首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The collapse of wood buildings was one of the main contributors to the heavy death toll and economic losses during the 1995 Hyogo‐ken Nanbu (Kobe) earthquake in Japan. In California, half of the property loss from the 1994 Northridge earthquake was attributed to wood construction. Based on damage observed in recent earthquakes, the seismic vulnerability of existing wood buildings under maximum credible seismic events is uncertain. The main objective of this study is to quantify the seismic collapse fragilities and collapse mechanisms of a two‐story townhouse and three‐story woodframe apartment building through numerical analyses. Three construction quality variants (poor, typical and superior) were considered for each building in order to assess the effects of construction qualities on seismic collapse fragilities. The buildings were also re‐designed according to the 2006 edition of the International Building Code to quantify the seismic fragilities of modern woodframe construction. The results obtained suggest that the construction quality, excitation direction and wall finish materials can influence significantly the collapse fragilities of woodframe buildings. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
2015年尼泊尔遭受了4次7级以上大地震灾害,对我国西藏局部地区产生了重大影响。由于我国樟木镇是中尼两国的重要通商口岸,在此区域建造了大量尼泊尔式自建RC框架结构。通过对这些自建框架结构的震害调查,结合其独特的建造方式和结构特点,分析其抗震受灾能力,研究在地震作用下该类框架结构的地震破坏规律和致灾机理。研究结果表明:该类自建框架结构的构件承载能力利用率高,经济效益好,但安全储备小;地震破坏模式主要以框架柱失效和填充墙开裂为主;房屋建造层数对其地震致灾影响较大,该类房屋宜为1~7层;该类建筑结构抗震性能优越,适合在我国低烈度地区推广应用。研究成果对指导我国乡镇自建房屋的抗震规划及建设具有重要意义。  相似文献   

3.
A comparative study of selected bridge damage due to the Wenchuan, Northridge, Loma Prieta and San Fernando earthquakes is described in this paper. Typical ground motion effects considered include large ground fault displacement, liquefaction, landslide, and strong ground shaking. Issues related to falling spans, inadequate detailing for structural ductility and complex bridge configurations are discussed within the context of the recent seismic design codes of China and the US. A significant lesson learned from the Great Wenchuan earthquake, far beyond the opportunities to improve the seismic design provisions for bridges, is articulated.  相似文献   

4.
The Indian subcontinent has suffered some of the greatest earthquakes in the world. The earthquakes of the late nineteenth and early twentieth centuries triggered a number of early advances in science and engineering related to earthquakes that are discussed here. These include the development of early codes and earthquake-resistant housing after the 1935 Quetta earthquake in Baluchistan, and strengthening techniques implemented after the 1941 Andaman Islands earthquake, discovered by the author in remote islands of India. Activities in the late 1950s to institutionalize earthquake engineering in the country are also discussed. Despite these early developments towards seismic safety, moderate earthquakes in India continue to cause thousands of deaths, indicating the poor seismic resilience of the built environment. The Bhuj earthquake of 2001 highlighted a striking disregard for structural design principles and quality of construction. This earthquake was the first instance of an earthquake causing collapses of modern multi-storey buildings in India, and it triggered unprecedented awareness amongst professionals, academics and the general public. The earthquake led to the further development of the National Information Centre of Earthquake Engineering and the establishment of a comprehensive 4-year National Programme on Earthquake Engineering Education that was carried out by the seven Indian Institutes of Technology and the Indian Institute of Science. Earthquake engineering is a highly context-specific discipline and there are many engineering problems where appropriate solutions need to be found locally. Confined masonry construction is one such building typology that the author has been championing for the subcontinent. Development of the student hostels and staff and faculty housing on the new 400-acre campus of the Indian Institute of Technology Gandhinagar has provided an opportunity to adopt this construction typology on a large scale, and is addressed in the monograph. The vulnerability of the building stock in India is also evident from the occasional news reports of collapses of buildings under construction or during rains (without any earthquake shaking). Given India’s aspirations to be counted as one of the world’s prosperous countries, there is a great urgency to address the safety of our built environment. There is a need: to create a more professional environment for safe construction, including a system for code enforcement and building inspection; for competence-based licensing of civil and structural engineers; for training and education of all stakeholders in the construction chain; to build a research and development culture for seismic safety; to encourage champions of seismic safety; to effectively use windows of opportunity provided by damaging earthquakes; to focus on new construction as opposed to retrofitting existing buildings; and to frame the problem in the broader context of overall building safety rather than the specific context of earthquakes. Sustained long-term efforts are required to address this multi-faceted complex problem of great importance to the future development of India. While the context of this paper is India, many of the observations may be valid and useful for other earthquake-prone countries.  相似文献   

5.
李文俊    曲哲    孙海林  熊政辉   《世界地震工程》2021,(4):109-121
房屋建筑的地震易损性是地震损失评估和地震巨灾风险模型的基础。作为房屋建筑的重要组成部分,各类非结构构件的损失在现有的易损性模型中并未得到足够重视。本文以一栋典型钢筋混凝土框架结构教学楼为对象,通过将房屋建筑中的各类构件划分为具有不同地震损伤特性和损失后果的易损性组,考察建筑内的损失分布和非结构损失对房屋建筑地震易损性的影响。分析结果表明:由于许多非结构构件在中小地震作用下即可能发生较严重的破坏,房屋建筑在中小地震下的易损性主要受非结构损失控制;随着地震动强度等级的不断提高,结构损伤渐趋严重,结构损失对整体建筑易损性的影响不断增大;在结构进入震后不可修状态之前,建筑不同楼层的损失分布是评估建筑地震损失时不可忽略的因素。  相似文献   

6.
丽江古城是国家级历史名城,1997年被联合国教科文组织列为世界文化遗产,丽江地区的经济建设得到快速发展,经济实力大大增强。地震已成为丽江地区经济和社会发展的重要制约因素之一。把防震减灾工作纳入各级政府经济建设和社会发展的长远规划,可以促进丽江地区经济和社会各项事业的健康、持续、快速发展。  相似文献   

7.
Seismic fragilities of buildings are often developed without consideration of soil-structure interaction (SSI), where base of the building is assumed to be fixed. This study highlights effect of SSI and uncertainty in soil properties such as friction angle, cohesion, density, shear modulus and Poisson's ratio and foundation parameters on seismic fragilities of non-ductile reinforced concrete frames resting in dense silty sand. Three-, five-, and nine-storey three-bay moment resisting reinforced concrete frames resting on isolated shallow foundation are studied and the numerical models for SSI are developed in OpenSees. Three sets of 10 ground motions, with mean spectrum of 100, 500, and 1000 yr return period hazard level (matching EC-8 design spectrum), are used for the nonlinear time history analyses. An optimized Latin Hyper Cube sampling technique is used to draw the sample of soil properties and foundation parameters. The fragilities are developed for the fixed base model and SSI models. However, the fragilities that incorporate the soil parameter and foundation uncertainties are only slightly different from those based solely on the uncertainty in seismic demand from earthquake ground motion, suggesting that fragilities that are developed under the assumption that all soil and foundation parameters at their median (or mean) values are sufficient for the purpose of earthquake damage or loose estimation of structures resting on dense silty sand. But the consideration of the SSI effect has the significant influence on the fragilities compare to the fixed base model. The structural parameter uncertainty and foundation modeling uncertainty are not considered in the study.  相似文献   

8.
School buildings have been classified by many of the design codes as important buildings, which have to withstand the earthquake excitations without any or with minor structural damages, and special care has to be given in their design and construction phases. This paper mainly aims to investigate the seismic performance of reinforced-concrete (RC) school buildings after 2011 Van earthquakes. The seismic performances of two damaged RC school buildings located in the earthquake-affected region are studied. First, the capacities of the selected buildings are assessed using nonlinear static procedures, and then, nonlinear dynamic time history analyses are performed to evaluate the seismic performances of the selected RC school buildings. Reasons for the observed damages are discussed. Further, recommendations are provided from the viewpoint of enhancing the structural capacity of the heavily damaged school building. As a result, to get an idea about the ductility demands imposed on the buildings, spectral acceleration values are compared with the seismic coefficients of the code that the buildings were adapted to. It can be concluded that the construction quality and detailing of the reinforcement are the key issues affecting the seismic performance of RC school buildings.  相似文献   

9.
Unreinforced masonry (URM) infill panels are widely used as partitions in RC frames and typically considered as non‐structural elements in the design process. However, observations from recent major earthquakes have shown that under seismic excitation, the structural interaction between columns and infill walls can significantly alter the structural behaviour, thus causing catastrophic consequences. The purpose of this research was to propose and test an innovative low seismic damage detailing method, which isolates the infill panel from bounding columns with finite width vertical gaps during the infill panel construction phase and deploys steel wire connections in mortar layers anchored to columns. Taking into account the similitude requirements, a total of six one‐third scale, single‐storey single‐bay RC frames with different infill configurations and flexible connection details were carefully designed and tested on a shake‐table. Three real earthquake records were selected and scaled to ascending intensity levels and used as input signals. A series of thorough investigations including dynamic characteristics, hysteretic behaviour, failure mechanisms, out‐of‐plane vulnerabilities and the effect of different gap filling materials and load transfer mechanisms were rigorously studied. The experimental results indicate that the undesirable interaction between infill panels and bounding frame is significantly reduced using the proposed low seismic damage detailing concept. Direct shear failure of columns at an early stage is prevented, and structural redundancy at high levels of excitation can be provided. In general, the structural stability and integrity, and displacement ductility of infilled RC frames can remarkably be improved. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

10.
焦远碧 《内陆地震》1993,7(2):106-113
对地震活动性进行层次结构分析可划分出不同的地震区带,中国大陆的地震活动可分为9个地震区带,分析各个区带的地震活动性可作出某一活跃期强震发生主体地区的判别,对某一个地震区带的地震活动进行层次结构分析可作出地震危险区预测。用震源面投影图代替点投影的震中分布图可更合理地解释一个构造带上强震的发生过程,更清楚地勾画出未来强震的孕震范围。对强震破裂区闭锁段、背景空区、孕震空区的关系用实测震例进行了解释。  相似文献   

11.
2017年称多震群为青海省称多县第一次记录到的ML3.0以下小震群活动,发生在唐古拉地震带MS5.0地震平静被打破且ML4.0以上地震活跃的背景下.为研究2017年称多震群对青海及邻区后续震情的影响,对该震群的活动特征、震群参数、震源机制、视应力等进行了计算和分析.结果主要表明:该震群为前兆震群,震群中地震以走滑为主....  相似文献   

12.
The frame-core tube-outrigger structural system is widely used in tall buildings, in which outriggers coordinate the deformation between the core tube and the moment frame, leading to a larger structural lateral stiffness. Existing studies indicate that outriggers can be designed as “fuses” of tall buildings through dissipating seismic energy after yielding, to protect the main structure. To date, both conventional and buckling-restrained brace (BRB) outriggers have been applied in practice. Subjected to the maximum considered earthquake (MCE), the hardening effect of BRB outriggers increases the damage of other structural components. Meanwhile, conventional outriggers are difficult to repair, owing to the local buckling-induced severe deterioration and damage. To overcome these problems, this study proposes a novel sacrificial-energy dissipation outrigger (SEDO) to improve the seismic resilience of tall buildings. The chords of SEDO are made of high-strength steel and remain elastic. The inclined braces of the SEDO are composed of a sacrificial part and an energy-dissipating part. Therefore, the SEDO remains elastic under design-based earthquakes (DBEs) and dissipates inelastic energy under MCEs. Moreover, the detailing of this novel SEDO is proposed on the basis of experimental studies. The optimal strength ratio between the sacrificial part and the energy-dissipating part is determined in the range of 6:4 to 4:6 on the basis of nonlinear time history analyses (THAs) and parametric studies. Afterwards, the SEDOs are used in an actual tall building to verify their seismic performances through nonlinear THAs. The results indicate the proposed SEDO is able to protect other structural components and effectively improve the seismic resilience of tall buildings.  相似文献   

13.
唐山地震桥梁震害回顾   总被引:3,自引:0,他引:3  
对唐山桥梁震害加以回顾分析,并参照国内外地震有关桥梁的震害规律,为今后灾区破坏桥梁的修复和重建工作提供一些参考。  相似文献   

14.
Lessons learned from Wenchuan earthquake for seismic safety of large dams   总被引:1,自引:1,他引:0  
This paper describes some special features of the Wenchuan earthquake that affected dam safety. Damage and performance of dams, primarily for four dams over 100 m high located in the affected earthquake area, are briefly described. Lessons learned related to dam safety from this devastating earthquake are preliminarily drawn. As the seismic safety of high dams during strong earthquakes has gained more attention around the world, some critical issues related to dam construction in China are considered and extensively discussed. Questions such as “Why is dam construction necessary in earthquake prone countries such as China?”, “Can we accurately evaluate the seismic safety of high dams in China?”, “Did reservoir impounding of the Zipingpu and Three Gorges Projects trigger the Wenchuan Earthquake in some way?” and “What is the strategic priority of dam safety for large dams in China?” are discussed. Finally, the corresponding tactics with response to the challenge are suggested and recent preliminary progress mainly achieved in IWHR is briefly introduced.  相似文献   

15.
第16届世界地震工程大会有关报告研究进展综述   总被引:3,自引:2,他引:1       下载免费PDF全文
第16届世界地震工程大会于2017年1月9—13日在智利圣地亚哥市召开。大会主题为:"快速恢复—地震工程新挑战"。经中国地震局批准,在国际合作司的大力支持和指导下,自己有幸赴智利圣地亚哥市参加了第16届世界地震工程大会。本论文对会议概况做了简介,对其中3个大会特邀报告、2场辩论会和12个专题分会报告内容进行了综述,并与读者分享了我个人的体会和思考。论文综述涉及的3个大会特邀报告题目分别为"快速恢复:地震工程的下一个挑战"、"钢筋混凝土建筑物抗震设计中对快速恢复的探索——智利的实践"和"长持时地震动对土液化灾害的作用";2场辩论会主题分别为"性态设计:是承诺还是陷阱?"和"抗震设防要求规定:概率性与确定性";12个专题分会主题包括:结构倒塌概率的评估,改善发展中国家住房地震安全的非技术战略,近期破坏性地震(包括2015年尼泊尔地震)的现场调查与分析,深基础的土-结构相互作用,地面破坏与液化,地震引起的天然斜坡滑坡,岩土室内试验和现场试验,城市层面的地震危害性、危险性与地震风险管理,快速恢复,地震风险经济与保险,城市的未来:今天规划明天的地震风险,管理政策等。  相似文献   

16.
Performance of masonry buildings during the Emilia 2012 earthquake   总被引:2,自引:2,他引:0  
The earthquake sequence started on May \(20\) th 2012 in Emilia (Italy) affected a region where masonry constructions represent a large part of the existing building stock and the construction of new modern masonry buildings is a common practice. The paper is focused on the performance of common architectural configurations, typical for residential or business use. The large majority of old masonry buildings is made of fired clay bricks. The seismic performance of these buildings is particularly interesting since major past earthquakes in Italy affected areas with mainly stone masonry structures. Apart from examples showing systematic or peculiar structural deficiencies governing the vulnerability of several buildings, the overall seismic performance of these structures to repeated shaking, with PGA as large as 0.25–0.3 g was rather good, despite the major part of them were only conceived for carrying vertical loads. In fact, seismic design is mandatory in the area only since 2003. Modern low-rise masonry buildings erected after this date and incorporating seismic design and proper detailing resulted in most cases practically undamaged. The examples reported in the paper allow an evaluation of the superior performance of seismically designed modern masonry buildings in comparison to older ones.  相似文献   

17.
岷山断块位于中国南北强震构造带的中段, 区域地质构造复杂, 活动断裂众多, 强震频发。 4条不同走向的活动断裂NE向龙门山构造带的茂汶断裂、 NWW向东昆仑断裂带的塔藏断裂、 近NS向的岷江断裂和NNW—NS向的虎牙断裂构成岷山断块的南北西东边界。 638—2017年该区域共发生了10次6级以上破坏性地震, 2017年九寨沟7.0级地震就是其中之一。 结合区域构造背景, 对岷山断块所发生的6级以上地震的发震构造特征、 地震活动特性进行归纳总结, 综合分析该区域地震地质特征及地震危险性, 得出以下认识: ① 地震分布空间分区特征显著, 破坏性强震发震构造多为活动性较强的岷山断块东西边界断裂, 震中位置多位于两组或多组活动断裂构造的交会或穿切部位; ② 地震分布时间特征表现为随着时间发展具有迁移回返和原地复发性等特点; ③ 岷山断块东西边界断裂破坏性地震的发生具有一定的时间关联性, 东边界虎牙断裂1973—2017年的地震序列为西边界岷江断裂1933—1960年地震序列约40年后的地震构造响应; ④ 未来岷山断块仍应是继续关注的强震潜在危险区, 岷江断裂中北段的强震潜在危险区是近期值得深入研究的地区之一。  相似文献   

18.
Himalayan region is one of the most active seismic regions in the world and many researchers have highlighted the possibility of great seismic event in the near future due to seismic gap. Seismic hazard analysis and microzonation of highly populated places in the region are mandatory in a regional scale. Region specific Ground Motion Predictive Equation (GMPE) is an important input in the seismic hazard analysis for macro- and micro-zonation studies. Few GMPEs developed in India are based on the recorded data and are applicable for a particular range of magnitudes and distances. This paper focuses on the development of a new GMPE for the Himalayan region considering both the recorded and simulated earthquakes of moment magnitude 5.3–8.7. The Finite Fault simulation model has been used for the ground motion simulation considering region specific seismotectonic parameters from the past earthquakes and source models. Simulated acceleration time histories and response spectra are compared with available records. In the absence of a large number of recorded data, simulations have been performed at unavailable locations by adopting Apparent Stations concept. Earthquakes recorded up to 2007 have been used for the development of new GMPE and earthquakes records after 2007 are used to validate new GMPE. Proposed GMPE matched very well with recorded data and also with other highly ranked GMPEs developed elsewhere and applicable for the region. Comparison of response spectra also have shown good agreement with recorded earthquake data. Quantitative analysis of residuals for the proposed GMPE and region specific GMPEs to predict Nepal–India 2011 earthquake of Mw of 5.7 records values shows that the proposed GMPE predicts Peak ground acceleration and spectral acceleration for entire distance and period range with lower percent residual when compared to exiting region specific GMPEs.  相似文献   

19.
青海强震等间距特征研究及未来强震趋势预测   总被引:5,自引:0,他引:5  
利用塑性力学和地震力学以及前人的研究结果,提出了一种新的地震等间距特征机理的解释方法,认为地夺等间距特征的成因是中、下地壳的滑移网同上部地壳的相互作用。其动力源为环太平洋地震带和欧亚地震带的联合作用。利用青海强震分布的等间跨特征对未来可能发生强震的地点进行趋势预测。  相似文献   

20.
历史地震损失重建是地震损失预测的一种方法,也是用于区域地震风险分析模型验证的一种手段。在介绍了历史地震损失重建一般方法的基础上,对方法中等效全损住宅比例估计方法以及住宅结构地震易损性指数的估计方法进行了重点分析,给出了这两个关键参数的可选择的多种估计方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号