首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Directionality of ground motions has been discussed in near-source groundmotion study. This is interesting from the point of structural response.Dominance of the fault normal (FN) component has been reported inrelation to fault rupture direction based on the observation recordsobtained in the source area (e.g.. Somerville et al., 1996). The authorsperformed the damage survey of the two Turkey earthquakes in 1999, theKocaeli and the Düzce earthquake, and realized that minaret is a goodtarget to investigate the ground motion directionality, because a minaret isa simple cantilever structure without structural directionality. This paperdescribes the ground motion directionality based on the survey of minaretdamages during the two earthquakes in Turkey. From the damage survey,it is found that the fault normal direction was dominant with a certaindistance from the fault, say, less than 1km. While, at the region withshorter distances, the damage direction was not fault normal but about40° from the fault strike. Discussion is addressed for the specificdamage direction inferred from the minaret damage near the fault.  相似文献   

2.
Minarets are very slender structures with an old existence. The historical ones are made of cut‐stone‐block masonry assembled in peripheral cylindrical wall with an interior helicoidal stair supported on a central core and on the wall. They are spread throughout the Islamic world and constitute an important heritage not only of religious value, but also of great cultural interest. Throughout the times, these structures as part of a mosque, have suffered significant damage during the earthquakes. Istanbul presents interesting characteristics to evaluate their dynamic behavior, as they are in great number, in an area where a large event in the next 30 years has been predicted. In this paper, we performed a series of in situ ambient vibration tests to old minarets of various sizes and compared results of frequencies with numerical modeling of the same structures. For the low‐amplitude motion, the frequency values of the first modes can be obtained from an empirical formulae function of the inertia of the cross‐section and of the height of the main ‘body.’ Damping ratios for these amplitudes are of the order of 0.5–1.0%. Dynamic linear analyses of these structures indicate that for most cases very high stresses develop for PGA above 0.5 g, an input with a reasonable chance of occurring in the next 30 years. These high stresses are expected to cause the toppling of the minarets in the form that has been observed in the recent past events. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
雷江 《地震工程学报》2018,40(3):432-437
传统低层建筑砌体结构动力特性分析中,易受到外界环境的干扰,砌体结构的完整性欠缺,导致动力特性分析的准确度较低。为提高低层建筑砌体结构的抗震性能,提出地震作用下低层建筑砌体结构的动力特性分析方法。首先利用低层建筑砌体结构反应自功率谱,完成砌体结构的自振频率辨认;然后通过941B型超低频率测振仪测试自振频率,筛出振动波形中噪声干扰的区域,获取时域波形和频域波形;最后依据时域波形和频域波形塑造低层建筑砌体三维精细化模型,在该模型基础上,通过子空间迭代算法获取低层建筑砌体结构的模拟结果,分析地震作用下芯柱、圈梁等构造措施对建筑砌体结构动力特征的影响,完成砌体结构的动力特性分析。实验结果表明,利用所提方法对地震作用下低层建筑砌体结构的动力特性进行分析,得到的分析结果准确度较高。  相似文献   

4.
Seismic assessment of existing unreinforced masonry buildings represents a current challenge in structural engineering. Many historical masonry buildings in earthquake regions were not designed to withstand seismic loading; thus, these structures often do not meet the basic safety requirements recommended by current seismic codes and need to be strengthened considering the results from realistic structural analysis. This paper presents an efficient modelling strategy for representing the nonlinear response of unreinforced masonry components under in‐plane cyclic loading, which can be used for practical and accurate seismic assessment of masonry buildings. According to the proposed strategy, generic masonry perforated walls are modelled using an equivalent frame approach, where each masonry component is described utilising multi‐spring nonlinear elements connected by rigid links. When modelling piers and spandrels, nonlinear springs are placed at the two ends of the masonry element for describing the flexural behaviour and in the middle for representing the response in shear. Specific hysteretic rules allowing for degradation of stiffness and strength are then used for modelling the member response under cyclic loading. The accuracy and the significant potential of the proposed modelling approach are shown in several numerical examples, including comparisons against experimental results and the nonlinear dynamic analysis of a building structure. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
砌体结构是一种脆性结构,变形能力和承载力均较低,因取材方便、施工简单和造价低等优势在中国被广泛应用。为了评估砌体结构的抗震性能,本文基于增量动力分析(Incremental Dynamic Analysis,IDA)方法研究了多层砌体结构的地震易损性,分析了影响砌体结构地震易损性的主要因素以及群体多层砌体结构地震易损性。研究结果表明:在相同场地条件情况下,砌体结构的房屋层数、砌筑砂浆强度、设防烈度和墙体面积率对结构的地震易损性影响较明显;当结构层高在2.8~3.3 m之间时,层高对结构地震易损性的影响不大。抗震设防砌体结构抗震能力比不设防结构有明显提高,说明构造柱和圈梁等构造措施能显著提高砌体结构的抗倒塌能力,这与目前的基本认识相同,也证明了增量动力分析方法的有效性。  相似文献   

6.
On 31 October and 1 November 2002, two earthquakes took place in the Italian region of Molise. 29 deaths were reported, while many buildings collapsed or suffered major damage. The tectonics of the earthquakes and historic seismicity of the area are briefly described. The distribution of damage and macroseismic intensity are confronted with the current seismic zonation of the region. In particular, the paper deals with the damage suffered by different types of structures, namely masonry and RC buildings and historical churches. The observed damage is mainly attributed to the poor quality of the materials and execution of construction, lack of maintenance and protective devices (e.g., steel ties), as well as to structural interventions. Reference is made to the management of the post-earthquake emergency. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
The October 23, 2011 M7.2 Tabanli- Van and November 9, 2011 M5.2 Edremit – Van earthquakes caused damage in a widespread area across the Van province in Turkey. The ground motions, the damage caused by these earthquakes and the recent progress related to recovery efforts are presented herein. First, the key properties of the recorded strong ground motions like spectral amplitudes and directionality are evaluated. The observed damage in the affected reinforced concrete and masonry structures are discussed. The set of common structural damage mechanisms(i.e., soft story failure, torsional response due to plan irregularity, short column failure, pull out failure, pounding) observed in the damaged buildings were identified. The relationship between the key structural properties and the extent of damage is investigated. The primary loss drivers across the region were identified to be the poor quality of workmanship and improper use of building materials. The results from the investigation suggest that a large portion of the loss could have been prevented if sufficient attention and care were given to the implementation of the design regulations and in particular to the construction practice. Lastly, the recent progress in the ongoing rebuilding activities is presented.  相似文献   

8.
Many surviving ancient monuments are freestanding stone masonry structures, which appear to be vulnerable to horizontal dynamic loads such as earthquakes. However, such structures have stood for thousands of years despite numerous historic earthquakes. This study proposes a scaled-down dynamic centrifuge modelling test to study how these masonry structures resist seismic loading. The test is proposed for seismic risk assessments to evaluate risk of damage from a future seismic event. The seismic behaviour of a 3-storey, freestanding stone block structure has been modelled and tested within a centrifuge. Models were made at 3 different scales and dynamic tests were conducted using different centrifugal acceleration fields so that the behaviours could be transformed to an equivalent full-scale prototype and compared. Data from 2 earthquakes and a sweeping signal were used to simulate the effects of earthquake ground motion within the centrifuge. The acceleration and frequency responses at each storey height of the model were recorded in different centrifugal acceleration fields. Similar behaviours appeared when the results of the small-scale models were transformed to a full-size prototype scale. This confirms that the seismic behaviour of stone masonry structures can be predicted using scaled-down models.  相似文献   

9.
An effective medium approach is applied to elasto-plastic masonry to facilitate numerical modeling of the fourteen century old Hagia Sophia in Istanbul, Turkey. The analysis is treated in two distinct stages: quasi-static to account for the deformations incurred by the structure under gravitational loading during its construction phase, and dynamic to account for the response to numerous seismic excitations. Both historical and physical evidence suggest that the mortars employed throughout the Hagia Sophia were highly compliant on the construction time scale; recent chemical analysis of the mortars appears to confirm that they may not have had time to fully cure before the structure's construction was completed. The resulting highly compliant initial behavior of the masonries is modeled within an effective medium elasto-plasticity framework which is demonstrated here as capable of matching the existing magnitude and pattern of deformations in the structure. With the eventual curing of the mortar, the properties of the masonries throughout the structure became significantly stronger; this is taken into account in modeling the seismic response of the structure to a number of earthquake excitations. Specifically, a hardening elastoplastic behavior with increased strength is used to explore the initiation of partial failure mechanisms in the structure under strong seismic loading.  相似文献   

10.
The results of shaking table tests of a series of 1:5 scale masonry building models have been used for the assessment of values of structural behavior factor q for masonry structures, seismic force reduction factors proposed for the calculation of design seismic loads by Eurocode 8, European standard for the design of structures for earthquake resistance. Six models have been tested, representing prototype buildings of two different structural configurations and built with two different types of masonry materials. The study indicated that the reduction of seismic forces for the design depends not only on the type of masonry construction system, but also on structural configuration and mechanical characteristics of masonry materials. It has been also shown that besides displacement and energy dissipation capacity, damage limitation requirement should be taken into account when evaluating the values of behavior factor. On the basis of analysis of experimental results a conclusion can be made, that the values at the upper limit of the proposed range of values of structural behavior factor q for unreinforced and confined masonry construction systems are adequate, if pushover methods are used and the calculated global ductility of the structure is compared with the displacement demand. In the case where elastic analysis methods are used and significant overstrength is expected, the proposed values are conservative. However, additional research and parametric studies are needed to propose the modifications.  相似文献   

11.
为探讨村镇建筑低层砌体结构在大震下的动力响应及损伤分布情况,基于农居结构性能实地调查与检测,在有限元软件ABAQUS中建立了不同抗震构造措施的砌体结构有限元模型,并进行结构动力特性及大震下弹塑性时程的分析,对比它们的自振特性参数、位移响应参数及损伤破坏形态。分析表明,低层砌体结构合理设置构造柱后结构自振周期略有减小,但振型不变;在弹性变形阶段构造柱能有效约束结构的动力位移响应,进入塑性变形后构造柱可提高砌体结构的耗能能力,但值得注意的是,结构刚度退化后构造柱会加剧纵横向抗侧刚度的不均衡性;低层砌体结构合理设置圈梁构造柱可有效抑制承重横墙的裂缝发展及楼屋盖发生支座失效破坏,且可以明显削弱结构的扭转效应。  相似文献   

12.
近场地震下竖向刚度不同的混合结构动力性能分析   总被引:1,自引:0,他引:1       下载免费PDF全文
近场地震的动力特性明显不同于远场地震,因此有必要对结构在近场地震作用下的动力性能展开研究。以上部钢结构-下部混凝土结构这类竖向刚度不同的加层混合结构为研究对象,对其在近场脉冲型地震、近场无脉冲型地震及远场地震作用下的动力响应进行研究。结果表明:在多遇、设防、罕遇地震作用下,近场脉冲型地震会使结构的层间位移角、层间剪力、加速度等动力响应均放大并出现超限的情况,而且都比罕遇地震作用下结构的响应增大更明显;在进行近场区加层混合框架结构的设计和建设时,近场脉冲效应会使结构存在不满足规范的情况,有必要对竖向刚度不同的加层混合结构在近场区的适用性进行深入研究。  相似文献   

13.
This paper proposes energy input spectra applicable to seismic design of structures located in low‐to‐moderate‐seismicity regions. These spectra represent the load effect, in terms of input energy, of the most severe earthquake that the construction might encounter during its lifetime. The spectra have been derived through dynamic response analyses of over 100 ground motion records obtained from 48 earthquakes that have occurred in Spain. An empirical equation for estimating the energy input contributable to damage from the total input energy is also suggested. This equation takes into account both the damping and the degree of plastification of the structure. Finally, the proposed design energy input spectra are compared with the provisions of the current Spanish Seismic Code and with the response spectra of recent earthquakes that have occurred in Turkey and Taiwan. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

14.
This paper presents a detailed study on feasibility of un‐bonded fiber reinforced elastomeric isolator (U‐FREI) as an alternative to steel reinforced elastomeric isolator (SREI) for seismic isolation of un‐reinforced masonry buildings. Un‐reinforced masonry buildings are inherently vulnerable under seismic excitation, and U‐FREIs are used for seismic isolation of such buildings in the present study. Shake table testing of a base isolated two storey un‐reinforced masonry building model subjected to four prescribed input excitations is carried out to ascertain its effectiveness in controlling seismic response. To compare the performance of U‐FREI, same building is placed directly on the shake table without isolator, and fixed base (FB) condition is simulated by restraining the base of the building with the shake table. Dynamic response characteristic of base isolated (BI) masonry building subjected to different intensities of input earthquakes is compared with the response of the same building without base isolation system. Acceleration response amplification and peak response values of test model with and without base isolation system are compared for different intensities of table acceleration. Distribution of shear forces and moment along the height of the structure and response time histories indicates significant reduction of dynamic responses of the structure with U‐FREI system. This study clearly demonstrates the improved seismic performance of un‐reinforced masonry building model supported on U‐FREIs under the action of considered ground motions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
砌体结构的震害现象表明楼层侧向刚度不均匀分布是造成其破坏的重要原因之一。本文开展楼层侧向刚度变化对结构易损性的影响分析。以3层和6层砌体结构为例,采用等效多自由度层间剪切模型,基于非线性动力时程分析,定量研究了竖向刚度不规则性对砌体结构易损性的影响。以结构最大层间位移角为地震反应参数,借助增量动力分析及回归拟合方法,建立了基于峰值加速度的结构易损性曲线。通过改变楼层的侧向刚度值来模拟薄弱层,研究了楼层刚度变化对结构不同破坏状态超越概率的影响。通过改变底层与二层的侧向刚度比,分析了底部刚度突变对结构不同破坏状态超越概率分布的影响。研究表明:与规则结构相比,当刚度突变位于结构底层时,在地震作用下结构易损性相对较高;随着底层与二层的侧向刚度比从0.5增大至1.2,结构易损性逐渐降低。当刚度比为1.5时,结构薄弱层由底层转移至二层,结构整体易损性增加;当底层与二层侧向刚度比小于1时,结构倒塌易损性要显著高于规则结构。  相似文献   

16.
The seismic response of the Mexico City Cathedral built of very soft soil deposits is evaluated by using motions recorded in various parts of the structure during several moderate earthquakes. This unique set of records provides significant insight into the seismic response of this and other similar historic stone masonry structures. Free‐field ground motions are carefully compared in time and frequency domains with motions recorded at building basement. The dynamic characteristics of the structure are inferred from the earthquake records by using system identification techniques. Variation of seismic response for different seismic intensities is discussed. It is shown that, due to the soil–structure interaction, due to large differences between dominant frequencies of earthquake ground motions at the site and modal frequencies of vibration of the structure, and due to a particularly high viscous damping, seismic amplifications of ground motion in this and similar historic buildings erected on soft soil deposits are much smaller than that induced in most modern constructions. Nevertheless, earthquake records and analytical results show that several components of the structure such as its central dome and the bell towers may be subjected to local vibrations that significantly amplify ground motions. Overall, results indicate that in its present state the structure has an acceptable level of seismic safety. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
Nepal is located in a highly active tectonic region of the Himalayan belt, one of the most severe earthquake prone areas of the world. Nepal is lying between the Indian and the Eurasian plate, which are moving continuously, resulting in frequent devastating earthquakes. Moreover, different authors state that the accumulated slip deficit (central seismic gap) is likely to produce large earthquakes in the future. Cultural heritage buildings and monuments are, therefore, at risk, and the eventual cultural loss in the consequence of an earthquake is incalculable. Post-seismic surveys of past earthquakes have shown the potential damage that unreinforced masonry structures, particularly Pagoda temples, may suffer in future earthquakes. Most of the Nepalese Pagoda temples, erected during XIV century, are considered non-engineered constructions that follow very simple rules and construction detailing in respect to seismic resistance requirements and, in some cases, without any concern for seismic action. Presently, conservation and restoration of Nepalese temples is one of the major concerns, since they are considered world heritage with universal value. The present paper is devoted to outline particular building characteristics of the UNESCO classified Nepalese Pagoda temples and the common structural fragilities, which may affect their seismic performance. Moreover, based on a parametric sensitivity analysis, structural weaknesses and fragilities of Pagoda temples were identified associated to the local and traditional construction techniques, detailing and common damages.  相似文献   

18.
This paper describes shaking table tests of three eight-story building models: all are masonry structures in the upper stories, with or without frame-shear walls of one- or two- stories at the bottom. The test results of damage characteristics and seismic responses are provided and compared. Then, nonlinear response analyses are conducted to examine the reliability of the dynamic analysis. Finally, many nonlinear response analyses are performed and it is concluded that for relatively hard sites under a certain lateral stiffness ratio (I.e., the ratio of the stiffness of the lowest upper masonry story to that of the frame-shear wall story), the masonry structure with one-story frame-shear wall at the bottom performs better than a structure built entirely of masonry, and a masonry structure with frame-shear wall of two stories performs better than with one-story frame-shear wall. In relatively soft soil conditions, all three structures have similar performane. In addition, some suggestions that could be helpful for design ofmasomy structures with ground story of frame-shear wall structure in seismic intensity region VII, such as the appropriate lateral stiffness ratio, shear force increase factor of the frame-shear wall story, and permissible maximum height of the building, are proposed.  相似文献   

19.
The collapse of stone masonry is one of the greatest causes of death in major earthquake events around the world. This paper investigates a recently developed retrofitting technology specifically aimed at preventing or prolonging the collapse of stone masonry buildings under strong earthquakes. This technology uses common polypropylene packaging straps to form a mesh, which is then used to prevent or prolong collapse. This paper examines the findings from static and dynamic testing of the proposed retrofit. It is shown that the proposed technique effectively prevents brittle masonry collapse and the loss of debris.  相似文献   

20.
祝叶  罗凡 《地震工程学报》2018,40(5):976-982
当前地震记录法检测中强震下砌体结构损伤时,基于已知砌体结构地震动记录实施损伤检测存在较高的局限性。提出新的中强震下砌体结构损伤检测方法,利用DASP动态测试分析仪和891型的压电式位移传感器,检测拟静力试验后的砌体结构模型,采用参数互补校正方法得到受损砌体结构的自振频率和振型检测,通过有限元分析获取砌体结构位移,依据频率和位移采用信号匹配方法检测砌体结构损伤情况,根据墙体刚度变化检测中强震下砌体结构的损伤程度。实验证明所提方法可对中强震下砌体结构损伤情况进行准确检测。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号