首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper introduces a novel ESPRIT-based closed form source localization algorithm applicable to arbitrarily spaced three-dimensional arrays of vector hydrophones, whose locations need not be known. Each vector hydrophone consists of two or three identical but orthogonally oriented velocity hydrophones plus one pressure hydrophone, all spatially co-located in a point-like geometry. A velocity hydrophone measures one Cartesian component of the incident sonar wavefield's velocity-vector, whereas a pressure hydrophone measures the acoustic wavefield's pressure. Velocity-hydrophone technology is well established in underwater acoustics and a great variety of commercial models have long been available. ESPRIT is realized herein by exploiting the nonspatial inter-relations among each vector hydrophone's constituent hydrophones, such that ESPRIT's eigenvalues become independent of array geometry. Simulation results verify the efficacy and versatility of this innovative scheme  相似文献   

2.
Aperture extension is achieved in this novel ESPRIT-based two-dimensional angle estimation scheme using a uniform rectangular array of vector hydrophones spaced much farther apart than a half-wavelength. A vector hydrophone comprises two or three spatially co-located, orthogonally oriented identical velocity hydrophones (each of which measures one Cartesian component of the underwater acoustical particle velocity vector-field) plus an optional pressure hydrophone. Each incident source's directions-of-arrival are determined from the source's acoustical particle velocity components, which are extracted by decoupling the data covariance matrix's signal-subspace eigenvectors using the lower dimensional eigenvectors obtainable by ESPRIT. These direction-cosine estimates are unambiguous but have high variance; they are used as coarse references to disambiguate the cyclic phase ambiguities in ESPRIT's eigenvalues when the intervector-hydrophone spacing exceeds a half-wavelength. In one simulation scenario, the estimation standard deviation decreases with increasing intervector-hydrophone spacing up to 12 wavelengths, effecting a 97% reduction in the estimation standard deviation relative to the half-wavelength case. This proposed scheme and the attendant vector-hydrophone array outperform a uniform half-wavelength spaced pressure-hydrophone array with the same aperture and slightly greater number of component hydrophones by an order of magnitude in estimation standard deviation. Other simulations demonstrate how this proposed method improves underwater acoustic communications link performance. The virtual array interpolation technique would allow this proposed algorithm to be used with irregular array geometries  相似文献   

3.
A vector hydrophone is composed of two or three spatially collocated but orthogonally oriented velocity hydrophones plus an optional collocated pressure hydrophone. A vector hydrophone may form azimuth-elevation beams that are invariant with respect to the sources' frequencies, bandwidths and radial location (in near field as opposed to the far field). This paper characterizes the spatial matched filter beam patterns (a.k.a. fixed or conventional or maximum signal-to-noise ratio beam patterns) and the minimum variance distortionless response (MVDR) beam patterns associated with a single underwater acoustic vector hydrophone distant from any reflecting boundary.  相似文献   

4.
This paper introduces a novel blind MUSIC-based (MUltiple SIgnal Classification) source localization algorithm applicable to an arbitrarily spaced three-dimensional array of vector hydrophones, each of which comprises two or more co-located and orthogonally oriented velocity hydrophones plus an optional pressure hydrophone. This proposed algorithm: (1) exploits the incident sources' angular diversity in the underwater acoustic particle velocity field; (2) adaptively forms velocity-field beams at each vector-hydrophone; (3) uses ESPRIT to self-generate coarse estimates of the sources' arrival angles to start off its MUSIC-based iterative search with no a priori source information; and (4) automatically pairs the x-axis direction-cosine estimates with the y-axis direction-cosine estimates. Simulation results verify the efficacy of this proposed scheme  相似文献   

5.
于砚廷  苏伟  王振  张超  郑轶 《海岸工程》2019,38(2):96-104
随着减振降噪及消声技术的发展,水声探测技术逐渐向低频段延伸。相应地,对适用于超低频频段且具有高灵敏度的水听器需求也越来越迫切。该研究基于有限元理论,对4种形式的声压水听器进行了灵敏度对比分析,构建了超低频、高灵敏度声压水听器的系统模型;通过仿真,得到了其前二阶模态,空气及水中的导纳曲线,以及声压接收灵敏度,仿真结果表明,超低频频段内,该研究设计的声压水听器在空气及水中的频响曲线平坦。基于仿真结果进行了样机制作,对所研制的实物样机进行了实验测试,测试结果表明该种声压水听器具有良好的超低频响应特性以及较高的灵敏度。通过对实物样机的测试,验证了其实用性。  相似文献   

6.
根据仿生鱼类侧线细胞纤毛原理,设计、制造并测试了一种新型双纤毛压阻水听器,用于检测水下声信号.与传统的压电水听器相比,这种水听器具有体积小和矢量性的优点.利用聚氨酯仿生细胞壁作为透声帽,利用硅油模拟细胞液和压阻微梁模拟感觉纤毛三层拾振结构,从而提高纤毛式水听器的可靠性.封装以后的纤毛式水听器采用振动台和矢量水听器校准系...  相似文献   

7.
The authors compare the signal-to-noise ratios obtained on bottomed seismometers, bottomed hydrophones, and buried seismometers from near-surface explosions in the Ngendei Expedition. The data were recorded in 5.5-km-deep water in the south central Pacific Ocean with a triaxial borehole seismograph and four triaxial ocean-bottom seismographs having externally mounted hydrophones. At ranges less than 35 km, the data indicate that the ocean bottom seismometer is a superior signal detector than the ocean-bottom hydrophone, and that the subbottom seismometer is superior in performance to the ocean-bottom seismometer. Above 4 Hz, the seismometer appears to have a 10-dB signal-to-noise advantage over the hydrophone for surface explosions at ranges less than 30 km  相似文献   

8.
The impact of rain and spray on the ocean disturbs the sea surface and generates underwater ambient noise. The short scale roughness is influenced by impacting drops due to the momentum transfer. Radar and sonar signals are scattered by the short elements of the sea surface. Spray and rain impact change their characteristics, and consequently affect radar and sonar backscatter. In situ measurements of rain and spray impact are necessary to study their effects on the sea surface. Accurate sea measurements of rain momentum fluxes and drop size distributions are a complex problem, especially on buoys. A new measuring technique has been developed using hydrophones. Exposed to precipitation, these instruments are affected directly by the impact of rain. A drop falling on the hydrophone deforms its surface and is sensed by a piezoelectric transducer. The voltage output of the sensor is a rapidly decaying oscillation. The integral value of this signal is a measure of the drop momentum, and the drop size can be deduced. Laboratory studies of defined drops as well as field measurements of natural rain have shown that hydrophones can be used to determine drop momentums and drop size distributions. Based on simultaneous rain measurements by a Joss-Waldvogel Disdrometer and a hydrophone, an analytical function has been derived which relates drop size and hydrophone voltage output  相似文献   

9.
Measurements of ambient noise spectra in the south Norwegian Sea   总被引:1,自引:0,他引:1  
Measurements have been made of ambient sea noise north of the Shetland Islands in the southern part of the Norwegian Sea. Shore-terminated, omnidirectional hydrophones, bottomed in 240 and 350 fathoms, were used. Twenty minute samples of single hydrophone outputs were recorded during daylight hours about every 3 days over a 4-year period from the summer of 1957 to 1961. Amplitude levels were measured at selected frequencies in the band 30 cps to 1 kc. Matching observations of wind and weather were coordinated with the noise data. The noise spectrum was found to be relatively flat compared with the spectrum measured in deep ocean areas of the western North Atlantic. Also, the pressure levels at frequencies above 100 cps are considerably higher. Seasonal changes were observed in the spectrum below 400 cps. The annual excursion in level from winter high to midsummer low was about 5 db at 50 cps and 3.5 db at 100 cps. Although no seasonal changes occurred in the upper spectrum, day-to-day variations in level at the higher frequencies generally followed patterns of change in local weather. There was good correlation between wind velocity and ambient noise at 800 and at 1000 cps. The character of sea-noise in the area seems to be shaped to two factors. First, a combination of thermal structure and a very gradual bottom slope result in high propagation losses. This in turn restricts the acoustic access at a bottomed hydrophone to a localized field. Second, except for a few summer calms, weather in the islands is severe, and strong winds and high sea states are sustained throughout the year.  相似文献   

10.
A seismic reflection profiling system utilising a surface air gun source and a deep-towed horizontal hydrophone streamer has been developed for high resolution studies in the deep ocean. The instrument is deployed on a conventional armoured single conductor cable at depths of up to 6 km. Seismic data from the 30 m long streamer is wide-band frequency modulated up the towing cable to the ship together with a high frequency monitor from a 3.5 kHz echo-sounder mounted on the instrument package. The geometry of the system allows an order of magnitude improvement in spatial resolution compared with that obtained from standard surface source/receiver configurations. The summed hydrophones of the streamer attenuate cable-generated mechanical noise, and the 3.5 kHz sea-surface and bottom reflected returns provide receiver positioning information. The system has been successfully deployed at depths of 5 km in the Vema Fracture Zone in the North Atlantic, and although initially difficulties were experienced in balancing the streamer, subsequent profiles across the transform fault show details of sub-bottom structure which on conventional surface records are generally masked by diffraction hyperbolae.  相似文献   

11.
调研了近几年光纤传感器在海洋探测方面的研究进展,主要包括测量海水温度、压力、盐度、叶绿素、pH值和溶解氧的相关光纤传感器以及光纤水听器。简要介绍了光纤传感器的基本原理、结构及性能,同时跟踪了国内外相关的最新研究进展,并与传统的测量方法进行了比较,分析得出光纤传感器是对现有传统海洋探测器的重要补充,并在一些探测领域具有独特的优势。文章最后,探讨了光纤传感技术的未来发展趋势,认为在海洋温度、压力、叶绿素、水听器等领域可能会率先突破技术瓶颈并实现商用,同时提出了未来海洋光纤探测技术新的研究方向。  相似文献   

12.
Sound from an airborne source travels to a receiver beneath the sea surface via a geometric path that is most simply described using ray theory, where the atmosphere and the sea are assumed to be isospeed sound propagation media separated by a planar surface (the air-sea interface). This theoretical approach leads to the development of a time-frequency model for the signal received by a single underwater acoustic sensor and a time-delay model for the signals received by a pair of spatially separated underwater acoustic sensors. The validity of these models is verified using spatially averaged experimental data recorded from a linear array of hydrophones during various transits of a turboprop aircraft. The same approach is used to solve the inverse time-frequency problem, that is, estimation of the aircraft's speed, altitude, and propeller blade rate given the observed variation with time of the instantaneous frequency of the received signal. Similarly, the inverse time-delay problem is considered whereby the speed and altitude of the aircraft are estimated using the differential time-of-arrival information from each of two adjacent pairs of widely spaced hydrophones (with one hydrophone being common to each pair). It is found that the solutions to each of the inverse problems provide reliable estimates of the speed and altitude of the aircraft, with the inverse time-frequency method also providing an estimate that closely matches the actual propeller blade rate  相似文献   

13.
A unique whale call with 50–52 Hz emphasis from a single source has been tracked over 12 years in the central and eastern North Pacific. These calls, referred to as 52-Hz calls, were monitored and analyzed from acoustic data recorded by hydrophones of the US Navy Sound Surveillance System (SOSUS) and other arrays. The calls were noticed first in 1989, and have been detected and tracked since 1992. No other calls with similar characteristics have been identified in the acoustic data from any hydrophone system in the North Pacific basin. Only one series of these 52-Hz calls has been recorded at a time, with no call overlap, suggesting that a single whale produced the calls. The calls were recorded from August to February with most in December and January. The species producing these calls is unknown. The tracks of the 52-Hz whale were different each year, and varied in length from 708 to 11,062 km with travel speeds ranging from 0.7 to 3.8 km/h. Tracks included (A) meandering over short ranges, (B) predominantly west-to-east movement, and (C) mostly north-to-south travel. These tracks consistently appeared to be unrelated to the presence or movement of other whale species (blue, fin and humpback) monitored year-round with the same hydrophones.  相似文献   

14.
Toothed whales produce short, ultrasonic clicks of high directionality and source level to probe their environment acoustically. This process, termed echolocation, is to a large part governed by the properties of the emitted clicks. Therefore derivation of click source parameters from free-ranging animals is of increasing importance to understand both how toothed whales use echolocation in the wild and how they may be monitored acoustically. This paper addresses how source parameters can be derived from free-ranging toothed whales in the wild using calibrated multi-hydrophone arrays and digital recorders. We outline the properties required of hydrophones, amplifiers and analog to digital converters, and discuss the problems of recording echolocation clicks on the axis of a directional sound beam. For accurate localization the hydrophone array apertures must be adapted and scaled to the behavior of, and the range to, the clicking animal, and precise information on hydrophone locations is critical. We provide examples of localization routines and outline sources of error that lead to uncertainties in localizing clicking animals in time and space. Furthermore we explore approaches to time series analysis of discrete versions of toothed whale clicks that are meaningful in a biosonar context.  相似文献   

15.
Results of the analysis and interpretation of the records of 17 ocean bottom seismometers designed at the Shirshov Institute of Oceanology, Russian Academy of Sciences (a three-component geophone and a hydrophone), installed with an interval of 10–20 km along a profile in the transition zone from the Baltic shield to the Barents Sea basin are presented. The studies were carried out in 1995 from R/V Professor Kurentsov. An air gun with a chamber volume of 80 1 was used as the source of seismic waves with a shooting interval of 250 m. The longest range of records of deep refracted and wide-angle reflected waves (up to 300 km) was reached with the hydrophones. Two-dimensional seismic modeling allowed us to refine the earlier versions of the seismic cross section of the earth’s crust and uppermost mantle in the study region. New data confirmed that, in the central area of the Barents Sea, the “granitic-metamorphic” layer of the crust with a seismic velocity of 6.2 km/s typical of the Baltic Shield is absent. In this region, a thin consolidated crust with a seismic velocity of 6.8 km/s is covered with a thick (more than 25 km) sedimentary layer. In this layer, a local low-velocity zone probably exists, which causes a strong attenuation of the “crustal” waves.  相似文献   

16.
Using the Cramer-Rao lower bound (CRLB) as an indicator of potential performance, the limits on the estimation and resolution capabilities of a towed line array of uniformly spaced hydrophones to provide frequency and bearing information about narrowband signals are examined. It is assumed that a monochromatic plane wave arrives at the array for each source. Several versions of the bounds are computed using different assumptions about which parameters have known values and about the way in which the samples are taken in space and in time. It is shown that the CRLB values for different situations can be compared to provide information about the effective use of a moving aperture for estimation of the parameters of narrowband signals arriving at the array. It is also shown that adding at least one hydrophone occupying a fixed position in space can improve the bearing estimates of a towed array by supplying additional frequency information if both the bearings and frequencies of the sources are unknown  相似文献   

17.
Previous experiments to record seismic data at wide angle on the continental shelf have generally been unsuccessful in determining velocity structure in the lower crust; either the lines were too short or shot-receiver density too sparse to identify lower crustal arrivals. In contrast, deep normal incidence profiles show good structural resolution in the crust and uppermost mantle. A sea-bottom multichannel instrument has been developed to record datasets containing closely spaced traces, in order to improve the resolution of reversed wide-angle experiments on the continental shelf.The Pull-up Multichannel Array (PUMA) is a 1200 m, 12-channel hydrophone array for remotely recording seismic data on the seabed. It consists of 12 short hydrophone sections linked by 100 m-long passive sections. A pressure case is attached to the array at one end, in which recording electronics, cassette tape recorders and a battery power supply are housed. The PUMA is designed for deployment in water depths less than 200 m from a research ship and is moored to buoys for recovery.The instrument, which was successfully used in an experiment west of Lewis, Outer Hebrides, UK (Powell and Sinha, 1987) was specifically designed to provide a reliable determination of the velocity structure of the crust and uppermost mantle over part of the BIRPS WINCH deep normal incidence profile. Because the traces are closely spaced it is easy to correlate phases across the record section and to monitor changes in amplitude. A velocity structure for the continental crust and uppermost mantle has been devised from these data, using amplitude modelling.  相似文献   

18.
A simple, low cost, deep-towed system for high-resolution reflection seismic profiling is described. It consists of a vertical array with two hydrophones having a separation of 2.2 m and rigidly mounted onto streamlined tow bodies. Improvement of the signal-to-noise ratio is attained by simple stacking of the hydrophone outputs after signal conditioning and travel time corrections. The suppression of side echoes and surface reflections is achieved by an analog procedure which in effect improves the directional characteristics of the array. A circuit for automatic gain control is included to enhance weak signals as well as to suppress ringing.Results in Kiel Bay and over the crest of the Jan Mayen Ridge (northern Atlantic) suggest that this simple vertical array may supplement air gun systems better than conventional, surface pinger-type equipment.Institute of Geophysics  相似文献   

19.
Chirp sub-bottom profilers are marine acoustic devices that use a known and repeatable source signature (1–24 kHz) to produce decimetre vertical resolution cross-sections of the sub-seabed. Here the design and development of the first true 3D Chirp system is described. When developing the design, critical factors that had to be considered included spatial aliasing, and precise positioning of sources and receivers. Full 3D numerical modelling of the combined source and receiver directivity was completed to determine optimal source and receiver geometries. The design incorporates four source transducers (1.5–13 kHz) that can be arranged into different configurations, including Maltese Cross, a square and two separated pairs. The receive array comprises 240 hydrophones in 60 groups whose group-centres are separated by 25 cm in both horizontal directions, with each hydrophone group containing four individual elements and a pre-amplifier. After careful consideration, it was concluded that the only way to determine with sufficient accuracy the source–receiver geometry, was to fix the sources and receivers within a rigid array. Positional information for the array is given by a Real Time Kinematic GPS and attitude system incorporating four antennas to give position, heading, pitch and roll. It is shown that this system offers vertical positioning accuracy with a root-mean-square (rms) error less than 2.6 cm, while the horizontal positioning rms error was less than 2.0 cm. The system is configured so that the Chirp source signature can be chosen by software aboard the acquisition vessel. The complete system is described and initial navigational and seismic data results are presented. These data demonstrate that the approach of using fixed source-receiver geometry combined with RTK navigation can provide complete 3D imaging of the sub-surface.  相似文献   

20.
It is very important for converting the seismic data from the time domain to the depth domain. Here we discuss the approaches of inverse modeling of travel times for determination of the P-wave velocity (Vp). The migration section of the single channel seismic data is used to define the model horizons and help to control their geometry. Wide angle hydrophone data of OBS are used to determine P-wave travel times. The picked travel times from various shots are inverted for P-wave interval velocities using RayInvr, which calculated theoretical travel times via ray tracing. Damped least squares optimization is performed to fine tune the fits between observed and calculated travel times. In the end, the Vp curve is achieved and the results are compared with that derived from the conventional hyperbolic curve velocity analysis method, the shape of the two curves are similar, and the velocity increases in the layer where gas hydrates are present.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号