首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Two types of serpentinized peridotites are distinguished within the Northwest Zagros Thrust Zone (NW-ZTZ) in Kurdistan region of Iraq. One is found as lower members of ophiolite sequences, such as the Mawat and Penjwin ophiolites of the upper Cretaceous age. The other is represented by intraformational isolated serpentinite bodies in Betwat, Qaladeza, and Qalander areas within the Walash–Naopurdan volcano-sedimentary unit of the Paleocene to Eocene paleo-arc tectonic setting. Serpentinites within the NW-ZTZ consist mainly of lizardite and chrysotile, with subordinate amounts of syn-serpentinization magnetite, carbonates, chromium chlorite, tremolite, and talc as secondary minerals, and olivine, clinopyroxene, and chromian spinel as primary minerals. Minor antigorite is also found in the sheared serpentinites often found in ophiolite sequences. Petrological and geochemical studies of serpentinites from the NW-ZTZ show that, of the original protoliths of serpentinites, those associated with ophiolites are residual depleted harzburgite and dunite. The $ {\text{Cr}}\# \left( {{{ = {\text{ Cr}}} \mathord{\left/ {\vphantom {{ = {\text{ Cr}}} {\left( {{\text{Cr}} + {\text{Al}}} \right){\text{ atomic ratio}}}}} \right. \kern-0em} {\left( {{\text{Cr}} + {\text{Al}}} \right){\text{ atomic ratio}}}}} \right) $ of chromian spinel is more than 0.6, and the forsterite content of olivine is 91–92. On the other hand, the original protolith of isolated serpentinite bodies is less depleted harzburgite or depleted lherzolite, which has spinel with Cr# less than 0.6 and olivine with 90–91 forsterite contents. Whole rock chemistry of major, trace, and rare earth elements shows that the serpentinites of ophiolite sequences are depleted in CaO, Al2O3, and SiO2, Sr, and Zr, and are enriched in MgO, Ni, and Cr, in comparison with the isolated serpentinites. Cr# of the disseminated unaltered chromian spinels indicates that the serpentinites of both types had been originated from the supra-subduction zone tectonic setting; the serpentinites of ophiolite sequences obducted and thrusted over the continental margin during the obduction of the Tethyth oceanic crust onto the Arabian continental margin during the upper Cretaceous period. Isolated serpentinite bodies represent serpentinized forearc mantle wedge peridotites emplaced by diapiric upwelling into non-accretionary forearc tectonic settings during the Paleocene to Eocene age.  相似文献   

2.
Serpentinites (massive and schistose) and listvenite occur as tectonic sheets and lenses within a calcareous metasedimentary mélange of the Tulu Dimtu, western Ethiopia. The massive serpentinite contains high-magnesian metamorphic olivine (forsterite [fo] ~96 mol%) and rare relict primary mantle olivine (Fo90–93). Both massive and schistose serpentinites contain zoned chromian spinel; the cores with the ferritchromite rims preserve a pristine Cr/(Cr+Al) atomic ratio (Cr# = 0.79–0.87), suggesting a highly depleted residual mantle peridotite, likely formed in a suprasubduction zone setting. Listvenite associated with serpentinites of smaller ultramafic lenses also contain relict chromian spinel having identical Cr# to those observed in serpentinites. However, the relict chromian spinel in listvenite has significantly higher Mg/(Mg+Fe2+) atomic ratios. This suggests that a nearly complete metasomatic replacement of ultramafic rocks by magnesite, talc, and quartz to prevent Mg–Fe2+ redistribution between relict chromian spinel and the host, that is, listvenite formation, took place prior to re-equilibration between chromian spinel and the surrounding mafic minerals in serpentinites. Considering together with the regional geological context, low-temperature CO2-rich hydrothermal fluids would have infiltrated into ultramafic rocks from host calcareous sedimentary rocks at a shallow level of accretionary prism before a continental collision to form the East African Orogen (EAO).  相似文献   

3.
The latest Cretaceous to early Palaeogene Orocopia Schist and related units are generally considered a low-angle subduction complex that underlies much of southern California and Arizona. A recently discovered exposure of Orocopia Schist at Cemetery Ridge west of Phoenix, Arizona, lies exceptionally far inland from the continental margin. Unexpectedly, this body of Orocopia Schist contains numerous blocks, as large as ~300 m, of variably serpentinized mantle peridotite. These are unique; elsewhere in the Orocopia and related schists, peridotite is rare and completely serpentinized. Peridotite and metaperidotite at Cemetery Ridge are of three principal types: (1) serpentinite and tremolite serpentinite, derived from dunite; (2) partially serpentinized harzburgite and olivine orthopyroxenite (collectively, harzburgite); and (3) granoblastic or schistose metasomatic rocks, derived from serpentinite, made largely of actinolite, calcic plagioclase, hercynite, and chlorite. In the serpentinite, paucity of relict olivine, relatively abundant magnetite (5%), and elevated Fe3+/Fe indicate advanced serpentinization. Harzburgite contains abundant orthopyroxene, only slightly serpentinized, and minor to moderate (1–15%) relict olivine. Mantle tectonite fabric is locally preserved. Several petrographic and geochemical characteristics of the peridotite at Cemetery Ridge are ambiguously similar to either abyssal or mantle-wedge (suprasubduction) peridotites and serpentinites. Least ambiguous are orthopyroxene compositions. Orthopyroxene is distinctively depleted in Al2O3, Cr2O3, and CaO, indicating mantle-wedge affinities. Initial interpretation of field and petrologic data suggests that the peridotite blocks in the Orocopia Schist subduction complex at Cemetery Ridge may be derived from the leading corner or edge of a mantle wedge, presumably in (pre-San Andreas fault) southwest California. However, derivation from a subducting plate is not precluded.  相似文献   

4.
The Honvang serpentinite body in the Song Ma fault zone consists mainly of massive serpentinite, altered gabbro and rare chromitite. The serpentinite preserves relict chromian spinel with rare olivine inclusions. The compositional relationship between the Fo content of olivine (Fo90–92) and YCr [atomic ratio Cr / (Cr + Al) = 0.43–0.44] of chromian spinel suggests that the original peridotite was spinel-bearing lherzolitic harzburgite. Chromitite is typically a high-Al type, consisting of chromian spinel with YCr = 0.43–0.44. Saussuritized fine-grained gabbros display nearly flat rare earth element patterns, suggesting MORB-like affinity. Considering this petrotectonic information, we suggest that the serpentinite body of the Song Ma fault zone represents a remnant of paleo-oceanic lithosphere between the Indochina and South China blocks. The lherzolitic harzburgite may have formed in an environment with low degrees of melt depletion in a slow-spreading setting similar to some Tethyan paleo-oceanic lithospheres.  相似文献   

5.
Here, we investigate the scale and nature of melting and melt percolation processes recorded by 17 supra-subduction peridotites collected in a ~70 km2 area in the northern portion of the Josephine ophiolite (Western USA). We present major and trace element variations in whole rocks; major elements in olivine, orthopyroxene, clinopyroxene and spinel; and trace elements [including rare earth element (REE)] in clinopyroxene and orthopyroxene. In the Josephine peridotites, compositional variability occurs at different scales. On the one hand, large systematic changes from depleted to fertile peridotites occur on large kilometer scales. Field, petrological and geochemical data can be consistently explained if the Josephine mantle experienced variable degrees of hydrous flux melting (10 to >20–23 %), and we argue that small fractions of subduction-derived fluids (0.015–0.1 wt%) were pervasive in the ~70 km2 studied area, and continuously supplied during wedge melting. Fluid localization probably led to increased extent of flux melting in the harzburgitic areas. On the other hand, in single outcrops, sharp transitions from dunite to harzburgite to lherzolite and olivine websterite can be found on meter to centimeter scales. Thus, some fertile samples may reflect limited degrees of refertilization at the outcrop scale. In addition, clinopyroxene and orthopyroxene in ultra-depleted harzburgites (Spinel Cr# > 58) show variable degrees of LREE enrichment, which reflect percolation of and partial re-equilibration with, small fractions of boninite melt. Because the enriched samples also show the highest spinel Cr#, we argue that these enrichments are local features connected to the presence of dunite channels nearby. Lastly, trace element concentrations of pyroxenes in Josephine harzburgites show that they are one of the most depleted harzburgites among worldwide ophiolitic peridotites, indicating particularly high degrees of melting, potentially past the exhaustion of clinopyroxene.  相似文献   

6.
The ophiolitic peridotites in the Wadi Arais area, south Eastern Desert of Egypt, represent a part of Neoproterozoic ophiolites of the Arabian-Nubian Shield (ANS). We found relics of fresh dunites enveloped by serpentinites that show abundances of bastite after orthopyroxene, reflecting harzburgite protoliths. The bulk-rock chemistry confirmed the harzburgites as the main protoliths. The primary mantle minerals such as orthopyroxene, olivine and chromian spinel in Arais serpentinites are still preserved. The orthopyroxene has high Mg# [=Mg/(Mg + Fe2+)], ~0.923 on average. It shows intra-grain chemical homogeneity and contains, on average, 2.28 wt.% A12O3, 0.88 wt.% Cr2O3 and 0.53 wt.% CaO, similar to primary orthopyroxenes in modern forearc peridotites. The olivine in harzburgites has lower Fo (93?94.5) than that in dunites (Fo94.3?Fo95.9). The Arais olivine is similar in NiO (0.47 wt.% on average) and MnO (0.08 wt.% on average) contents to the mantle olivine in primary peridotites. This olivine is high in Fo content, similar to Mg-rich olivines in ANS ophiolitic harzburgites, because of its residual origin. The chromian spinel, found in harzburgites, shows wide ranges of Cr#s [=Cr/(Cr + Al)], 0.46?0.81 and Mg#s, 0.34?0.67. The chromian spinel in dunites shows an intra-grain chemical homogeneity with high Cr#s (0.82?0.86). The chromian spinels in Arais peridotites are low in TiO2, 0.05 wt.% and YFe [= Fe3+/(Cr + Al + Fe3+)], ~0.06 on average. They are similar in chemistry to spinels in forearc peridotites. Their compositions associated with olivine’s Fo suggest that the harzburgites are refractory residues after high-degree partial melting (mainly ~25?30 % partial melting) and dunites are more depleted, similar to highly refractory peridotites recovered from forearcs. This is in accordance with the partial melting (>20 % melt) obtained by the whole-rock Al2O3 composition. The Arais peridotites have been possibly formed in a sub-arc setting (mantle wedge), where high degrees of partial melting were available during subduction and closing of the Mozambique Ocean, and emplaced in a forearc basin. Their equilibrium temperature based on olivine?spinel thermometry ranges from 650 to 780 °C, and their oxygen fugacity is high (Δlog ?O2?=?2.3 to 2.8), which is characteristic of mantle-wedge peridotites. The Arais peridotites are affected by secondary processes forming microinclusions inside the dunitic olivine, abundances of carbonates and talc flakes in serpentinites. These microinclusions have been formed by reaction between trapped fluids and host olivine in a closed system. Lizardite and chrysotile, based on Raman analyses, are the main serpentine minerals with lesser antigorite, indicating that serpentines were possibly formed under retrograde metamorphism during exhumation and near the surface at low T (<400 °C).  相似文献   

7.
Xenoliths up to a metre in length occur in a carbonatitic diatreme member of a lamprophyric dike swarm at Moeraki River, south Westland, New Zealand. The xenoliths reported here consist of Iherzolite (chromite, orthopyroxene, clinopyroxene and olivine) and harzburgite (chromite, olivine and orthopyroxene). A clinopyroxene xenocryst is also reported. Analyses of these phases are presented. The chemistry, low CaO and high Al2O3 and Na2O content of the clinopyroxenes; low CaO and high forsterite content of the olivine, suggests that these phases were in equilibrium under high pressures within the spinel Iherzolite field. An orthopyroxene-chromite intergrowth is described and is interpreted as the product of the re-equilibration of garnet in passing from the garnet Iherzolite field to the spinel Iherzolite field.  相似文献   

8.
陈博  朱永峰  安芳  邱添  陈艺超 《地质通报》2011,30(7):1017-1026
新疆克拉玛依地区出露的早古生代蛇绿混杂岩带规模巨大,岩石单元出露齐全。白碱滩地区的地幔橄榄岩相对比较新鲜,单斜辉石、斜方辉石、尖晶石和橄榄石保存完好。研究表明,白碱滩蛇绿岩就位前,地幔岩发生了大于50km的快速隆升,且没有发生部分熔融。百口泉地区发现的地幔岩普遍遭受了改造,辉石多发生了强烈蚀变(透闪石化),但尖晶石和橄榄石保存较好。百口泉地区出露的地幔岩和白碱滩地幔岩的矿物组成基本一致,表明它们属于同一蛇绿混杂岩带。百口泉蛇绿岩剖面的揭露,将该蛇绿混杂岩带的范围向NE方向延伸了35km。  相似文献   

9.
The Dramala massif, located in the Dinarides–Hellenides orogenic belt, forms the mantle section of the Neotethyan Pindos ophiolite complex in NW continental Greece. Its southern domain is comprised mainly of voluminous harzburgite masses with variable clinopyroxene and olivine modal abundances, ranging from clinopyroxene‐bearing to typical and olivine‐rich harzburgites. The harzburgite varieties are characterized by elevated Cr# [Cr/(Cr + Al)] in Cr‐spinel (0.43–0.79), high forsterite (Fo) content in olivine (0.90–0.93), low Al2O3 content in clinopyroxene (≤1.77 wt.%) and poor whole‐rock abundances of Al2O3 (≤0.68 wt.%), CaO (≤0.68 wt.%), Sc (≤11 ppm) and REE, which are indicative of their refractory nature. In terms of fO2 values, the southern Pindos harzburgites plot between the FMQ‐2 (Fayalite–Magnetite–Quartz) and FMQ + 2 buffers. Simple batch and fractional melting models are not sufficient to explain their depleted composition. Their Ni/Yb ratios vs. Yb bulk‐rock abundances can be reproduced by up to 22–31% closed‐system non‐modal dynamic melting of an assumed spinel‐bearing lherzolite source. Cr‐spinel chemistry data suggest that the southern Dramala harzburgites were formed in an oceanic centre and then were reworked in the mantle wedge above a subducted slab. Combined petrographic and compositional data indicate that the studied harzburgites interacted with arc‐derived tholeiitic melts. This interaction resulted in substantial olivine and minor Cr‐spinel addition to the studied harzburgites, thus enhancing their refractoriness. Cryptic metasomatism was plausibly responsible for the demolition of any strong geochemical signatures suggestive of a previous melting event in a spreading centre. Comparable observations from the neighbouring Vourinos suite imply that the southern Dramala harzburgites probably represent an arc/fore‐arc mantle region within the mutual Pindos–Vourinos, Mesohellenic lithospheric mantle. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
Evidence is presented for the primary high pressure crystallization of the Ewarara, Kalka and Gosse Pile layered intrusions which form part of the Giles Complex in central Australia. These pressures are estimated at 10 to 12 kb. The high pressure characteristics include subsolidus reactions between olivine and plagioclase, orthopyroxene and plagioclase, and orthopyroxene and spinel; spinel and rutile exsolution in both ortho- and clino-pyroxene; spinel exsolution in plagioclase; high Al2O3 and Cr2O3 contents of both ortho- and clinopyroxene; high AlVI in clinopyroxene; dominance of orthopyroxene as an early crystallizing phase; high distribution coefficients for co-existing pyroxene pairs; and thin chilled margins. Such phenomena are rare in documented layered basic intrusions.  相似文献   

11.
The West Junggar, located in the southernmost part of the Central Asian Orogenic Belt (CAOB), is a key region for understanding the Paleozoic evolution of the CAOB. Issues of the timing of initial subduction and tectonic unit connections in northern West Junggar still remain controversial. In this study, we report a new ophiolitic mélange named the E'min ophiolitic mélange in northern West Junggar. The tectonic blocks in the E'min ophiolitic mélange are mainly composed of serpentinized peridotite, serpentinite, gabbros, pillow basalts, and cherts, with a matrix consisting of highly deformed serpentinites. A gabbro exhibits a zircon SHRIMP U-Pb age of 476 ± 2 Ma, and the zircon grains have δ18O values similar to those of mantle zircons. Those basalt samples display depletions of light rare earth element (REE) relative to heavy REEs. They exhibit weak enrichment of Ba and Th, and moderate depletion of Nb and Ta. The basalts display similar geochemical characteristics to that of fore–arc basalts in the present-day fore–arc setting. The gabbros exhibit high MgO and compatible element contents, but low TiO2, total REE and high field strength element (HFSE) contents. They exhibit light REE depletion, enrichment in large-ion lithophile elements, and depletion of HFSEs. The boninite-like geochemical patterns of the gabbros indicate that they were formed in a subduction-related environment, and were derived from an extremely depleted mantle source infiltrated by subduction-derived fluids and/or melts. The E'min ophiolitic mélange has a geochemical make-up similar to those of suprasubduction-zone (SSZ)-type ophiolites formed in a forearc setting. Hence, we propose that the E'min ophiolitic mélange formed in a forearc setting and may represent the initial subduction in northern West Junggar. Based on geochronological data, we propose that the E'min ophiolite, together with the Kujibai, Hoboksar and Hongguleleng ophiolites, formed during a similar period and comprise a huge E–W trending ophiolitic belt.  相似文献   

12.
新疆达拉布特超镁铁岩成因——来自铬尖晶石的证据   总被引:6,自引:0,他引:6  
通过研究西准噶尔达拉布特蛇绿混杂岩中方辉橄榄岩和橄榄辉石岩的岩石学特征,分析方辉橄榄岩广泛发育的铬尖晶石和斜方辉石构成的蠕虫状共生连晶结构的成因,得出结论认为:这种共生连晶结构不是前人所认为的文象结构或者石榴石的后成合晶,而是原始地幔岩熔融形成富铬岩浆的演化产物。这种富铬岩浆高度分异形成铬铁矿块体(即萨尔托海铬铁矿矿床)后,熔体进入地幔岩中结晶形成铬尖晶石和斜方辉石的蠕虫状共生连晶结构。因此,铬尖晶石与辉石的共生连晶结构可以作为豆荚状铬铁矿的重要找矿标志。方辉橄榄岩中的斜方辉石发育铬尖晶石出溶结构,出溶棒的成分特点表明,该结构是达拉布特蛇绿岩在快速就位过程中环境氧逸度突然升高诱发变质反应的结果。  相似文献   

13.
Wadi Sifein podiform chromite deposits, Central Eastern Desert of Egypt, are hosted by fully serpentinized peridotite that is a part of the dismembered Pan‐African ophiolite complexes. Relics of primary minerals and the chemical characters indicate that the ophiolitic rocks were derived from depleted mantle peridotite of harzburgite and subordinate dunite compositions. The mantle rocks were initially formed at a mid‐oceanic ridge and subsequently thrust at a supra‐subduction zone. The chromite mineralization at Wadi Sifein area displays either pod‐shaped bodies with massive and lumpy chromitite appearance or dissemination of chromian‐spinel in serpentinite matrix. The podiform chromitite exhibits a very limited compositional range in terms of Cr# [Cr/(Cr + Al) atomic ratio] and Mg# [Mg/(Mg + Fe) atomic ratio]. The chromian‐spinel, however, frequently displays optical and geochemical zoning. Four zones can be identified from core to edge: inner core representing the original composition of the chromian‐spinel; narrow Cr‐rich ferritchromit zone; wide ferritchromit zone; and outer Cr‐magnetite/magnetite zone. The zonation of chromian‐spinel is interpreted to be a result of serpentinization rather than magmatic or metamorphic processes. The geochemical data obtained from the chromitite and chromian‐spinel was statistically processed using discriminant and R‐mode factor analyses. Two trends, minor and major, were achieved considering the formation of ferritchromit. The minor trend is controlled by the redistribution of trivalent cations, where Cr2O3 increased on the expense mainly of Al2O3 and to less extent Fe2O3 to form zone II during the peak of serpentinization. The major trend of alteration, however, is explained by the exchange between Mg‐Fe2+ rather than Cr, Al, and Fe3+ to form zone III. Kammererite formation was accompanied the formation of zones III and IV at a 314°C temperature of formation.  相似文献   

14.
The northern Vourinos massif, located in the Dinarides-Hellenides mountain belt in the Balkan Peninsula, forms a section of the so-called Neotethyan ophiolitic belt in the Alpine-Himalayan orogenic system. It is comprised mainly of a well-preserved mantle sequence, dominated by voluminous massive harzburgite with variable clinopyroxene and olivine modal abundances, accompanied by subordinate coarse- and fine-grained dunite. The harzburgite rock varieties are characterized by high Cr# [Cr/(Cr + Al)] values in Cr-spinel (0.47–0.74), elevated Mg# [Mg/(Mg + Fe2+)] in olivine (0.90–0.93), low Al2O3 content in clinopyroxene (≤1.82 wt.%) and low average bulk-rock concentrations of CaO (0.52 wt.%) and Al2O3 (0.40 wt.%), which are indicative of their refractory nature. In addition, dunite-type rocks display even more depleted compositions, containing Cr-spinel and olivine with higher Cr# (0.76–0.84) and Mg# (0.91–0.94), respectively. They also display extremely low average abundances of CaO (0.13 wt.%) and Al2O3 (0.15 wt.%). The vast majority of the studied peridotites are also strongly depleted in REE. Simple batch and fractional melting models are not sufficient to explain their ultra-depleted composition. Whole-rock trace element abundances of the northern Vourinos mantle rocks can be modeled by up to 22–31% closed-system non-modal dynamic melting of an assumed primitive mantle (PM) source having spinel lherzolite composition. The highly depleted compositional signatures of the investigated peridotites indicate that they have experienced hydrous melting in the fore-arc mantle region above a SSZ. This intense melting event was responsible for the release of arc-related melts from the mantle. These melts reacted with the studied peridotites causing incongruent melting of pyroxenes followed by considerable olivine and Cr-spinel addition in terms of cryptic metasomatism. This later metasomatic episode has obscured any geochemical fingerprints indicative of an early mantle melting event in a MOR setting. The lack of any MOR-type peridotites in the northern Vourinos depleted mantle suite is quite uncommon for SSZ-type Neotethyan ophiolites.  相似文献   

15.
Peridotite xenoliths from Grenada,Lesser Antilles Island Arc   总被引:2,自引:2,他引:0  
Ultramafic xenoliths comprising harzburgite, lherzolite (reacted harzburgite) and spinel-rich dunite, occur in alkali olivine basalts (M series) of Grenada in the Lesser Antilles island arc. Textures are protogranular, porphyroclastic and granular; the latter are restricted to dunites and areas of the harzburgites/lherzolites where interaction with host magma has occurred. Primary mineralogy comprises olivine, orthopyroxene, clinopyroxene, and spinel. Harzburgites are residual from a fractional partial melting event totaling ~22%. Infiltration of harzburgite by (and reaction with) basalt has produced: a wehrlite, with partial dissolution of primary spinel, an increase in the oxygen fugacity (ƒO2) from primary values 1–2 log ƒO2 units above the fayalite-magnetite-quartz (FMQ) buffer, to 2–2.5 log units above the buffer; reaction of orthopyroxene to form patches of intergrown olivine and clinopyroxene, and bronzite andesite glass (60 wt%, SiO2 18–20 wt% Al2O3 and 3–4 wt% Na2O) with flat to light rare earth element-depleted, chondrite-normalized abundances. Refertilisation of the mantle by reacting melts, producing a clinopyroxene-rich lithology, may form a source of ankaramitic (high-Ca) arc basalts.Editorial responsibility: T.L. Grove  相似文献   

16.
ABSTRACT

The dismembered ophiolites in Wadi Arais area of the south Eastern Desert of Egypt are one of a series of Neoproterozoic ophiolites found within the Arabian–Nubian Shield (ANS). We present new major, trace, and rare earth element analyses and mineral composition data from samples of the Wadi Arais ophiolitic rocks with the goal of constraining their geotectonic setting. The suite includes serpentinized ultramafics (mantle section) and greenschist facies metagabbros (crustal section). The major and trace element characteristics of the metagabbro unit show a tholeiitic to calc-alkaline affinity. The serpentinized ultramafics display a bastite, or less commonly mesh, texture of serpentine minerals reflecting harzburgite and dunite protoliths, and unaltered relics of olivine, orthopyroxene, clinopyroxene, and chrome spinel can be found. Bulk-rock chemistry confirms harzburgite as the main protolith. The high Mg# (91.93–93.15) and low Al2O3/SiO2 ratios (0.01–0.02) of the serpentinized peridotite, together with the high Cr# (>0.6) of their Cr-spinels and the high NiO contents (0.39–0.49 wt.%) of their olivines, are consistent with residual mantle rocks that experienced high degrees of partial melt extraction. The high Cr# and low TiO2 contents (0.02–0.34 wt.%) of the Cr-spinels are most consistent with modern highly refractory fore-arc peridtotites and suggest that these rocks probably developed in a supra-subduction zone environment.  相似文献   

17.
In the system FeO-MgO-Al2O3-SiO2 (FMAS), the equilibrium Al-content of orthopyroxene coexisting with olivine and spinel was reversed in 18 experiments at 1 340° C and 11 or 18 kbar, using graphite capsules and PbO flux. In the CFMAS system (+CaO), the Al-contents of ortho- and clinopyroxene coexisting with olivine and spinel were reversed in 5 experiments at 1 340° C and 18 kbar. The Al-content of clinopyroxene remains constant, while the Al-content of orthopyroxene increases with increasing Fe-content. The Ca-content of clinopyroxene is independent of the Al-content. The data were used to describe the Fe-Mg site distribution in the aluminous orthopyroxene. The Fe-Mg partitioning among orthopyroxene, olivine, spinel and garnet, combined with the Al-content of orthopyroxene, was used to calculate orthopyroxene based thermobarometers in the FMAS, CFMAS and NCFMAS (+Na2O) systems. The thermobarometers were applied to the Adirondack metagabbros, which gave equilibration temperatures of 700–800° C and pressures 7.4–10.3 kbar.  相似文献   

18.
Peridotite xenoliths found in Cenozoic alkali basalts of northern Victoria Land, Antarctica, vary from fertile spinel-lherzolite to harzburgite. They often contain glass-bearing pockets formed after primary pyroxenes and spinel. Few samples are composite and consist of depleted spinel lherzolite crosscut by amphibole veins and/or lherzolite in contact with poikilitic wehrlite. Peridotite xenoliths are characterized by negative Al2O3–Mg# and TiO2–Mg# covariations of clino- and orthopyroxenes, low to intermediate HREE concentrations in clinopyroxene, negative Cr–Al trend in spinel, suggesting variable degrees of partial melting. Metasomatic overprint is evidenced by trace element enrichment in clinopyroxene and sporadic increase of Ti–Fetot. Preferential Nb, Zr, Sr enrichments in clinopyroxene associated with high Ti–Fetot contents constrain the metasomatic agent to be an alkaline basic melt. In composite xenoliths, clinopyroxene REE contents increase next to the veins suggesting metasomatic diffusion of incompatible element. Oxygen isotope data indicate disequilibrium conditions among clinopyroxene, olivine and orthopyroxene. The highest δ18O values are observed in minerals of the amphibole-bearing xenolith. The δ18Ocpx correlations with clinopyroxene modal abundance and geochemical parameters (e.g. Mg# and Cr#) suggest a possible influence of partial melting on oxygen isotope composition. Thermobarometric estimates define a geotherm of 80°C/GPa for the refractory lithosphere of NVL, in a pressure range between 1 and 2.5 GPa. Clinopyroxene microlites of melt pockets provide P–T data close to the anhydrous peridotite solidus and confirm that they originated from heating and decompression during transport in the host magma. All these geothermometric data constrain the mantle potential temperature to values of 1250–1350°C, consistent with the occurrence of mantle decompressional melting in a transtensive tectonic regime for the Ross Sea region.  相似文献   

19.
Summary An experimental study on the phase relationships of three potassium-rich ultramafic rocks from the Damodar Valley, Gondawana basins, has been performed under upper mantle P–T conditions (1.0–2.5 GPa, 700–1200 °C). The Mohanpur lamproite and Satyanarayanpur minette, both from the Raniganj basins, have been investigated with the addition of 15 wt% H2O. No water was added in the experiments done on an olivine minette from the Jarangdih coal mine, Bokaro Basin, which originally contains 15 wt% CO2 and 2.86 wt% H2O. In all cases, olivine is the liquidus phase followed by phlogopite. The subsolidus assemblage for the three rocks is a phlogopite-bearing harzburgite, associated with apatite, Mg-ilmenite and carbonates for the Jarangdih rock; apatite, chromian spinel and carbonates and priderite (only between 1.0 and 1.2 GPa) in the case of the Mohanpur lamproite, and finally apatite, chromian spinel, rutile, and carbonate in the Satyanarayanpur sample. Although orthopyroxene is absent in the natural potassium-rich ultramafic rocks, its presence in the run products of the Jarangdih rock is possibly related to a reaction between olivine and a CO2-bearing fluid phase. The presence of orthopyroxene in the run products of Mohanpur and Satyanarayanpur rocks may be due to a reaction between K-feldspar, olivine and a vapour phase to produce phlogopite and orthopyroxene. On the basis of present experimental investigation and isotopic studies made by previous investigators, it has been suggested that these K-rich rocks have crystallized from melts derived by vein-plus-wall-rock melting of a phlogopite-bearing harzburgite source rock. Received December 15, 1999; revised version accepted June 17, 2001  相似文献   

20.
A spinel lherzolite body outcrops as a fault block on the north coast of East Timor. The most common rock‐type in this body is a clinopyroxene‐poor lherzolite, but there are smaller proportions of clinopyroxene‐rich lherzolite and harzburgite. The dominant mineral assemblage is olivine, orthopyroxene, clinopyroxene, spinel and calcic amphibole. Low‐temperature hydrous minerals are restricted in distribution.

The chemical composition of the peridotite is closely similar to mantle‐derived spinel lherzolite nodules and some alpine peridotites. The internal variation of the peridotite suggests variable depletion by some combination of partial melting and liquid contamination of the residua, in a CO2‐rich system at 10–15 kb (1000–1500 MPa).

Three solid‐state events are indicated by geothermometry. The earliest event is recorded by coarse exsolution lamellae of orthopyroxene in clinopyroxene porphyro‐clasts. These grains formed at 1250°C. A later granoblastic texture equilibrated at 1100°C, and finally the rocks were mylonitised at 800–1000°C and 8–20 kb (800–2000 MPa).

The peridotite is probably a sample of the oceanic mantle trapped between the Java Trench and the Inner Banda Arc. Its emplacement on Timor is not related to obduction, but may be due to transcurrent faulting between the Asian and Australian plates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号