首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The Campi Flegrei hosts numerous monogenetic vents inferred to be younger than the 15 ka Neapolitan Yellow Tuff. Sanidine crystals from the three young Campi Flegrei vents of Fondi di Baia, Bacoli and Nisida were dated using 40Ar/39Ar geochronology. These vents, together with several other young edifices, occur roughly along the inner border of the Campi Flegrei caldera, suggesting that the volcanic conduits are controlled by caldera-bounding faults. Plateau ages of ∼9.6 ka (Fondi di Baia), ∼8.6 ka (Bacoli) and ∼3.9 ka (Nisida) indicate eruptive activity during intervals previously interpreted as quiescent. A critical revision, involving calendar age correction of literature 14C data and available 40Ar/39Ar age data, is presented. A new reference chronostratigraphic framework for Holocene Phlegrean activity, which significantly differs from the previously adopted ones, is proposed. This has important implications for understanding the Campi Flegrei eruptive history and, ultimately, for the evaluation of related volcanic risk and hazard, for which the inferred history of its recent activity is generally taken into account.  相似文献   

2.
Caldera eruptions are among the most hazardous of natural phenomena. Many calderas around the world are active and are characterised by recurrent uplift and subsidence periods due to the dynamics of their magma reservoirs. These periods of unrest are, in some cases, accompanied by eruptions. At Campi Flegrei caldera (CFc), which is an area characterised by very high volcanic risk, the recurrence of this behaviour has stimulated the study of the rock rheology around the magma chamber, in order to estimate the likelihood of an eruption. This study considers different scenarios of shallow crustal behaviour, taking into account the earlier models of CFc ground deformation and caldera eruptions, and including recent geophysical investigations of the area. A semi-quantitative evaluation of the different factors that lead to magma storage or to its eruption (such as magma chamber size, wall-rock viscosity, temperature, and regional tectonic strain rate) is reported here for elastic and viscoelastic conditions. Considering the large magmatic sources of the CFc ignimbrite eruptions (400–2,000 km3) and a wall-rock viscosity between 1018 and 1020 Pa s, the conditions for eruptive failure are difficult to attain. Smaller source dimensions (a few cubic kilometres) promote the condition for fracture (eruption) rather than for the flow of wall rock. We also analyse the influence of the regional extensional stress regime on magma storage and eruptions, and the thermal stress as a possible source of caldera uplift. The present study also emphasises the difficulty of distinguishing eruption and non-eruption scenarios at CFc, since an unambiguous model that accounts for the rock rheology, magma-source dimensions and locations and regional stress field influences is still lacking.  相似文献   

3.
The central Campanian Plain is dominated by the structural depression of Acerra whose origin is tectonic, but may have been enlarged and further depressed after the eruption of the Campanian Ignimbrite (42-25 ka). The deposits of the Campanian Ignimbrite are possibly the results of multiple eruptions with huge pyroclastic deposits that covered all the Campanian Plain.The more recent activity of Vesuvius, Campi Flegrei and Procida occurred on the borders of Acerra depression and resulted from a reactivation of regional faults after the Campanian Ignimbrite cycle. The activity of Vesuvius produced the building of a stratovolcano mostly by effusive and plinian explosive eruptions. The Campi Flegrei area, on the contrary, was dominated by the eruption of the Neapolitan Yellow Tuff at 12 ka that produced a caldera collapse of the Gulf of Pozzuoli. The caldera formation controlled the emplacement of the recent activity of Campi Flegrei and the new volcanoes were formed only within the caldera or along its rim.  相似文献   

4.
The Campi Flegrei caldera is a restless structure affected by general subsidence and ongoing resurgence of its central part. The persistent activity of the system and the explosive character of the volcanism lead to a very high volcanic hazard that, combined with intense urbanization, corresponds to a very high volcanic risk. One of the largest sources of uncertainty in volcanic hazard/risk assessment for Campi Flegrei is the spatial location of the future volcanic activity. This paper presents and discusses a long-term probability hazard map for vent opening in case of renewal of volcanism at the Campi Flegrei caldera, which shows the spatial conditional probability for the next vent opening, given that an eruption occurs. The map has been constructed by building a Bayesian inference scheme merging prior information and past data. The method allows both aleatory and epistemic uncertainties to be evaluated. The probability map of vent opening shows that two areas of relatively high probability are present within the active portion of the caldera, with a probability approximately doubled with respect to the rest of the caldera. The map has an immediate use in evaluating the areas of the caldera prone to the highest volcanic hazard. Furthermore, it represents an important ingredient in addressing the more general problem of quantitative volcanic hazards assessment at the Campi Flegrei caldera.  相似文献   

5.
A new pyroclastic stratigraphy is presented for the island of Ischia, Italy, for the period ∼75–50 ka BP. The data indicate that this period bore witness to the largest eruptions recorded on the island and that it was considerably more volcanically active than previously thought. Numerous vents were probably active during this period. The deposits of at least 10 explosive phonolite to basaltic-trachyandesite eruptions are described and interpreted. They record a diverse range of explosive volcanic activity including voluminous fountain-fed ignimbrite eruptions, fallout from sustained eruption columns, block-and-ash flows, and phreatomagmatic eruptions. Previously unknown eruptions have been recognised for the first time on the island. Several of the eruptions produced pyroclastic density currents that covered the whole island as well as the neighbouring island of Procida and parts of the mainland. The morphology of Ischia was significantly different to that seen today, with edifices to the south and west and a submerged depression in the centre. The largest volcanic event, the Monte Epomeo Green Tuff (MEGT) resulted in caldera collapse across all or part of the island. It is shown to comprise at least two thick intracaldera ignimbrite flow-units, separated by volcaniclastic sediments that were deposited during a pause in the eruption. Extracaldera deposits of the MEGT include a pumice fall deposit emplaced during the opening phases of the eruption, a widespread lithic lag breccia outcropping across much of Ischia and Procida, and a distal ignimbrite in south-west Campi Flegrei. During this period the style and magnitude of volcanism was dictated by the dynamics of a large differentiated magma chamber, which was partially destroyed during the MEGT eruption. This contrasts with the small-volume Holocene and historical effusive and explosive activity on Ischia, the timing and distribution of which has been controlled by the resurgence of the Monte Epomeo block. The new data contribute to a clearer understanding of the long-term volcanic and magmatic evolution of Ischia.  相似文献   

6.
Digital marine seismic reflection data acquired in 1973 in the Bay of Pozzuoli, and recently reprocessed, were used to study the volcanological evolution of the marine sector of Campi Flegrei Caldera during the last 37 ka. In order to gain more information, interpretation also involved estimation of the "pseudo-velocity" and the "pseudo-density" from the resistivity logs of two onshore deep exploration wells. The main results are: (1) discovery of ancient pre-18 ka and post-37 ka submarine and mainly effusive volcanic activity, along coeval emission centers located at the edges of Campi Flegrei Caldera; (2) confirmation that the caldera collapse in the marine sector of Campi Flegrei seems strongly controlled by regional NE–SW and NW–SE structural discontinuities; (3) the finding of at least two episodes of collapse in the bay; and (4) identification of a post-18 ka volcanic deflation phase that has caused about 150–200 m of subsidence in the central sector of the Bay of Pozzuoli in the last 18 ka.Editorial responsibilty: T. Druitt  相似文献   

7.
Ischia is an active volcanic island in the Gulf of Naples whose history has been dominated by a caldera-forming eruption (ca. 55 ka) and resurgence phenomena that have affected the caldera floor and generated a net uplift of about 900 m since 33 ka. The results of new geomorphological, stratigraphical and textural investigations of the products of gravitational movements triggered by volcano-tectonic events have been combined with the information arising from a reinterpretation of historical chronicles on natural phenomena such as earthquakes, ground deformation, gravitational movements and volcanic eruptions. The combined interpretation of all these data shows that gravitational movements, coeval to volcanic activity and uplift events related to the long-lasting resurgence, have affected the highly fractured marginal portions of the most uplifted Mt. Epomeo blocks. Such movements, mostly occurring since 3 ka, include debris avalanches; large debris flows (lahars); smaller mass movements (rock falls, slumps, debris and rock slides, and small debris flows); and deep-seated gravitational slope deformation. The occurrence of submarine deposits linked with subaerial deposits of the most voluminous mass movements clearly shows that the debris avalanches impacted on the sea. The obtained results corroborate the hypothesis that the behaviour of the Ischia volcano is based on an intimate interplay among magmatism, resurgence dynamics, fault generation, seismicity, slope oversteepening and instability, and eruptions. They also highlight that volcano-tectonically triggered mass movements are a potentially hazardous phenomena that have to be taken into account in any attempt to assess volcanic and related hazards at Ischia. Furthermore, the largest mass movements could also flow into the sea, generating tsunami waves that could impact on the island’s coast as well as on the neighbouring and densely inhabited coast of the Neapolitan area.  相似文献   

8.
Geodetic observations at Campi Flegrei caldera were initiated in 1905. Historical observations and the few measurements made before 1970 suggested a deflationary trend. Since 1969, the ground started to inflate during two major uplift episodes in 1969–72 and 1982–1985. We collected and reanalyzed all available punctual observations of vertical ground displacement taken in the period 1905–2009 with special attention to the period before 1969, to reconstruct in greater detail the deformation history of the caldera. We make use of the many photographs of the sea level in a roman ruin (the Serapeum Market) taken during the period between 1905 and 1969 to infer with more accuracy its relative height with respect to the sea level. We identify a previously disregarded major episode of ground uplift occurred between 1950 and 1952 with a maximum uplift of about 73 cm. This finding suggests that Campi Flegrei is currently experiencing a prolonged period of unrest longer than previously thought. The higher seismicity associated with the later episodes of unrest suggests that the volcano has approached an instability threshold, which may eventually result in a volcanic eruption.  相似文献   

9.
The ground level in the Campi Flegrei caldera has never been stationary in the last 2,000 years. Historical data, and a nearly continuous tide-gauge record 20 years long, show that uplift and sinking have taken place on a variety of different time scales. In addition, the Campi Flegrei volcanic system appears to be sensitive to weak external forces such as tidal forces. We infer from these elements that the Campi Flegrei system is far from thermodynamic equilibrium, and suggest that its dynamics may be chaotic. We analyze the short-term variations of the ground level, and find that they can be described in a low-dimensional phase space. The dynamics of the Campi Flegrei system seems to have been phase-locked with tidal forces in the period following the 1970–1972 climax, and to have undergone a transition to chaos in some moment that preceded the presently continuing sinking phase.  相似文献   

10.
A method is presented to analyze the effect of stress-strain discontinuities on the ground deformations generated by a pressure source. This is meant to simulate the effects due to caldera structures, likely to present fractured zones at the borders of the collapsed area. A method originally developed by Crouch (1976) to solve plane-strain problems has been used to simulate deformation curves for several source and discontinuity geometries. The main result is that the location of the discontinuities controls the extension of the deformed zone, and always reduces it with respect to a continuous medium. With respect to a homogeneous medium the presence of lateral discontinuities also acts towards lowering the overpressure required to produce a given amount of deformation. These results indicate that, when analyzing ground deformations in calderas, the use of classical methods involving continuous media should be avoided, or at least taken with caution. These methods, in fact, assume that the extension of the deformed zone is only linked to the source depth.Some examples of ground deformations in active calderas have been analyzed in the framework of the results obtained from theoretical modeling. Four calderas recently affected by ground deformations have been considered: Rabaul (New Guinea), Campi Flegrei (Italy), Long Valley and Yellowstone (U.S.A.). The effects of collapsed structures on the deformation field are possibly evidenced for all the four calderas. At Rabaul and Campi Flegrei, the fracture systems mainly affecting the ground deformations probably represent younger, innermost collapses and are well evidenced by seismicity studies. Ground deformations are here concentrated in an area much smaller than the one enclosed by geologically visible caldera rims. In particular, at Rabaul, the effect of the innermost collapse can explain the high concentration of the uplift in the period 1971–1985, previously modeled by a very shallow source (1–3 km) in terms of overpressure in the main magma chamber, probably located at 4–5 km of depth.  相似文献   

11.
the Neapolitan Yellow Tuff (NYT) (12 ka BP) is considered to be the product of a single eruption. Two different members (A and B) have been identified and can be correlated around the whole of Campi Flegrei. Member A is made up of at least 6 fall units including both ash and lapilli horizons. The basal stratified ash unit (A1) is interpreted to be a phreatoplinian fall deposit, since it shows a widespread dispersal (>1000 km2) and a constant thickness over considerable topography. The absence of many lapilli fall units in proximal and medial areas testifies to the erosive power of the intervening pyroclastic surges. The overlying member B was formed by many pyroclastic flows, radially distributed around Campi Flegrei, that varied widely in their eruptive and emplacement mechanisms. In some of the most proximal exposures coarse scoria and lithic-rich deposits, sometimes welded, have been identified at the base of member B. Isopach and isopleth maps of fall-units, combined with the distribution of the coarse proximal facies, indicate that the eruptive vent was located in the NE area of Campi Flegrei. It is considered that the NYT eruption produced collapse of a caldera approximately 10 km diameter within Campi Flegrei. The caldera rim, located by geological and borehole evidence, is now largely buried by the products of more recent eruptions. Initiation of caldera collapse may have been contemporaneous with the start of the second phase (member B). It is suggested that there was a single vent throughout the eruption rather than the development of multiple or ring vents. Chemical data indicate that different levels of a zoned trachyte-phonolite magma chamber were tapped during the eruption. The minimum volume of the NYT is calculated to be about 50 km3 (DRE), of which 35 km3 (70%) occurs within the caldera.  相似文献   

12.
Tephra fallout hazard assessment at the Campi Flegrei caldera (Italy)   总被引:4,自引:2,他引:2  
Tephra fallout associated with renewal of volcanism at the Campi Flegrei caldera is a serious threat to the Neapolitan area. In order to assess the hazards related with tephra loading, we have considered three different eruption scenarios representative of past activity: a high-magnitude event similar to the 4.1 ka Agnano-Monte Spina eruption, a medium-magnitude event, similar to the ∼3.8 ka Astroni 6 eruption, and a low-magnitude event similar to the Averno 2 eruption. The fallout deposits were reconstructed using the HAZMAP computational model, which is based on a semi-analytical solution of the two-dimensional advection–diffusion–sedimentation equation for volcanic tephra. The input parameters into the model, such as total erupted mass, eruption column height, and bulk grain-size and components distribution, were obtained by best-fitting field data. We carried out tens of thousands simulations using a statistical set of wind profiles, obtained from NOAA re-analysis. Probability maps, relative to the considered scenarios, were constructed for several tephra loads, such as 200, 300 and 400 kg/m2. These provide a hazard assessment for roof collapses due to tephra loading that can be used for risk mitigation plans in the area.  相似文献   

13.
In order to zone the territory of Campania Region (southern Italy) with regard to the hazard related to future explosive activity of Somma-Vesuvio, Campi Flegrei, and Ischia Island, we drew a multi-source hazard map for tephra and pyroclastic flows. This map, which merges the areas possibly endangered by the three volcanic sources, takes into account a large set of tephra fall and pyroclastic flow events that have occurred in the last 10 ka. In detail, for fall products at Campi Flegrei and Somma-Vesuvio we used the dispersal of past eruption products as deduced by field surveys and their recurrence over the whole area. For pyroclastic flows, the field data were integrated with VEI = 4 simulated events; about 100 simulations sourcing from different points of the area were performed, considering the different probability of vent opening. The spatial recurrence of products of both past eruptions and simulated events was used to assign a weight to the area endangered by the single volcanic sources. The sum of these weights in the areas exposed to the activity of two sources and/or to different kinds of products was used to draw a hazard map, which highlights the spatial trend and the extent of the single equivalent classes at a regional scale. A multi-source risk map was developed for the same areas as the graphic result of the product of volcanic hazard and exposure, assessed in detail from a dasymetric map. The resulting multi-source hazard and risk maps are essential tools for communication among scientists, local authorities, and the public, and may prove highly practical for long-term regional-scale mitigation planning.  相似文献   

14.
 The Woods Mountain volcanic center is a well-exposed, mildly alkaline volcanic center that formed during the Miocene in southeastern California. Detailed geologic mapping and geochemical studies have distinguished three major volcanic phases: precaldera, caldera forming, and postcaldera. Geologic mapping indicates that caldera formation occurred incrementally during eruptions of three large ignimbrites and continued into a period of voluminous intracaldera lava-flow eruptions. Rhyolitic ignimbrites and lava flows within the caldera are associated with large amplitude, circular gravity, and magnetic minima that are among the most prominent gravity and magnetic anomalies in southeastern California. Analysis of a Bouguer gravity anomaly map, reduced-to-the-pole magnetic intensity map, and three-dimensional gravity and magnetic models indicates that there is a single, funnel- to bowl-shaped caldera approximately 4 km thick and approximately 10 km wide at the surface. This model is consistent with other siliceous, pyroclastic-filled calderas on continental crust, except that most siliceous volcanic centers associated with more than one eruption are characterized by more than one caldera. Received: 20 December 1997 / Accepted: 15 October 1998  相似文献   

15.
The Campi Flegrei (Campanian Region, Italy) experienced two cataclysmic caldera-forming eruptions which produced the Campanian Ignimbrite (39 ka, CI) and the Neapolitan Yellow Tuff (15 ka, NYT). We studied the minor eruptions before both these large events to understand magma chamber evolution leading towards such catastrophic eruptions. Major, trace element, and Sr and Nd isotope compositions of pre-Campanian Ignimbrite and pre-Neapolitan Yellow Tuff products define distinct geochemical groups, which are here interpreted as distinct magma batches. These batches do not show any transitional trend towards the CI and NYT eruptions. The CI and NYT systems are decoupled geochemically and isotopically. At least one of the pre-CI and one of the pre-NYT erupted magma batches qualifies as mixing endmembers for the large CI and NYT eruptions, and thus, must have been stored in reservoirs for some time to remain available for the CI and NYT eruptions. The least evolved, isotopically distinct magma compositions that are typical of the last phases of the NYT and CI eruptions did not occur before caldera-forming events. Based on the new data, we propose the following scenario: Multiple magma chambers with distinct compositions existed below the Campi Flegrei before the CI and NYT eruptions and remained generally separated for some time unless new magma was recharged. In each case, one of the residing magma reservoirs was recharged by a new large-volume magma input of intermediate composition from a deeper differentiating magma reservoir. This may have triggered the coalescence of the previously separated reservoirs into one large chamber which fed the cataclysmic caldera-forming eruption. Large magma chambers in the Campi Flegrei may therefore be ephemeral features, interrupted by periods of evolution in individual, separated magma reservoirs.  相似文献   

16.
 Diverse subsidence geometries and collapse processes for ash-flow calderas are inferred to reflect varying sizes, roof geometries, and depths of the source magma chambers, in combination with prior volcanic and regional tectonic influences. Based largely on a review of features at eroded pre-Quaternary calderas, a continuum of geometries and subsidence styles is inferred to exist, in both island-arc and continental settings, between small funnel calderas and larger plate (piston) subsidences bounded by arcuate faults. Within most ring-fault calderas, the subsided block is variably disrupted, due to differential movement during ash-flow eruptions and postcollapse magmatism, but highly chaotic piecemeal subsidence appears to be uncommon for large-diameter calderas. Small-scale downsag structures and accompanying extensional fractures develop along margins of most calderas during early stages of subsidence, but downsag is dominant only at calderas that have not subsided deeply. Calderas that are loci for multicyclic ash-flow eruption and subsidence cycles have the most complex internal structures. Large calderas have flared inner topographic walls due to landsliding of unstable slopes, and the resulting slide debris can constitute large proportions of caldera fill. Because the slide debris is concentrated near caldera walls, models from geophysical data can suggest a funnel geometry, even for large plate-subsidence calderas bounded by ring faults. Simple geometric models indicate that many large calderas have subsided 3–5 km, greater than the depth of most naturally exposed sections of intracaldera deposits. Many ring-fault plate-subsidence calderas and intrusive ring complexes have been recognized in the western U.S., Japan, and elsewhere, but no well-documented examples of exposed eroded calderas have large-scale funnel geometry or chaotically disrupted caldera floors. Reported ignimbrite "shields" in the central Andes, where large-volume ash-flows are inferred to have erupted without caldera collapse, seem alternatively interpretable as more conventional calderas that were filled to overflow by younger lavas and tuffs. Some exposed subcaldera intrusions provide insights concerning subsidence processes, but such intrusions may continue to evolve in volume, roof geometry, depth, and composition after formation of associated calderas. Received: 13 February 1997 / Accepted: 9 August 1997  相似文献   

17.
The volcanological history of Campi Flegrei suggests that the most frequent eruptions are characterized by the emplacement of pyroclastic flow and surge deposits erupted from different vents scattered over a 150-km2 caldera. The evaluation of volcanic risk in volcanic fields is complex because of the lack of a central vent. To approach this problem, we subdivided the entire area of Campi Flegrei into a regular grid and evaluated the relative spatial probability of opening of vents based on geological, geophysical and geochemical data. We evaluated the volcanic risk caused by pyroclastic flows based on the formula proposed by UNESCO (1972), R=H×V×Va, where H is the hazard, V is the vulnerability and Va is the value of the elements at risk. The product H×V was obtained by performing simulations of type eruptions centered in each cell of the grid. The simulation is based on the energy cone scheme proposed by Sheridan and Malin [J. Volcanol. Geotherm. Res. 17 (1983) 187–202], hypothesizing a column collapse height of 100 m for eruptions of VEI=3 and 300 m for eruptions of VEI=4 with a slope angle of 6°. Each simulation has been given the relative probability value associated with the corresponding cell. We made use of the GIS software ArcView 3.2 to evaluate the intersection between the energy cone and the topography. The superposition of the areas invaded by pyroclastic flows (124 simulations for VEI=3 and 37 for VEI=4) was used to obtain the relative hazard map of the area. The relative volcanic risk map is obtained by superimposing the urbanization maps.  相似文献   

18.
Campi Flegrei is a caldera complex located west of Naples, Italy. The last eruption occurred in 1538, although the volcano has produced unrest episodes since then, involving rapid and large ground movements (up to 2 m vertical in two years), accompanied by intense seismic activity. Surface ground displacements detected by various techniques (mainly InSAR and levelling) for the 1970 to 1996 period can be modelled by a shallow point source in an elastic half-space, however the source depth is not compatible with seismic and drill hole observations, which suggest a magma chamber just below 4 km depth. This apparent paradox has been explained by the presence of boundary fractures marking the caldera collapse. We present here the first full 3-D modelling for the unrest of 1982–1985 including the effect of caldera bordering fractures and the topography. To model the presence of topography and of the complex caldera rim discontinuities, we used a mixed boundary elements method. The a priori caldera geometry is determined initially from gravimetric modelling results and refined by inversion. The presence of the caldera discontinuities allows a fit to the 1982–1985 levelling data as good as, or better than, in the continuous half-space case, with quite a different source depth which fits the actual magma chamber position as seen from seismic waves. These results show the importance of volcanic structures, and mainly of caldera collapses, in ground deformation episodes.  相似文献   

19.
The Phlegraean Fields (Campi Flegrei) caldera in Italy had one well-documented eruption during the historical period (1538). Another eruption at Solfatara in 1198 is reported by sixteenth and seventeenth-century scholars, and has been commonly regarded as uncertain. In this paper we first discuss the circumstantial evidence and report of this eruption, then discuss the relevance of drawings made in the thirteenth through the fifteenth century illustrating the Solfatara and the primary literary and historical sources describing the site. We infer that the eruption was at most a minor phreatic explosion and we explore the conditions that may have led to the occurrence of this event and the establishment of a small crater pool subsequently used as a thermal bath from the later Middle Ages onward.  相似文献   

20.
Volcanological analysis of the 10 000 yr –1538 explosive activity at Campi Flegrei shows that the most common explosive eruptions are characterized by the emplacement of flow or surge deposits, originating from the interaction between magma and shallow and/or sea water. The minimum volumes of pyroclastic products range between 0.04 and 0.7 km3; the proximal areas covered by these products range from 3–4 to 40–50 km2. The pyroclastic flow and surge deposits occurring inside the caldera have been strongly controlled by pre-existent morphology; because of this, the area of present Napoli city was blanketed by approximately 5 m of pyroclastic deposits, during the last 5000 yr.Previous analysis suggests that the presence of even very low topographic obstacles may influence pyroclastic density current run out such that future eruptive deposits would mainly be confined inside the caldera rim. We suggest that a future eruption at Campi Flegrei would not seriously involve the urbanized area of Napoli city located on the hills. On the contrary, the plains located on the eastern side of the caldera (Fuorigrotta, Bagnoli) would be the most damaged area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号