不能阻挡欧亚大陆的向东移动,对大陆内部的现今构造没有明显的影响.  相似文献   

9.
Nadezhda I.  Filatova 《Island Arc》1995,4(2):128-139
Abstract The Cretaceous geodynamic and paleogeographic evolution of the northeastern Asian continental margin is summarized in five maps for time-intervals of 115-110, 100-90, 90-85, 85-74 and 70-50 Ma. Four major evolutionary stages are recognized: (i) the moderate extensional tectonic regime and origination of a system of island arcs in the Jurassic-Neocomian stage; (ii) Middle Cretaceous strong collisional and accretional processes resulting in the Asian continent formation in the Barremian-Early Albian stage; (iii) the origination of the subduction-related Okhotsk-Chukotka continental marginal volcanic belt in relation to the newly formed convergent plate boundary in the Late Albian-Senonian stage; and (iv) the next collision accompanied by the extinction of the subduction-related volcanism in the Late Cretaceous-Early Paleocene stage (Laramian orogeny) and displayed rift-related processes with the intraplate-type volcanism on the Asian continental margin. Those stages had been established through the whole Pacific ring and had close genetic relationships with mid-ocean ridges tectonic activity.  相似文献   

10.
Crustal shortening of Southwest Japan in the Late Miocene   总被引:5,自引:0,他引:5  
Abstract Tectonic deformation of an island arc is interpreted on the basis of geophysical data. Extensive reflection seismic, gravity, geomagnetic data around the back-arc region of Southwest Japan delineate east-west to northeast-southwest folding, and imply conspicuous compression on the southern margin of the Sea of Japan. Because geological data of exploration boreholes indicate that the coinpressive regime was dominant in the late Miocene, the tectonic event seems to be linked with coeval resumption of subduction of the Philippine Sea Plate. Strong coupling of the young buoyant oceanic plate brought about north-south shortening of the overriding continental lithosphere, and left wrench deformation at the southwestern corner of the Sea of Japan. Amount of shortening for the back-arc shelf and mountainous ranges of Southwest Japan is estimated to be ca 10 km, adopting a uniform ratio of shortening (0.944) since the Miocene determined on the shelf from depth-converted seismic profiles. Along the western side of a bend of boundary between the Eurasian Plate and Philippine Sea Plate, the middle Miocene and younger sediments upon the back-arc shelf are much less deformed than the northern equivalents, and the fore-arc Miocene strata are deformed by left wrenching, facts which are indicative of northerly initial convergence of the Philippine Sea Plate at the end of Miocene and crustal decoupling on the west of Kyushu Island.  相似文献   

11.
Abstract Arc volcanic activity on opposite sides of the Pacific Ocean (Japan and Central America) has been investigated by examining the number of volcanic ash layers recorded in Neogene and Quaternary deep-sea sediments. The data suggest that ash layers counted in deep-sea sediments may provide a reliable record of arc volcanism. The study is based on a quantitative analysis of arc volcanic activity using cores collected on DSDP (Deep-Sea Drilling Project) and ODP (Ocean Drilling Program) legs. Five distinct parameters which might affect ash distribution in marine sediments were reviewed: nature of the eruption, wind influence, settling conditions, diagenesis, and plate motion. Of these five, past atmospheric circulation was the most significant. The main constraint on the analysis is that temporal scattering of ash is not directly related to wind pattern variations. Results of this analysis are correlated with dating of terrestrial volcanic sequences. Although marine tephra records for individual regions reveal minor differences in the episodes of volcanic activity, a general correlation exists between activity of arc volcanism in Japan and in Central America. Two important pulses of arc volcanism occurred during Middle Miocene times (18–13 Ma) and Plio-Quaternary times (5–0 Ma). These episodes of intense volcanism are separated by a well recorded quiescent period during Late Miocene times. These correlating episodes of the volcanic record indicate a direct link between arc volcanism and the global tectonic evolution of the Pacific ocean margins.  相似文献   

12.
Mikiya  Yamashita  Tetsuro  Tsuru  Narumi  Takahashi  Kaoru  Takizawa  Yoshiyuki  Kaneda  Kantaro  Fujioka  Keita  Koda 《Island Arc》2007,16(3):338-347
Abstract   The Parece Vela Basin (PVB), which is a currently inactive back-arc basin of the Philippine Sea Plate, was formed by separation between the Izu-Ogasawara Arc (IOA) and the Kyushu-Palau Ridge (KPR). Elucidating the marks of the past back-arc opening and rifting is important for investigation of its crustal structure. To image its fault configurations and crustal deformation, pre-stack depth migration to multichannel seismic reflection was applied and data obtained by the Japan Agency for Marine-Earth Science and Technology and Metal Mining Agency of Japan and Japan National Oil Corporation (Japan Oil, Gas and Metals National Corporation). Salient results for the pre-stack depth-migrated sections are: (i) deep reflectors exist around the eastern margin of KPR and at the western margin of IOA down to 8 km depth; and (ii) normal fault zones distributed at the eastern margin of the KPR (Fault zone A) and the western margin of the IOA (Fault zone B) have a total displacement of greater than 500 m associated with synrift sediments. Additional normal faults (Fault zone C) exist 20 km east of the Fault zone B. They are covered with sediment, which indicates deposition of recent volcanic products in the IOA. According to those results: (i) the fault displacement of more than 500 m with respect to initial rifting was approximately asymmetric at 25 Ma based on PSDM profiles; and (ii) the faults had reactivated after 23 Ma, based on the age of deformed sediments obtained from past ocean drillings. The age of the base sediments corresponds to those of spreading and rotation after rifting in the PVB. Fault zone C is covered with thick and not deformed volcanogenic sediments from the IOA, which suggests that the fault is inactive.  相似文献   

13.
Thermal histories of Cretaceous sedimentary basins in the Korean peninsula have been assessed to understand the response of the East Asian continental margin to subduction of the Paleo‐Pacific (Izanagi) Plate. The Izanagi Plate subducted obliquely beneath the East Asian continent during the Early Cretaceous and orthogonally in the Late Cretaceous. First, the Jinan Basin, a pull‐apart basin, was studied by illite crystallinity and apatite fission‐track analyses. Analytical results indicate that Jinan Basin sediment was heated to a maximum temperature of approximately 287°C by burial. The sediment experienced two cooling episodes during ca 95–80 Ma and after ca 30 Ma, with a quiescent period between them. A similar cooling pattern is recognized in the Gyeongsang Basin, the largest Cretaceous basin in Korea. The Jinan and Gyeongsang Basins were cooled mainly by exhumation between ca 95 and 80 Ma, but the former was exhumed slightly earlier than the latter by transpressional force due to the subduction direction change of the Izanagi Plate. Comparison of thermal history of Korean Cretaceous basins with those of granitoids in northeastern China and the accretionary complexes in southwestern Japan reveals that the Upper Cretaceous regional exhumation of the East Asian continental margin including the Korean peninsula during ca 95–80 Ma was facilitated by the subduction of the Izanagi–Pacific ridge, which migrated northeastwards with time, resulting in the end of regional exhumation at ca 80 Ma in this region.  相似文献   

14.
This paper presents a review on the rock associations, geochemistry, and spatial distribution of Mesozoic-Paleogene igneous rocks in Northeast Asia. The record of magmatism is used to evaluate the spatial-temporal extent and influence of multiple tectonic regimes during the Mesozoic, as well as the onset and history of Paleo-Pacific slab subduction beneath Eurasian continent. Mesozoic-Paleogene magmatism at the continental margin of Northeast Asia can be subdivided into nine stages that took place in the Early-Middle Triassic, Late Triassic, Early Jurassic, Middle Jurassic, Late Jurassic, early Early Cretaceous, late Early Cretaceous, Late Cretaceous, and Paleogene, respectively. The Triassic magmatism is mainly composed of adakitic rocks, bimodal rocks, alkaline igneous rocks, and A-type granites and rhyolites that formed in syn-collisional to post-collisional extensional settings related to the final closure of the Paleo-Asian Ocean. However, Triassic calc-alkaline igneous rocks in the Erguna-Xing’an massifs were associated with the southward subduction of the Mongol-Okhotsk oceanic slab. A passive continental margin setting existed in Northeast Asia during the Triassic. Early Jurassic calc-alkaline igneous rocks have a geochemical affinity to arc-like magmatism, whereas coeval intracontinental magmatism is composed of bimodal igneous rocks and A-type granites. Spatial variations in the potassium contents of Early Jurassic igneous rocks from the continental margin to intracontinental region, together with the presence of an Early Jurassic accretionary complex, reveal that the onset of the Paleo- Pacific slab subduction beneath Eurasian continent occurred in the Early Jurassic. Middle Jurassic to early Early Cretaceous magmatism did not take place at the continental margin of Northeast Asia. This observation, combined with the occurrence of low-altitude biological assemblages and the age population of detrital zircons in an Early Cretaceous accretionary complex, indicates that a strike-slip tectonic regime existed between the continental margin and Paleo-Pacific slab during the Middle Jurassic to early Early Cretaceous. The widespread occurrence of late Early Cretaceous calc-alkaline igneous rocks, I-type granites, and adakitic rocks suggests low-angle subduction of the Paleo-Pacific slab beneath Eurasian continent at this time. The eastward narrowing of the distribution of igneous rocks from the Late Cretaceous to Paleogene, and the change from an intracontinental to continental margin setting, suggest the eastward movement of Eurasian continent and rollback of the Paleo- Pacific slab at this time.  相似文献   

15.
Tetsuya  Tokiwa 《Island Arc》2009,18(2):306-319
Paleomagnetic studies and hotspot track analyses show that the Kula Plate was subducted dextrally with respect to the Eurasian Plate from the Coniacian to Campanian. However, geological evidence for dextral subduction of the Kula Plate has not been reported from Southwest Japan. Studies of the Coniacian to lower Campanian Miyama Formation of the Shimanto Belt reveal that the mélange fabrics show a dextral sense of shear both at outcrop and microscopic scales. In addition, thrust systems at map-scale also show dextral shearing. Restored shear directions in the mélange indicate dextral oblique subduction of an oceanic plate. This indicates that the Kula Plate subducted dextrally along the eastern margin of Asia during the Coniacian to early Campanian. Combinations with other published kinematic and age constraints suggest that Southwest Japan experienced a change from sinistral to dextral and back to sinistral shear between 89–76 Ma. This history is compatible with global-scale plate reconstructions and places good constraints on the timing of plate boundary interaction with the Cretaceous East Asian margin.  相似文献   

16.
The opening of the Arctic Ocean during the past 55 Ma resulted in relative rotation of America with respect to Eurasia about a pole located in eastern Siberia, near the plate boundary. The extensional plate boundary enters deep inside the Eurasian continent up to the rotation pole. On the opposite side of the pole, on the Pacific side of the plate boundary, compressive tectonics are recorded along Sakhalin and Hokkaido. From the Oligocene to Middle Miocene, the relative movement was accommodated by strike-slip motion along Sakhalin and Hokkaido although the rotation pole was not located at a significatively different position from now. In this paper we explain this by independent motion of the southernmost tip of the American plate towards the Pacific margin which behaves as a free boundary. This oceanward motion resulted in an extension of the American plate giving rise to the wedge structure of the Okhotsk Sea. The Japan Sea opened as a pull-apart basin along the strike-slip boundary; finally the increasing extension in the Okhotsk Sea led to the opening of the oceanic Kuril Basin.  相似文献   

17.
Abstract   The development of voluminous granitic magmatism and widespread high-grade metamorphism in Mid-Cretaceous southwest Japan have been explained by the subduction of a spreading ridge (Kula–Pacific or Farallon–Izanagi plate boundaries) beneath the Eurasian continent and the formation of a slab window. In the present study, the thermal consequences of the formation of a slab window beneath a continental margin are evaluated through a 2-D numerical simulation. The model results are evaluated by comparison with the Mid-Cretaceous geology of southwest Japan. Of particular interest are the absence of an amphibolite- to granulite-facies metamorphic belt near the Wadati–Benioff plane, and significant melting of the lower crustal-mafic rocks sufficient to form a large amount of granitic magma. Because none of the model results simultaneously satisfied these two geological interpretations, it is suggested that subduction of plate boundaries in Mid-Cretaceous southwest Japan was not associated with the opening of a slab window. According to previous studies, and the results of the present study, two different tectonic scenarios could reasonably explain the geological interpretations for Mid-Cretaceous southwest Japan: (i) The spreading ridge did not subduct beneath the Eurasian continent, but was located off the continental margin, implying the continuous subduction of very young oceanic lithosphere; (ii) ridge subduction beneath the continental margin occurred after active spreading had ceased. Consequently, in both tectonic scenarios, the subduction of plate boundaries at the Mid-Cretaceous southwest Japan was not associated with a slab window, but very young (hot) oceanic lithosphere.  相似文献   

18.
南海北部东沙运动的构造特征及动力学机制探讨   总被引:9,自引:0,他引:9  
南海北部陆缘在南海扩张结束后发生了一次重要的构造运动—东沙运动.因前人对其研究较少,目前对其发生时间、影响范围和形成机制等都存在较大的争议.通过对东沙海区及其邻区新近纪地层二维、三维地震资料的详细解释,确定了东沙运动发生在晚中新世晚期,并在晚中新世末/早上新世初(5.5Ma)停止活动.东沙运动主要波及东沙隆起和潮汕坳陷地区,构造上主要表现为断块升降,其中隆起区沉积物遭受剥蚀,造成中新世及部分上新世地层的缺失.这次运动还形成了大量次级的NW-NWW向张性、张扭性断裂,构造运动整体上具有东强西弱的特点.东沙运动可能与新近纪以来菲律宾海板块持续向NWW方向运动导致的吕宋岛弧与欧亚大陆在9~6Ma期间开始发生的弧陆碰撞有关.同时,由于南海向马尼拉海沟下的俯冲及洋壳的冷却沉降作用,南海北部陆缘处于拉张环境,岩浆底侵到下地壳底部形成高速层,破坏了该区域的地壳均衡,从而造成上部地壳的隆升.  相似文献   

19.
利用中国大陆东部及台湾地区、日本和琉球群岛的地震观测数据,通过体波地震层析技术反演了中国东部海域及其邻近地区的P波速度结构.以此为依据分析了不同地区的岩石层性质和深部动力学条件,探讨了中朝与扬子块体、扬子与华夏块体在海区的深部边界及其构造属性,揭示出菲律宾海板块与欧亚大陆的碰撞以及板片俯冲下沉、弧后扩张作用对中国东部海域岩石层结构的影响.结果表明,中国东部海域的岩石层地幔存在明显的横向非均匀性,它们与区域构造的形成演化有一定的联系.中国大陆东部的五莲-青岛断裂与朝鲜半岛西缘断裂、济州岛南缘断裂共同构成中朝和扬子块体的边界,江绍断裂向东延伸至朝鲜半岛南端成为分隔扬子和华夏块体的边界;东海陆架与冲绳海槽的岩石层结构差异明显,东海陆架具有中国东部地区的岩石层特征,属于欧亚大陆向海域的延伸;冲绳海槽的岩石层强烈减薄,为大陆向大洋过渡的区域;沿着日本-琉球-台湾俯冲带,菲律宾海板块俯冲下沉引起的地幔扰动对中国东部海域产生了较大的影响,欧亚大陆与菲律宾海板块之间的相互碰撞导致台湾地区岩石层明显增厚.  相似文献   

20.
Xiaoming  Li  Guilun  Gong  Xiaoyong  Yang  Qiaosong  Zeng 《Island Arc》2010,19(1):120-133
The Yanji area, located at the border of China, Russia, and Korea, where the Phanerozoic granitoids have been widely exposed, was considered part of the orogenic collage between the North China Block in the south and the Jiamusi–Khanka Massifs in the northeast. In this study, the cooling and inferred uplift and denudation history since the late Mesozoic are intensively studied by carrying out apatite and zircon fission-track analyses, together with electron microprobe analyses (EMPA) of chemical compositions of apatite from the granitoid samples in the Yanji area. The results show that: (i) zircon and apatite fission-track ages range 91.7–99.6 Ma and 76.5–85.4 Ma, respectively; (ii) all apatite fission-track length distributions are unimodal and yield mean lengths of 12–13.2 µm, and the apatites are attributed to chlorine-bearing fluorapatite as revealed by EMPA results; and (iii) the thermal history modeling results based on apatite fission-track grain ages and length distributions indicate that the time–temperature paths display similar patterns and the cooling has been accelerated for each sample since ca 15 Ma. Thus, we conclude that sequential cooling, involving two rapid (95–80 Ma and ca 15–0 Ma) and one slow (80–15 Ma) cooling, has taken place through the exhumation of the Yanji area since the late Cretaceous. The maximum exhumation is more than 5 km under a steady-state geothermal gradient of 35°C/km. Combined with the tectonic setting, this exhumation is possibly related to the subduction of the Pacific Plate beneath the Eurasian Plate since the late Cretaceous.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号