首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Inter‐basin differences in streamflow response to changes in regional hydroclimatology may reflect variations in storage characteristics that control the retention and release of water inputs. These aspects of storage could mediate a basin's sensitivity to climate change. The hypothesis that temporal trends in stream baseflow exhibit a more muted reaction to changes in precipitation and evapotranspiration for basins with greater storage was tested on the Oak Ridges Moraine (ORM) in Southern Ontario, Canada. Long‐term (>25 years) baseflow trends for 16 basins were compared to corresponding trends in precipitation amount and type and in potential evapotranspiration as well as shorter trends in groundwater levels for monitoring wells on the ORM. Inter‐basin differences in storage properties were characterized using physiographic, hydrogeologic, land use/land cover, and streamflow metrics. The latter included the slope of the basin's flow duration curve and basin dynamic storage. Most basins showed temporal increases in baseflow, consistent with limited evidence of increases and decreases in regional precipitation and snowfall: precipitation ratio, respectively, and recent increases in groundwater recharge along the crest of the ORM. Baseflow trend magnitude was uncorrelated to basin physiographic, hydrogeologic, land use/land cover, or flow duration curve characteristics. However, it was positively related to a basin's dynamic storage, particularly for basins with limited coverage of open water and wetlands. The dynamic storage approach assumes that a basin behaves as a first‐order dynamical system, and extensive open water and wetland areas in a basin may invalidate this assumption. Previous work suggested that smaller dynamic storage was linked to greater damping of temporal variations in water inputs and reduced interannual variability in streamflow regime. Storage and release of water inputs to a basin may assist in mediating baseflow response to temporal changes in regional hydroclimatology and may partly account for inter‐basin differences in that response. Such storage characteristics should be considered when forecasting the impacts of climate change on regional streamflow.  相似文献   

2.
Storage is a fundamental but elusive component of drainage basin function, influencing synchronization between precipitation input and streamflow output and mediating basin sensitivity to climate and land use/land cover (LULC) change. We compare hydrometric and isotopic approaches to estimate indices of dynamic and total basin storage, respectively, and assess inter-basin differences in these indices across the Oak Ridges Moraine (ORM) region of southern Ontario, Canada. Dynamic storage indices for the 20 study basins included the ratio of baseflow to total streamflow (baseflow index BFI), Q 99 flow and flow duration curve (FDC) slope. Ratios of the standard deviation of the streamflow stable isotope signal relative to that of precipitation were determined for each basin from a 1 year bi-weekly sampling program and used as indicators of total storage. Smaller ratios imply longer water travel times, smaller young water fractions (F yw, < ~2–3 months in age) in streamflow and greater basin storage. Ratios were inversely related to BFI and Q 99, and positively related to FDC slope, suggesting longer travel times and smaller F yw for basins with stable baseflow-dominated streamflow regimes. Inter-basin differences in all indices reflected topographic, hydrogeologic and LULC controls on storage, which was greatest in steep, forest-covered headwaters underlain by permeable deposits with thick and relatively uniform unsaturated zones. Nevertheless, differential sensitivity of indices to controls on storage indicates the value of using several indices to capture more completely how basin characteristics influence storage. Regression relationships between storage indices and basin characteristics provided reasonable predictions of aspects of the streamflow regime of test basins in the ORM region. Such relationships and the underlying knowledge of controls on basin storage in this landscape provide the foundation for initial predictions of relative differences in streamflow response to regional changes in climate and LULC.  相似文献   

3.
J.M. Buttle  M.C. Eimers   《Journal of Hydrology》2009,374(3-4):360-372
Relationships explaining streamflow behaviour in terms of drainage basin physiography greatly assist efforts to extrapolate streamflow metrics from gauged to ungauged basins in the same landscape. The Dorset Environmental Science Centre (DESC) has monitored streamflow from 22 small basins (3.4–190.5 ha) on the Precambrian Shield in south-central Ontario, in some cases since 1976. The basins exhibit regional coherence in their interannual response to precipitation; however, there is often a poor correlation between streamflow metrics from basins separated by as little as 1 km. This study assesses whether inter-basin variations in such metrics can be explained in terms of basin scale and physiography. Several characteristics (annual maximum, minimum and average flow) exhibited simple scaling with basin area, while magnitude, range and timing of annual maximum daily runoff showed scaling behaviour consistent with the Representative Elementary Area (REA) concept. This REA behaviour is partly attributed to convergence of fractional coverage of the two dominant and hydrologically-contrasting land cover types in the DESC region with increasing basin size. Three Principal Components (PCs) explained 82.4% of the variation among basin physiographic properties, and several runoff metrics (magnitude and timing of annual minimum daily runoff, mean number of days per year with 0 streamflow) exhibited significant relationships with one or more PC. Significant relationships were obtained between basin quickflow (QF) production and the PCs on a seasonal and annual basis, almost all of which were superior to simple area-based relationships. Basin physiography influenced QF generation via its control on slope runoff, water storage and hydrologic connectivity; however, this role was minimized during Spring when QF production in response to large rain-on-snow events was relatively uniform across the DESC basins. The PC-based relationships and inter-seasonal changes in their form were consistent with previous research conducted at point, slope and basin scales in the DESC region, and perceptions of key hydrological processes in these small basins may not have been as readily obtained from scaling studies using streamflow from larger basins. This process understanding provides insights into scaling behaviour beyond those derived from simple scaling and REA analyses. The physiography of the study area is representative of large portions of the Precambrian Shield, such that basin streamflow behaviour could potentially be extended across much of south-central Ontario. This would assist predictions of streamflow conditions at ungauged locations, development and testing of hydrological models for this landscape, and interpretation of inter-basin and intra-annual differences in hydrochemical behaviour on the southern Precambrian Shield.  相似文献   

4.
The bedrock controls on catchment mixing, storage, and release have been actively studied in recent years. However, it has been difficult to find neighbouring catchments with sufficiently different and clean expressions of geology to do comparative analysis. Here, we present new data for 16 nested catchments (0.45 to 410 km2) in the Alzette River basin (Luxembourg) that span a range of clean and mixed expressions of schists, phyllites, sandstones, and quartzites to quantify the relationships between bedrock permeability and metrics of water storage and release. We examined 9 years' worth of precipitation and discharge data, and 6 years of fortnightly stable isotope data in streamflow, to explore how bedrock permeability controls (a) streamflow regime metrics, (b) catchment storage, and (c) isotope response and catchment mean transit time (MTT). We used annual and winter precipitation–run‐off ratios, as well as average summer and winter precipitation–run‐off ratios to characterise the streamflow regime in our 16 study catchments. Catchment storage was then used as a metric for catchment comparison. Water mixing potential of 11 catchments was quantified via the standard deviation in streamflow δD (σδD) and the amplitude ratio (AS/AP) of annual cycles of δ18O in streamflow and precipitation. Catchment MTT values were estimated via both stable isotope signature damping and hydraulic turnover calculations. In our 16 nested catchments, the variance in ratios of summer versus winter average run‐off was best explained by bedrock permeability. Whereas active storage (defined here as a measure of the observed maximum interannual variability in catchment storage) ranged from 107 to 373 mm, total catchment storage (defined as the maximum catchment storage connected to the stream network) extended up to ~1700 mm (±200 mm). Catchment bedrock permeability was strongly correlated with mixing proxies of σδD in streamflow and δ18O AS/AP ratios. Catchment MTT values ranged from 0.5 to 2 years, based on stable isotope signature damping, and from 0.5 to 10 years, based on hydraulic turnover.  相似文献   

5.
One of the most important functions of catchments is the storage of water. Catchment storage buffers meteorological extremes and interannual streamflow variability, controls the partitioning between evaporation and runoff, and influences transit times of water. Hydrogeological data to estimate storage are usually scarce and seldom available for a larger set of catchments. This study focused on storage in prealpine and alpine catchments, using a set of 21 Swiss catchments comprising different elevation ranges. Catchment storage comparisons depend on storage definitions. This study defines different types of storage including definitions of dynamic and mobile catchment storage. We then estimated dynamic storage using four methods, water balance analysis, streamflow recession analysis, calibration of a bucket‐type hydrological model Hydrologiska Byråns Vattenbalansavdelning model (HBV), and calibration of a transfer function hydrograph separation model using stable isotope observations. The HBV model allowed quantifying the contributions of snow, soil and groundwater storages compared to the dynamic catchment storage. With the transfer function hydrograph separation model both dynamic and mobile storage was estimated. Dynamic storage of one catchment estimated by the four methods differed up to one order of magnitude. Nevertheless, the storage estimates ranked similarly among the 21 catchments. The largest dynamic and mobile storage estimates were found in high‐elevation catchments. Besides snow, groundwater contributed considerably to this larger storage. Generally, we found that with increasing elevation the relative contribution to the dynamic catchment storage increased for snow, decreased for soil, but remained similar for groundwater storage.  相似文献   

6.
Artificial subsurface (tile) drainage is used to increase trafficability and crop yield in much of the Midwest due to soils with naturally poor drainage. Tile drainage has been researched extensively at the field scale, but knowledge gaps remain on how tile drainage influences the streamflow response at the watershed scale. The purpose of this study is to analyse the effect of tile drainage on the streamflow response for 59 Ohio watersheds with varying percentages of tile drainage and explore patterns between the Western Lake Erie Bloom Severity Index to streamflow response in heavily tile-drained watersheds. Daily streamflow was downloaded from 2010 to 2019 and used to calculated mean annual peak daily runoff, mean annual runoff ratio, the percent of observations in which daily runoff exceeded mean annual runoff (TQmean), baseflow versus stormflow percentages, and the streamflow recession constant. Heavily-drained watersheds (>40% of watershed area) consistently reported flashier streamflow behaviour compared to watersheds with low percentages of tile drainage (<15% of watershed area) as indicated by significantly lower baseflow percentages, TQmean, and streamflow recession constants. The mean baseflow percent for watersheds with high percentages of tile drainage was 20.9% compared to 40.3% for watersheds with low percentages of tile drainage. These results are in contrast to similar research regionally indicating greater baseflow proportions and less flashy hydrographs (higher TQmean) for heavily-drained watersheds. Stormflow runoff metrics in heavily-drained watersheds were significantly positively correlated to western Lake Erie algal bloom severity. Given the recent trend in more frequent large rain events and warmer temperatures in the Midwest, increased harmful algal bloom severity will continue to be an ecological and economic problem for the region if management efforts are not addressed at the source. Management practices that reduce the streamflow response time to storm events, such as buffer strips, wetland restoration, or drainage water management, are likely to improve the aquatic health conditions of downstream communities by limiting the transport of nutrients following storm events.  相似文献   

7.
Monitoring the effects of acidic deposition on aquatic ecosystems in the Northeastern US has generally required regular measurements of stream buffering chemistry (i.e. acid‐neutralizing capacity (ANC) and calcium Ca2+), which can be expensive and time consuming. The goal of this paper was to develop a simple method for predicting baseflow buffering chemistry based on the hydrogeomorphic properties of ten nested watersheds in the Neversink River basin (2·0–176·0 km2), an acid‐sensitive basin in the Catskill Mountains, New York State. The tributaries and main reach watersheds have strongly contrasting mean baseflow ANC values and Ca2+ concentrations, despite rather homogeneous vegetation, bedrock geology, and soils. A stepwise regression was applied to relate 13 hydrogeomorphic properties to the mean baseflow ANC values and Ca2+ concentrations. The regression analysis showed that watersheds with lower ANC values had a higher mean ratio of ‘quickflow’ runoff to precipitation during 20 non‐snowmelt runoff events (referred to as mean runoff ratio). The mean runoff ratio could explain at least 80% of the variability in mean baseflow ANC values and Ca2+ concentrations among the ten watersheds. Greater mean runoff ratios also correlated with steeper slopes and greater drainage densities, thus allowing the prediction of baseflow ANC values (r2 = 0·75) and Ca2+ concentrations (r2 = 0·77) with widely available spatial data alone. These results indicate that hydrogeomorphic properties can predict a watershed's sensitivity to acid deposition in regions where the spatial sources of stream buffering chemistry from the bedrock mineralogy and soils are fairly uniform. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
Mountainous headwaters consist of different landscape units including forests, meadows and wetlands. In these headwaters it is unclear which landscape units contribute what percentage to baseflow. In this study, we analysed spatiotemporal differences in baseflow isotope and hydrochemistry to identify catchment‐scale runoff contribution. Three baseflow snapshot sampling campaigns were performed in the Swiss pre‐alpine headwater catchment of the Zwäckentobel (4.25 km2) and six of its adjacent subcatchments. The spatial and temporal variability of δ2H, Ca, DOC, AT, pH, SO4, Mg and H4SiO4 of streamflow, groundwater and spring water samples was analysed and related to catchment area and wetland percentage using bivariate and multivariate methods. Our study found that in the six subcatchments, with variable arrangements of landscape units, the inter‐ and intra catchment variability of isotopic and hydrochemical compositions was small and generally not significant. Stream samples were distinctly different from shallow groundwater. An upper spring zone located near the water divide above 1,400 m and a larger wetland were identified by their distinct spatial isotopic and hydrochemical composition. The upstream wetland percentage was not correlated to the hydrochemical streamflow composition, suggesting that wetlands were less connected and act as passive features with a negligible contribution to baseflow runoff. The isotopic and hydrochemical composition of baseflow changed slightly from the upper spring zone towards the subcatchment outlets and corresponded to the signature of deep groundwater. Our results confirm the need and benefits of spatially distributed snapshot sampling to derive process understanding of heterogeneous headwaters during baseflow. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
Identifying aquifer vulnerability to climate change is of vital importance in the Sierra Nevada and other snow‐dominated basins where groundwater systems are essential to water supply and ecosystem health. Quantifying the component of new (current year's) snowmelt in groundwater and surface water is useful in evaluating aquifer vulnerability because significant annual recharge may indicate that streamflow will respond rapidly to annual variability in precipitation, followed by more gradual decreases in recharge as recharge declines over decades. Hydrologic models and field‐based studies have indicated that young (<1 year) water is an important component of streamflow. The goal of this study was to utilize the short‐lived, naturally occurring cosmogenic isotope sulfur‐35 (35S) to quantify new snowmelt contribution to groundwater and surface waters in Sagehen Creek Basin (SCB) and Martis Valley Groundwater Basin (MVGB) located within the Tertiary volcanics of the central Sierra Nevada, CA. Activities of 35S were measured in dissolved sulfate (35SO42?) in SCB and MVGB snowpack, groundwater, springs, and streamflow. The percent of new snowmelt (PNS) in SCB streamflow ranged from 0.2 ± 6.6% during baseflow conditions to 14.0 ± 3.4% during high‐flow periods of snowmelt. Similar to SCB, the PNS in MVGB groundwater and streamflow was typically <30% with the largest fractions occurring in late spring or early summer following peak streamflow. The consistently low PNS suggests that a significant fraction of annual snowmelt in SCB and MVGB recharges groundwater, and groundwater contributions to streamflow in these systems have the potential to mitigate climate change impacts on runoff.  相似文献   

10.
The mid‐ to high‐boreal forest in Canada occupies the discontinuous permafrost zone, and is often underlain by glaciolacustrine sediments mantled by a highly porous organic mat. The result is a poorly drained landscape dominated by wetlands. Frost‐table dynamics and surface storage conditions help to control runoff contributions from various landscape elements, hydrological linkages between these elements, and basin streamflow during spring snowmelt. Runoff components and pathways in a forested peatland basin were assessed during two spring snowmelts with contrasting input and basin conditions. Runoff from relatively intense melt (up to 16 mm day?1) on slopes with limited soil thawing combined with large pre‐melt storage in surface depressions to produce high flows composed primarily of meltwater (78% of the 0·29 m3 s?1 peak discharge) routed over wetland surfaces and through permeable upper peat layers. Melt intensity was less in the subsequent year (maximum of 10 mm day?1) and active layer development was relatively greater (0·2 m deeper at the end of spring melt), resulting in less slope runoff. Coupling of reduced slope contributions with lower storage levels in basin wetlands led to relatively subdued streamflows dominated by older water (73% of the 0·09 m3 s?1 peak discharge) routed through less‐permeable deeper peat layers and mineral soil. Interannual differences in runoff conditions provide important insight for the development of distributed hydrological models for boreal forest basins and into potential influences on biogeochemical cycling in this landscape under a warming climate. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

11.
The use of precipitation estimates from weather radar reflectivity has become widespread in hydrologic predictions. However, uncertainty remains in the use of the nonlinear reflectivity–rainfall (Z‐R) relation, in particular for mountainous regions where ground validation stations are often lacking, land surface data sets are inaccurate and the spatial variability in many features is high. In this study, we assess the propagation of rainfall errors introduced by different Z‐R relations on distributed hydrologic model performance for four mountain basins in the Colorado Front Range. To do so, we compare spatially integrated and distributed rainfall and runoff metrics at seasonal and event time scales during the warm season when convective storms dominate. Results reveal that the basin simulations are quite sensitive to the uncertainties introduced by the Z‐R relation in terms of streamflow, runoff mechanisms and the water balance components. The propagation of rainfall errors into basin responses follows power law relationships that link streamflow uncertainty to the precipitation errors and streamflow magnitude. Overall, different Z‐R relations preserve the spatial distribution of rainfall relative to a reference case, but not the precipitation magnitude, thus leading to large changes in streamflow amounts and runoff spatial patterns at seasonal and event scales. Furthermore, streamflow errors from the Z‐R relation follow a typical pattern that varies with catchment scale where higher uncertainties exist for intermediate‐sized basins. The relatively high error values introduced by two operational Z‐R relations (WSR‐57 and NEXRAD) in terms of the streamflow response indicate that site‐specific Z‐R relations are desirable in the complex terrain region, particularly in light of other uncertainties in the modelling process, such as model parameter values and initial conditions. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
Impacts of forest harvesting on groundwater properties, water flowpaths and streamflow response were examined 4 years after the harvest using a paired‐basin approach during the 2001 snowmelt in a northern hardwood landscape in central Ontario. The ability of two metrics of basin topography (Beven and Kirkby's ln(a/tan β) topographic index (TI) and distance to stream channel) to explain intra‐basin variations in groundwater dynamics was also evaluated. Significant relationships between TI and depth to potentiometric surface for shallow groundwater emerged, although the occurrence of these relationships during the melt differed between harvested and control basins, possibly as a result of interbasin differences in upslope area contributing to piezometers used to monitor groundwater behaviour. Transmissivity feedback (rapid streamflow increases as the water table approaches the soil surface) governed streamflow generation in both basins, and the mean threshold depths at which rapid streamflow increases corresponded to small rises in water level were similar for harvested (0·41 ± 0·05 m) and forested (0·38 ± 0·04 m) basins. However, topographic properties provided inconsistent explanations of spatial variations in the relationship between streamflow and depth to water at a given piezometer for both basins. Streamflow from the harvested basin exceeded that from the forested basin during the 2001 melt, and hydrometric and geochemical tracer results indicated greater runoff from the harvested basin via surface and near‐surface pathways. These differences are not solely attributable to harvesting, since the difference in spring runoff from the harvested basin relative to the forested control was not consistently larger than under pre‐harvest conditions. Nevertheless, greater melt rates following harvesting appear to have increased the proportion of water delivery to the stream channel via surface and near‐surface pathways. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

13.
River runoff from the four largest Siberian river basins (the Ob, Yenisei, Lena, and Kolyma) considerably contributes to freshwater flux into the Arctic Ocean from the Eurasian continent. However, the effects of variation in snow cover fraction on the ecohydrological variations in these basins are not well understood. In this study, we analysed the spatiotemporal variability of the maximum snow cover fraction (SCFmax) in the four Siberian river basins. We compared the SCFmax from 2000 to 2016 with data in terms of monthly temperature and precipitation, night-time surface temperatures, the terrestrial water storage anomaly (TWSA), the normalised difference vegetation index (NDVI), and river runoff. Our results exhibit a decreasing trend in the April SCFmax values since 2000, largely in response to warming air temperatures in April. We identified snowmelt water as the dominant control on the observed increase in the runoff contribution in May across all four Siberian river basins. In addition, we detected that the interannual river runoff was predominantly controlled by interannual variations in the TWSA. The NDVI in June was strongly controlled by the timing of the snowmelt along with the surface air temperature and TWSA in June. The rate of increase in the freshwater flux from the four Siberian rivers decreased from 2000 to 2016, exhibiting large interannual variations corresponding to interannual variations in the TWSA. However, we identified a clear increase trend in the freshwater flux of ~4 km3/year when analysing the long-term 39-year historical record (1978–2016). Our results suggest that continued global warming will accelerate the transition towards the earlier timing of snowmelt and spring freshwater flux into the Arctic Ocean. Our findings also highlight the effects of earlier snowmelt on ecohydrological changes in the Northern Hemisphere.  相似文献   

14.
Abstract

The baseflow characteristics of some of the numerous small basins in southeastern Nigeria have been analysed to estimate the developable groundwater in the basins. It is shown that from 5.62 × 104 to 1.59 × 106 m3 of groundwater can be developed per square kilometre of basin per annum. The relationship between the baseflow characteristics and other attributes of the basins, such as geology and stream density, were studied statistically, leading to the development of empirical equations for predicting the hydrological features of the several ungauged streams in the region. It is shown, for example, that the basin geology (represented as the percentage of sands), the drainage density, the basin area, the baseflow depletion rate and the total groundwater stored in the basin, Qtp, are related by the equation:

Qtp = ?1.85 × 109?7.96 × 108 dd+4.18 × 107 gf?2.01 × 106 df+6.25 × 105 wa

where dd is drainage density; gf geological factor; df depletion factor; and wa basin area.  相似文献   

15.
Anthropogenic modifications to the landscape, with agricultural activities being a primary driver, have resulted in significant alterations to the hydrologic cycle. Artificial drainage, including surface and subsurface drainage (tile drains), is one of the most extensive manipulations in agricultural landscapes and thus is expected to provide a distinct signature of anthropogenic modification. This study adopts a data synthesis approach in an effort to characterize the signature of artificial subsurface drainage. Daily discharge data from 24 basins across the state of Iowa, which encapsulate a range of anthropogenic modifications, are assessed using a variety of flow metrics. Results indicate that the presence of artificial subsurface drainage leads to a homogenization of landscape hydrologic response. Non‐tiled watersheds exhibit a decrease in the area‐normalized peak discharge and an increase in the baseflow ratio (baseflow/streamflow) with increases in the spatial scale, while scale invariance is apparent in tiled basins. Within‐basin variability in hydrograph recession coefficients also appears to decrease with increases in the proportion of the catchment that is artificially drained. Finally, the differences between tiled and non‐tiled landscapes disappear at scales greater than approximately 2200 km2, indicating that this may be a threshold scale for studying the effects of tile drainage. This decrease in within‐basin variability and the scale invariance of hydrologic metrics in artificially drained watersheds are attributed to the creation of a bypass flow hydrologic pathway that bypasses the complexity of the catchment travel paths. Spatial homogeneity in responses implies that it may be possible to develop more parsimonious hydrologic models for these regions. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
ABSTRACT

The snowmelt runoff process from small basins is discussed. A differentiation is made between overland flow in the snowpack and groundwater flow induced by infiltrating meltwater. The effect of variations of the snowmelt intensity on streamflow is studied. It is shown that the runoff is high from the first day of snowmelt runoff if the streamflow is caused by overland flow, and that there are pronounced peaks every day, which almost correspond with the snowmelt intensity during daytime. Streamflow originating from groundwater, on the other hand, increases continuously during the snowmelt and shows only small daily peaks in the flow. Simultaneous overland and groundwater flow are also discussed. Observed runoff hydrographs from small basins are analysed in some detail. For the open fields studied the runoff shows the typical character of overland flow. For a rather large forested area the surface runoff also constitutes an important part of the runoff, but the groundwater baseflow is considerable.  相似文献   

17.
18.
Abstract

Streamflow variability in the Upper and Lower Litani basin, Lebanon was modelled as there is a lack of long-term measured runoff data. To simulate runoff and streamflow, daily rainfall was derived using a stochastic rainfall generation model and monthly rainfall data. Two distinct synthetic rainfall models were developed based on a two-part probabilistic distribution approach. The rainfall occurrence was described by a Markov chain process, while the rainfall distribution on wet days was represented by two different distributions (i.e. gamma and mixed exponential distributions). Both distributions yielded similar results. The rainfall data were then processed using water balance and routing models to generate daily and monthly streamflow. Compared with measured data, the model results were generally reasonable (mean errors ranging from 0.1 to 0.8?m3/s at select locations). Finally, the simulated monthly streamflow data were used to investigate discharge trends in the Litani basin during the 20th century using the Mann-Kendall and Sen slope nonparametric trend detection methods. A significant drying trend of the basin was detected, reaching a streamflow reduction of 0.8 and 0.7 m3/s per decade in January for the Upper and Lower basin, respectively.

Editor D. Koutsoyiannis; Associate editor Sheng Yue

Citation Ramadan, H.H., Beighley, R.E., and Ramamurthy, A.S., 2012. Modelling streamflow trends for a watershed with limited data: case of the Litani basin, Lebanon. Hydrological Sciences Journal, 57 (8), 1516–1529.  相似文献   

19.
ABSTRACT

Climate change/variability accompanied by anthropogenic activities can alter the runoff response of landscapes. In this study we investigate the integrated impacts of precipitation change/variability and landscape changes, specifically wetland drainage practices, on streamflow regimes in wetland-dominated landscapes in the Assiniboine and Saskatchewan River basins of the North American Prairies. Precipitation and streamflow metrics were examined for gradual (trend type) and abrupt (shift type) changes using the modified Mann-Kendall trend test and a Bayesian change point detection methodology. Results of statistical analyses indicate that precipitation metrics did not experience statistically significant increasing or decreasing changes and there was no statistical evidence of streamflow regime change over the study area except for one of the smaller watersheds. The absence of widespread streamflow and precipitation changes suggests that wetland drainage did not lead to detectable changes in streamflow metrics over most of the Canadian portion of the Prairies between 1967 and 2007.
Editor Z.W. Kundzewicz Associate editor None assigned  相似文献   

20.
The importance and interaction of various hydrological pathways and identification of runoff source areas involved in solute transport are still under considerable debate in catchment hydrology. To reveal stormflow generating areas and flow paths, hydrometric behaviour of throughfall, soil water from various depths, runoff, and respective concentrations of the environmental tracers 18O, Si, K, SO4 and dissolved organic carbon were monitored for a 14‐week period in a steep headwater catchment in the Black Forest Mountains, Germany. Two stormflow hydrographs were selected and, based on 18O and Si, chemically separated into three flow components. Their sources were defined using mixing diagrams. Additional information about stormflow generating mechanisms was derived from recession analyses of the basin's complete 5‐year hydrograph record. By providing insight into storage properties and residence times of outflowing reservoirs of the basin, recession analysis proved to be a valuable tool in runoff model conceptualization. Its results agreed well with hydrometric and hydrochemical data. Supported by evaluation of 30 hillslope soil profiles a coherent concept of stormflow generation could be derived: whereas in many steeply sloped basins in the temperate region soil water from hillslopes appears to have an immediate effect on the shape of the stormflow hydrograph, its role at this basin is basically restricted to the recharge of the groundwater reservoir in the near‐channel area. Storm hydrograph peaks appear to be derived from a small direct runoff component supplemented by a fast delivery of baseflow from the groundwater reservoir in the valley bottom. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号