首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Kap Edvard Holm Layered Gabbro Complex is a large layeredgabbro intrusion (>300 km2) situated on the opposite sideof the Kangerdlugssuaq fjord from the Skaergaard Intrusion.It was emplaced in a continental margin ophiolite setting duringearly Tertiary rifting of the North Atlantic. Gabbroic cumulates, covering a total stratigraphic thicknessof >5 km, have a typical four-phase tholeiitic cumulus mineralogy:plagioclase, clinopyroxene, olivine, and Fe–Ti oxides.The cryptic variation is restricted (plagioclase An81–51,olivine Fo85–66, clinopyroxene Wo43–41 En46–37Fs20–11) and there are several reversals in mineral chemistry.Crystallization took place in a low-pressure, continuously fractionatingmagma chamber system which was periodically replenished andtapped. Fine-grained (0•2–0•4 mm) equigranular, thin(0•5–3 m), laterally continuous basaltic zones occurwithin an {small tilde}1000 m thick layered sequence in theTaco Point area. Twelve such zones define the bases of individualmacrorhythmic units with an average thickness of {small tilde}80m. The fine-grained basaltic zones grade upwards, over a fewmetres, into medium-grained (>1 mm) poikilitic, olivine gabbrowith smallscale modal layering. Each fine-grained basaltic zoneis interpreted as an intraplutonic quench zone in which magmachilled against the underlying layered gabbros during influxalong the chamber floor. Supercooling by {small tilde}50C isbelieved to have caused nucleation of plagioclase, olivine,and clinopyroxene in the quench zone. The nucleation rate isbelieved to have been enhanced as the result of in situ crystallizationin a continuously flowing magma. The transition to the overlyingpoikilitic olivine gabbro reflects a decreasing degree of supercooling. Compositional variation in the Taco Point sequence is typicalfor an open magma chamber system: olivine (Fo77–68 5)and plagioclase cores (An80–72) show a zig-zag crypticvariation pattern with no overall systematic trend. Olivinehas the most primitive compositions in the quench zones andmore evolved compositions in the olivine gabbro; plagioclasecores show the opposite trend. Although plagioclase cores arebelieved to retain their original compositions, olivines re-equilibratedby reaction with trapped liquid. Some plagioclase cores containrelatively sodic patches which retain quench compositions. Whole-rock compositions of nine different quench zones varyover a range from 10 to 18% MgO although the mg-number remainsconstant at {small tilde}0•78. The average composition(47•7% SiO2, 13•3%MgO, 1•57% Na2O+K2O) is takenas a best estimate of the parental magma composition, and isequivalent to a high-magnesian olivine tholeiite. The compositionalvariation of the quench zones is believed to reflect burstsof nucleation and growth of olivine and plagioclase during quenching. Magma emplacement is believed to have taken place by separatetranquil influxes which flowed along the interface between alargely consolidated cumulus pile and the residual magma. Theresident magma was elevated with little or no mixing. At certainlevels in the layered sequence the magma drained back into thefeeder system; such a mechanism is referred to as a surge-typemagma chamber system.  相似文献   

2.
Vico volcano has erupted potassic and ultrapotassic magmas,ranging from silica-saturated to silica-undersaturated types,in three distinct volcanic periods over the past 0·5Myr. During Period I magma compositions changed from latiteto trachyte and rhyolite, with minor phono-tephrite; duringPeriods II and III the erupted magmas were primarly phono-tephriteto tephri-phonolite and phonolite; however, magmatic episodesinvolving leucite-free eruptives with latitic, trachytic andolivine latitic compositions also occurred. In Period II, leucite-bearingmagmas (87Sr/86Srinitial = 0·71037–0·71115)were derived from a primitive tephrite parental magma. Modellingof phonolites with different modal plagioclase and Sr contentsindicates that low-Sr phonolitic lavas differentiated from tephri-phonoliteby fractional crystallization of 7% olivine + 27% clinopyroxene+ 54% plagioclase + 10% Fe–Ti oxides + 4% apatite at lowpressure, whereas high-Sr phonolitic lavas were generated byfractional crystallization at higher pressure. More differentiatedphonolites were generated from the parental magma of the high-Srphonolitic tephra by fractional crystallization of 10–29%clinopyroxene + 12–15% plagioclase + 44–67% sanidine+ 2–4% phlogopite + 1–3% apatite + 7–10% Fe–Tioxides. In contrast, leucite-bearing rocks of Period III (87Sr/86Srinitial= 0·70812–0·70948) were derived from a potassictrachybasalt by assimilation–fractional crystallizationwith 20–40% of solid removed and r = 0·4–0·5(where r is assimilation rate/crystallization rate) at differentpressures. Silica-saturated magmas of Period II (87Sr/86Srinitial= 0·71044–0·71052) appear to have been generatedfrom an olivine latite similar to some of the youngest eruptedproducts. A primitive tephrite, a potassic trachybasalt andan olivine latite are inferred to be the parental magmas atVico. These magmas were generated by partial melting of a veinedlithospheric mantle sources with different vein–peridotite/wall-rockproportions, amount of residual apatite and distinct isolationtimes for the veins. KEY WORDS: isotope and trace element geochemistry; polybaric differentiation; veined mantle; potassic and ultrapotassic rocks; Vico volcano; central Italy  相似文献   

3.
The South Kawishiwi intrusion, located along the western marginof the Duluth Complex, Minnesota, is one of several compositeintrusions that are found in the Complex. The Duluth Complexis the principal exposed plutonic portion of the 1.1 Ga MidcontineniRift system. In the Spruce Road area the South Kawishiwi intrusionis divided into seven distinct units that are part of the broaderSouth Kawishiwi Troctolite Series defined by Severson (Tech.Rep. NRRI/TR-91/13a, Natural Resources Research Institute, Universityof Minnesota, Duluth, 1994). Units may be characterized as follows:Unit I—basal accumulation of heterogeneous gabbro, troctolite,and norite; Unit II—norite with abundant inverted pigeonite;Unit III—troctolite and olivine gabbro with local oxide-richlayers; Unit IV—mlatroctolite, troctolite, olivine gabbro;Unit VI—increased plagioclase abundance in troctolitesand leucocratic troctolites; Unit VI—strongly alteredtroctolite; Unit VII—similar to Unit V, troctolite andleucocratic troctolite. Country rocks in the Spruce Road areaare granodiorite to quartz monzonite of the Archean Giants RangeBatholith. Sutfide mineralization, consisting of 1–5 vol.% of disseminated pyrrhotitt, cubanite, chalcopyrite and pentlandite,occurs in Units I, II, III, and VI. Oxygen isotopic analysesindicate that Unit II has experienced extensive crustal contamination.18O values of Unit II range from 6.9 to 7.1% and are 18O enrichedcompared with values of 5.1–6.8% found in other units.Silica contamination is indicated based not only on 18O values,but also by the predominance of orthopyroxene in the unit. Possiblehigh-18O contaminant rocks include the Giants Range Batholithand pelitic rocks of the Lower Proterozoic Virginia Formationor Biwabik Iron Formation. Mass balance computations suggestthat units in the Spruce Road area may be related through varyingdegrees of fractionation of a high-Al, olivine tholeiite magma.Modeling of trace element concentrations and variations in mineralchemistry suggest that discontinuities within the major unitsdeveloped by in situ boundary-layer equilibrium crystallizationof solidification zones 20–50 m in thickness, followedby recharge of fresh magma. Upward enrichment of incompatibleelements, olivine Fa content, and plagioclase Ab content maybe effectively explained by this process. 18O values of uncontaminatedrock types are strongly correlative with modal mineralogy, andcan also be modeled by boundary-layer fractionation, A parentalmagma 18 O value of 6.3% is calculated for Unit VII based onolivine and plagioclase values, and is similar to that of severalother large, layered mafic intrusives. KEY WORDS: Duluth Complex; South Kawishiwi Intrusion; high-Al olivine tholeiite; open system crystallization; oxygen isotopes * Present address: Korea Basic Science Center, Isotope Research Group, Yeocun Dong 224–1, Yusung Ku, Yusung P.O. Box 41, Taejean 305–333, Korea  相似文献   

4.
The well-preserved ?lower Proterozoic McIntosh intrusion consistsof 96 macro-layers with a total stratigraphic thickness of about6 km. The lowermost rocks in this possible cone-shaped intrusionare hidden, and the roof and the upper layers were removed byerosion. The layered sequence is dominated by 40 bimodal cyclicunits of troctolite and olivine gabbro. Minor gabbronorite layersoccur throughout the sequence, and are more abundant and morefractionated higher in the sequence. Six imperfect megacycicunits are developed in the upper 2700 m, each unit consistingof several troctolite-olivine gabbro cyclic units followed bya Fe-Ti oxide-bearing gabbronorite. The overall cumulus crystallizationorder in each megacyclic unit was plagioclase first, closelyfollowed by olivine, then augite, orthopyroxene, and magnetitesuccessively. Cryptic composition data for troctolites and olivine gabbrosshow a slight overall decrease of 10 mol per cent An and Fofrom the base to the top of the layered sequence (approximateranges An80–70 and Fo78–68). Several major fluctuationsoccur however, and are generally associated with the oxide gabbronorites,which are significantly more fractionated than the adjacentlayers (plagioclase An53–60, orthopyroxene Mg52–69Each fluctuation comprises a marked progressive discontinuity(rapid normal fractionation) followed by a gradual to rapidregressive discontinuity (or reversal) in the overlying troctolitesand olivine gabbros. Apparently, such marked progressive discontinuitieshave not been described in layered intrusions. A chilled margin and the overall composition of the intrusionsuggest an olivine tholeiite parent magma, inferred to havecrystallized at P 6 kb, relatively low PH2O and high fO2 (>NNO buffer). The troctolite-olivine gabbro cyclic units areinferred to have formed by fractional crystallization of periodicadditions of new magma. However, the oxide gabbronorites seemtoo fractionated relative to the underlying layers to have formedby conventional crystal fractionation mechanisms, and they couldhave resulted from a ‘liquid fractionation’ processin which fractionated residual magma, instead of rising, periodicallybecame denser and ponded on the temporary floor (a density crossover).Gradual, reversed cryptic trends in the cyclic units above theoxide gabbronorite layers may reflect mixing of this fractionatedmagma with successive magma additions.  相似文献   

5.
Anorthositic rocks compose 35–40% of the Middle Proterozoic(Keweenawan; 1?1 Ga) Duluth Complex—a large, compositemafic body in northeastern Minnesota that was intruded beneatha comagmatic volcanic edifice during the formation of the Midcontinentrift system. Anorthositic rocks, of which six general lithologictypes occur in one area of the complex, are common in an earlyseries of intrusions. They are characterized on a local scale(meters to kilometers) by nonstratiform distribution of rocktypes, variably oriented plagioclase lamination, and compositeintrusive relationships. Variably zoned, subhedral plagioclaseof nearly constant average An (60) makes up 82–98% ofthe anorthositic rocks. Other phases include granular to poikiliticolivine (Fo66–38), poikilitic clinopyrox-ene (En'73–37),subpoikilitic Fe-Ti oxides, and various late-stage and secondaryminerals. Whole-rock compositions of anorthositic rocks are modelled bymass balance to consist of three components: cumulus plagioclase(70–95 wt.%), minor cumulus olivine (0–5%), anda gabbroic postcumulus assemblage (5–27%) representinga trapped liquid. The postcumulus assemblage has textural andcompositional characteristics which are consistent with crystallizationfrom basaltic magma ranging from moderately evolved olivinetholeiite to highly evolved tholeiite (mg=60–25). Sympatheticvariations of mg in plagioclase and in mafic minerals suggestthat cumulus plagioclase, though constant in An, was in approximateequilibrium with the variety of basaltic magma compositionswhich produced the postcumulus assemblages. Standard models of mafic cumulate formation by fractional crystallizationof basaltic magmas in Duluth Complex chambers, although ableto explain the petrogenesis of younger stratiform troctoliticto gabbroic intrusions, are inadequate to account for the field,petrographic, and geochemical characteristics of the anorthositicrocks. Rather, we suggest an origin by multiple intrusions ofplagioclase crystal mushes—basaltic magmas charged withas much as 60% intratelluric plagioclase. The high concentrationsof cumulus plagioclase (70–95%) estimated to compose theanorthositic rocks may reflect expulsion of some of the transportingmagma during emplacement or early postcumulus crystallizationof only plagioclase from evolved hyperfeldspathic magma. Althoughthe evolved compositions of anorthositic rocks require significantfractionation of mafic minerals, geophysical evidence indicatesthat ultramafic rocks are, as exposure implies, rare in theDuluth Complex and implies that plagioclase crystal mushes werederived from deeper staging chambers. This is consistent withinterpretations of olivine habit and plagioclase zoning. Moreover,plagioclase could have been segregated from coprecipitatingmafic phases in such lower crustal chambers because of the buoyancyof plagioclase in basaltic magmas at high pressure. The geochemicaleffects of plagioclase suspension in basaltic magmas are consistentwith observed compositions of cumulus plagioclase in the anorthositicrocks and with the geochemical characteristics of many comagmaticbasalts. The petrogenesis of the anorthositic rocks and theoverall evolution of Keweenawan magmas can be related to thedynamics of intracontinental rift formation.  相似文献   

6.
Major and trace element data for the Tertiary, Shiant IslesMain Sill, NW Scotland, are used to discuss its complex internaldifferentiation. Vertical sections through the sill exhibitsharp breaks in chemistry that coincide with changes in texture,grain size and mineralogy. These breaks are paired, top andbottom, and correspond to the boundaries of intrusive units,confirming a four-phase multiple-intrusion model based on fieldrelations, petrography, mineralogy and isotopes. Whole-rockchemistry is consistent with this model and necessitates onlyminor revisions to the intrusive and differentiation mechanismspreviously proposed. The rocks contain strongly zoned minerals(e.g. olivine Fo70–5, clinopyroxene Mg# = 75–5,plagioclase An75–5) indicating almost perfect fractionalcrystallization, but whole-rock compositions do not show suchextreme variations. Thus, while residual liquids became highlyevolved in situ, they mainly became trapped within the crystalnetwork and did not undergo wholesale inward migration. Someinward (mainly upward) concentration of residual liquids didoccur to form a ‘sandwich horizon’, but the morevolatile-rich, late-stage liquids that did not crystallize insitu appear to have migrated to higher levels in the sill toform pegmatitic horizons. Parental liquid compositions are modelledfor the intrusive units and it is concluded that the originalparent magma formed by partial melting of upper mantle thatwas more depleted in LREE than the sources of most ScottishTertiary basaltic rocks. Incompatible trace elements in thepicrodolerite–crinanite intrusive unit support isotopeevidence that its parent magma was contaminated by crustal material.Attempts to reconcile the chemical characteristics of the sillwith a recently proposed petrogenetic model based on a singleintrusion of magma differentiated by novel, but controversial,processes fail comprehensively. It is predicted that the complexpetrogenetic history of the Shiant Isles sill is not unusualand could become the model for other large (>50 m thick)sills. KEY WORDS: alkali basalt; differentiation; geochemistry; multiple intrusion; Shiant Isles; sill  相似文献   

7.
The major element composition of plagioclase, pyroxene, olivine,and magnetite, and whole-rock 87Sr/86Sr data are presented forthe uppermost 2·1 km of the layered mafic rocks (upperMain Zone and Upper Zone) at Bierkraal in the western BushveldComplex. Initial 87Sr/86Sr ratios are near-constant (0·7073± 0·0001) for 24 samples and imply crystallizationfrom a homogeneous magma sheet without major magma rechargeor assimilation. The 2125 m thick section investigated in drillcore comprises 26 magnetitite and six nelsonite (magnetite–ilmenite–apatite)layers and changes up-section from gabbronorite (An72 plagioclase;Mg# 74 clinopyroxene) to magnetite–ilmenite–apatite–fayaliteferrodiorite (An43; Mg# 5 clinopyroxene; Fo1 olivine). The overallfractionation trend is, however, interrupted by reversals characterizedby higher An% of plagioclase, higher Mg# of pyroxene and olivine,and higher V2O5 of magnetite. In the upper half of the successionthere is also the intermittent presence of cumulus olivine andapatite. These reversals in normal fractionation trends definethe bases of at least nine major cycles. We have calculateda plausible composition for the magma from which this entiresuccession formed. Forward fractional crystallization modelingof this composition predicts an initial increase in total iron,near-constant SiO2 and an increasing density of the residualmagma before magnetite crystallizes. After magnetite beginsto crystallize the residual magma shows a near-constant totaliron, an increase in SiO2 and decrease in density. We explainthe observed cyclicity by bottom crystallization. Initiallymagma stratification developed during crystallization of thebasal gabbronorites. Once magnetite began to crystallize, periodicdensity inversion led to mixing with the overlying magma layer,producing mineralogical breaks between fractionation cycles.The magnetitite and nelsonite layers mainly occur within fractionationcycles, not at their bases. In at least two cases, crystallizationof thick magnetitite layers may have lowered the density ofthe basal layer of melt dramatically, and triggered the proposeddensity inversion, resulting in close, but not perfect, coincidenceof mineralogical breaks and packages of magnetitite layers. KEY WORDS: layered intrusion; mineral chemistry; isotopes; magma; convection; differentiation  相似文献   

8.
We present mineralogical, petrological and geochemical datato constrain the origin of the Harzburg mafic–ultramaficintrusion. The intrusion is composed mainly of mafic rocks rangingfrom gabbronorite to quartz diorite. Ultramafic rocks are veryrare in surface outcrops. Dunite is observed only in deepersections of the Flora I drill core. Microgranitic (fine-grainedquartz-feldspathic) veins found in the mafic and ultramaficrocks result from contamination of the ultramafic magmas bycrustal melts. In ultramafic and mafic compositions cumulatetextures are widespread and filter pressing phenomena are obvious.The order of crystallization is olivine pargasite, phlogopite,spinel plagioclase, orthopyroxene plagioclase, clinopyroxene.Hydrous minerals such as phlogopite and pargasite are essentialconstituents of the ultramafic cumulates. The most primitiveolivine composition is Fo89·5 with 0·4 wt % NiO,which indicates that the olivine may have been in equilibriumwith primitive mantle melts. Coexisting melt compositions estimatedfrom this olivine have mg-number = 71. The chemical varietyof the rocks constituting the intrusion and the mg-number ofthe most primitive melt allow an estimation of the approximatecomposition of the mantle-derived primary magma. The geochemicalcharacteristics of the estimated magma are similar to thoseof an island-arc tholeiite, characterized by low TiO2 and alkalisand high Al2O3. Geochemical and Pb, Sr and Nd isotope data demonstratethat even the most primitive rocks have assimilated crustalmaterial. The decoupling of Sr from Nd in some samples demonstratesthe influence of a fluid that transported radiogenic Sr. Leadof crustal origin from two isotopically distinct reservoirsdominates the Pb of all samples. The ultramafic rocks and thecumulates best reflect the initial isotopic and geochemicalsignature of the parent magma. Magma that crystallized in theupper part of the chamber was more strongly affected by assimilatedmaterial. Petrographic, geochemical and isotope evidence demonstratesthat during a late stage of crystallization, hybrid rocks formedthrough the mechanical mixing of early cumulates and melts withstrong crustal contamination from the upper levels of the magmachamber. KEY WORDS: Harzburg mafic–ultramafic intrusion; Sr–Nd–Pb isotopes; magma evolution; crustal contamination  相似文献   

9.
We report the occurrence of unusual, high-magnesium (Fo96) olivinephenocrysts in a basaltic lava and an ejected lithic block fromthe Upper Vancori period (13 ka) and the recent activity (2002–2003)of Stromboli volcano, Italy. The samples that contain this distinctivemineral chemistry are a shoshonitic basalt and a basaltic andesitewith anomalous bulk-rock chemical characteristics in which theiron is highly oxidized (6–8 wt % Fe2O3 and <1 wt %FeO). In other respects these samples are similar to the majorityof Stromboli basalts, characterized by the coexistence of olivine,clinopyroxene, plagioclase and Fe–Ti oxides as phenocrysts,and clinopyroxene, plagioclase and Fe–Ti oxides in thegroundmass. In the high-magnesium olivine samples, Fe–Tioxides (pseudobrookite) typically occur as symplectitic intergrowthswith the olivine phenocrysts, indicating simultaneous growthof the two phases. We propose, as a paragenetic model, thatthe Fo96 olivine phenocrysts crystallized from a highly oxidizedbasaltic magma in which most of the iron was in the ferric state;hence, only magnesium was available to form olivine. The highlyoxidized state of the magma reflects sudden degassing of volatilephases associated with instantaneous, irreversible, transientdegassing of the magma chamber; this is postulated to occurduring periods of sudden decompression induced by fracturingof the volcanic edifice associated with paroxysmic activityand edifice collapse. KEY WORDS: Stromboli; Mg-rich olivine; oxygen fugacity; redox state of magmas; irreversible processes  相似文献   

10.
Mafic rocks at Lake Nipigon provide a record of rift-related continental basaltic magmatism during the Keweenawan event at 1109 Ma. The mafic rocks consist of an early, volumetrically minor suite of picritic intrusions varying in composition from olivine gabbro to peridotite and a later suite of tholeiitic diabase dikes, sheets and sills. The diabase occurs primarily as two 150 to 200 m thick sills with a textural stratigraphy indicating that the sills represent single cooling units. Compositional variation in the sills indicates that they crystallized from several magma pulses.The diabases are similar in chemistry to olivine tholeiite flood basalts of the adjacent Keweenawan rift, particularly with respect to low TiO2, K2O and P2O5. The picrites have higher TiO2, K2O and P2O5 than the diabases and are similar to, but more primitive than, high Fe-Ti basalts which erupted early in the Keweenawan volcanic sequence.All of the rocks crystallized from fractionated liquids. The picrites are cumulate rocks derived at shallow crustal depths from a magma controlled predominantly by olivine fractionation. Picritic chills are in equilibrium with olivine phenocrysts of composition Fo80 and are interpreted to represent the least evolved liquids observed. The parental magma of the picrites was probably Fe rich relative to the parental magma of the diabase. The diabase sills crystallized from an evolved basaltic liquid controlled by cotectic crystallization of plagioclase and lesser olivine and pyroxene.The emplacement of dense olivine phyric picritic magmas early in the sequence, followed by later voluminous compositionally evolved magmas of lower density suggests the development of a crustal density filter effect as the igneous event reached a peak. Delamination of the crust-mantle interface may have resulted in the transition from olivine controlled primitive magma to fractionated magma through the development of crustal underplating.  相似文献   

11.
A 525-m-long drill core (DDH-221) through the Partridge Riverintrusion has been divided into four zones on the basis of changesin mineral abundances, compositions and grain size. The igneousrocks in the core consist of cumulate gabbro, troctolite andolivine gabbronorite, in which the original cumulate frameworkof plagioclase and olivine contained varying amounts of trappedintercumulus (pore) liquid. The compositions of the unzoned olivine (Fo31–71) havebeen modified by reaction with Fe-rich in situ intercumulusliquid, but the plagioclase cores (An59–73) have not.The compositions of postcumulus Ca-rich pyroxene, restrictedto En36–44, and the more variable Ca-poor pyroxene (En45–74),follow a downward Fe-enrichment trend similar to the Fe-enrichmentin the olivine. The cumulus olivine expected to be in equilibriumwith plausible parental magmas to these rocks was not preservedin the drill core, nor is the chilled margin to the intrusionsufficiently primitive to account for all the olivine. Revisedmass balance estimates of the primary magmatic compositionsof olivine are Fo67–85. The new limiting value for theprimary olivine is similar to the Fo83–85 olivine expectedto crystallize from the chilled margin to the nearby PigeonPoint olivine diabase sill under equilibrium conditions. Thechanges in the mineral compositions in core DDH-221 do not adequatelydescribe the behavior of parental melts on an equilibrium coolingpath, implying that the cumulus plagioclase and olivine crystallizedelsewhere, and were mixed with varying amounts of intercumulusliquid before introduction to the present crustal site of thePartridge River intrusion. Rock density increases with depth from 2?76 to 3?21, with amean of 2?98 g/cm3. Estimated trapped liquid densities rangefrom 2?56 to 2?92 g/cm3 at high temperatures. This is interpretedto mean that the intercumulus liquid could not have been expelledupward by compaction of the cumulate pile. The dense intercumulusliquid increased downward in abundance to form a series of rocksthat range continuously from variously packed framework cumulatesto chilled non-cumulate rocks in the basal zone. In situ crystallizationis concluded to be the dominant mode of solidification of thePartridge River intrusion, in which infiltration metasomatismis precluded by the high liquid density.  相似文献   

12.
新疆东天山黄山东岩体橄榄石成因意义探讨   总被引:12,自引:6,他引:6  
黄山东岩体位于新疆东天山造山带中段,由四次岩浆侵入形成:第一次侵入形成了岩体上部的橄榄辉长岩、角闪辉长岩和闪长岩,构成岩体的主体;第二次侵入形成辉长苏长岩,呈岩墙状分布于岩体西端和西北部;第三次侵入岩石为斜长二辉橄榄岩,位于岩体下部,为主要的赋矿岩石;第四次侵入岩石为底部角闪辉长岩。橄榄石为第三次侵入的斜长二辉橄榄岩和第一次侵入的橄榄辉长岩主要造岩矿物之一,橄榄石的镁橄榄石牌号(Fo)值介于68.5~82.5之间。其中含硫化物斜长二辉橄榄岩中的橄榄石具有较高的Fo值(79.7~82.5);斜长二辉橄榄岩中橄榄石的Fo值为78.3~79.9;而基性程度较低的橄榄辉长岩中橄榄石具有较低的Fo值(68.5~72.2)。利用橄榄石矿物成分计算得出黄山东岩体母岩浆Mg#(Mg2+/(Mg2++Fe2+))为0.59,为原生玄武质岩浆经历结晶分异作用形成。模拟计算结果显示黄山东岩体不含矿岩石中橄榄石是母岩浆经过2%的橄榄石结晶分异且硫达到饱和后,在硫化物熔离的同时岩浆发生橄榄石结晶而形成,并且橄榄石︰硫化物≈50︰1,部分橄榄石成分投点在橄榄石结晶和硫化物熔离的模拟曲线右下侧,指示它们可能受到晶间硅酸盐熔浆作用的影响。含硫化物斜长二辉橄榄岩中Fo值与Ni含量呈负相关关系,说明橄榄石与硫化物熔体之间发生了Fe-Ni交换反应。  相似文献   

13.
The petrogenesis of sodic island arc magmas at Savo volcano,Solomon Islands   总被引:2,自引:0,他引:2  
Savo, Solomon Islands, is a historically active volcano dominated by sodic, alkaline lavas, and pyroclastic rocks with up to 7.5 wt% Na2O, and high Sr, arc-like trace element chemistry. The suite is dominated by mugearites (plagioclase–clinopyroxene–magnetite ± amphibole ± olivine) and trachytes (plagioclase–amphibole–magnetite ± biotite). The presence of hydrous minerals (amphibole, biotite) indicates relatively wet magmas. In such melts, plagioclase is relatively unstable relative to iron oxides and ferromagnesian silicates; it is the latter minerals (particularly hornblende) that dominate cumulate nodules at Savo and drive the chemical differentiation of the suite, with a limited role for plagioclase. This is potentially occurring in a crustal “hot zone”, with major chemical differentiation occurring at depth. Batches of magma ascend periodically, where they are subject to decompression, water saturation and further cooling, resulting in closed-system crystallisation of plagioclase, and ultimately the production of sodic, crystal and feldspar-rich, high-Sr rocks. The sodic and hydrous nature of the parental magmas is interpreted to be the result of partial melting of metasomatised mantle, but radiogenic isotope data (Pb, Sr, Nd) cannot uniquely identify the source of the metasomatic agent.  相似文献   

14.
Olivine-rich rocks containing olivine + orthopyroxene + spinel+ Ca-amphibole ± clinopyroxene ± garnet are presentin the central Ötztal–Stubai crystalline basementassociated with eclogites of tholeiitic affinity. These rockscontain centimetre-sized garnet layers and lenses with garnet+ clinopyroxene ± corundum. Protoliths of the olivine-richrocks are thought to be olivine + orthopyroxene + spinel dominatedcumulates generated from an already differentiated Fe-rich () tholeiitic magma that was emplaced into shallowcontinental crust. Protoliths of the garnet-rich rocks are interpretedas layers enriched in plagioclase and spinel intercalated ina cumulate rock sequence that is devoid of, or poor in, plagioclase.U–Pb sensitive high-resolution ion microprobe dating ofzircons from a garnet layer indicates that emplacement of thecumulates took place no later than 517 ± 7 Myr ago. Aftertheir emplacement, the cumulates were subjected to progressivemetamorphism, reaching eclogite-facies conditions around 800°Cand >2 GPa during a Variscan metamorphic event between 350and 360 Ma. Progressive high-P metamorphism induced breakdownof spinel to form garnet in the olivine-rich rocks and of plagioclase+ spinel to form garnet + clinopyroxene ± corundum inthe garnet layers. Retrogressive metamorphism at T 650–680°Cled to the formation of Ca-amphibole, chlorite and talc in theolivine-rich rocks. In the garnet layers, högbomite formedfrom corundum + spinel along with Al-rich spinel, Ca-amphibole,chlorite, aspidolite–preiswerkite, magnetite, ilmeniteand apatite at the interface between olivine-rich rocks andgarnet layers at P < 0·8 GPa. Progressive desiccationof retrogade fluids through crystallization of hydrous phasesled to a local formation of saline brines in the garnet layers.The presence of these brines resulted in a late-stage formationof Fe- and K-rich Ca-amphibole and Sr-rich apatite, both characterizedby extremely high Cl contents of up to 3·5 and 6·5wt % Cl, respectively. KEY WORDS: cumulates; Variscan metamorphism; SHRIMP dating; högbomite; saline brines  相似文献   

15.
The Marum ophiolite complex in northern Papua New Guinea includesa thick (3–4 km) sequence of ultramafic and mafic cumulates,which are layered on a gross scale from dunite at the base upwardsthrough wehrlite, lherzolite, plagioclase lherzolite, pyroxenite,olivine norite-gabbro and norite-gabbro to anorthositic gabbroand ferrogabbro at the top. Igneous layering and structures,and cumulus textures indicate an origin by magmatic crystallizationin a large magma chamber(s) from magma(s) of evolving composition.Most rocks however show textural and mineralogical evidenceof subsolidus re-equilibration. The cumulate sequence is olivine and chrome spinel followedby clinopyroxene, orthopyroxene and plagioclase, and the layeredsequence is similar to that of the Troodos and Papuan ophiolites.These sequences differ from ophiolites such as Vourinos by thepresence of cumulus magnesian orthopyroxene, and are not consistentwith accumulation of low pressure liquidus phases of mid-oceanridge-type olivine tholeiite basalts. The cumulus phases show cryptic variation from Mg- and Ca-richearly cumulates to lower temperature end-members, e.g. olivineMg93–78, plagioclase An94–63. Co-existing pyroxenesdefine a high temperature solidus with a narrower miscibilitygap than that of pyroxenes from stratiform intrusions. Re-equilibratedpyroxene pairs define a low-temperature, subsolidus solvus.Various geothermometers and geobarometers, together with thermodynamiccalculations involving silica buffers, suggest the pyroxene-bearingcumulates crystallized at 1200 °C and 1–2 kb pressureunder low fO2. The underlying dunites and chromitites crystallizedat higher temperature, 1300–1350 °C. The bulk of thecumulates have re-equilibrated under subsolidus conditions:co-existing pyroxenes record equilibration temperatures of 850–900°C whereas olivine-spinel and magnetite-ilmenite pairs indicatefinal equilibration at very low temperatures (600 °C). Magmas parental to the cumulate sequence are considered to havebeen of magnesian olivine-poor tholeiite composition (>50per cent SiO2, 15 per cent MgO, 100 Mg/(Mg + Fe2+) 78) richin Ni and Cr, and poor in TiO2 and alkalies. Fractionated examplesof this magma type occur at a number of other ophiolites withsimilar cumulate sequences. Experimental studies show that suchlavas may result from ial melting of depleted mantle lherzoliteat shallow depth. The tectonic environment in which the complexformed might have been either a mid-ocean ridge or a back-arebasin.  相似文献   

16.
The Palaeoproterozoic Ni–Cu sulphide deposits of the PechengaComplex, Kola Peninsula, occur in the lower parts of ferropicriticintrusions emplaced into the phyllitic and tuffaceous sedimentaryunit of the Pilgujärvi Zone. The intrusive rocks are comagmaticwith extrusive ferropicrites of the overlying volcanic formation.Massive lavas and chilled margins from layered flows and intrusionscontain <3–7 ng/g Pd and Pt and <0·02–2·0ng/g Ir, Os and Ru with low Pd/Ir ratios of 5–11. Theabundances of platinum group elements (PGE) correlate with eachother and with chalcophile elements such as Cu and Ni, and indicatea compatible behaviour during crystallization of the parentalmagma. Compared with the PGE-depleted central zones of differentiatedflows (spinifex and clinopyroxene cumulate zones) the olivinecumulate zones at the base contain elevated PGE abundances upto 10 ng/g Pd and Pt. A similar pattern is displayed in intrusivebodies, such as the Kammikivi sill and the Pilgujärvi intrusion.The olivine cumulates at the base of these bodies contain massiveand disseminated Ni–Cu-sulphides with up to 2 µg/gPd and Pt, but the PGE concentrations in the overlying clinopyroxenitesand gabbroic rocks are in many cases below the detection limits.The metal distribution observed in samples closely representingliquid compositions suggests that the parental magma becamesulphide saturated during the emplacement and depleted in chalcophileand siderophile metals as a result of fractional segregationof sulphide liquids. Relative sulphide liquid–silicatemelt partition coefficients decrease in the order of Ir >Rh > Os > Ru > Pt = Pd > Cu. R-factors (silicate-sulphidemass ratio) are high and of the order of 104–105, andthey indicate the segregation of only small amounts of sulphideliquid in the parental ferropicritic magma. In differentiatedflows and intrusions the sulphide liquids segregated and accumulatedat the base of these bodies, but because of a low silicate–sulphidemass ratio the sulphide liquids had a low PGE tenor and Pt/Irand Cu/Ir ratios similar to the parental silicate melts. Duringcooling the sulphide liquid crystallized 40–50% of monosulphidesolid solution (mss) and the residual sulphide liquid becameenriched in Cu, Pt and Pd and depleted in Ir, Os and Ru. TheCu-rich sulphide liquid locally assimilated components of thesurrounding S-rich sediments as suggested by the radiogenicOs isotopic composition of some sulphide ores (  相似文献   

17.
Petrology of the Upper Border Series of the Skaergaard Intrusion   总被引:3,自引:3,他引:3  
The Upper Border Series of the Skaergaard intrusion consistsof a 960 m thick sequence of rocks that crystallized againstthe roof of the magma chamber. The texture and composition ofthe unit vary systematically from top to bottom as a resultof changes that occurred in the magma during the solidificationof the intrusion. The order of crystallization of primocrystminerals in the Upper Border Series was: olivine; + plagioclase;+ apatite; + ilmenite; + magnetite; + Ca-rich pyroxene;—olivine;+ olivine; + ferrobustamite. The major silicate phases varyfrom high-temperature compositions to low-temperature compositionswith increasing distance from the upper contact. Post-crystallizationre-equilibration has affected the compositions of the oxideminerals and to a lesser extent the compositions of olivineand Ca-rich pyroxene. The Upper Border Series differentiationsequence differs from the Layered Series sequence, in that:(1) apatite appears much earlier; (2) magnetite precipitatedbefore Ca-rich pyroxene rather than after it; (3) orthopyroxeneis much less common; (4) the plagioclase is systematically poorerin K2O; and (5) the rocks are systematically richer in K2O andSiO2. The upper part of the Skaergaard magma appears to havebeen enriched in H2O, K2O, SiO2, and P2O5 relative to the partthat was parental to the Layered Series.  相似文献   

18.
We report petrological and geochemical data on ultramafic pillowlavas from Late Palaeozoic marine sequences in Yunnan, SW China.These lavas have >26 wt % MgO, euhedral to subhedral olivinephenocrysts and acicular or quench clinopyroxene crystals withor without microlitic plagioclase in a devitrified and alteredglassy matrix. These ultramafic lavas are compositionally komatiitic(>18 wt % MgO), but we term them high-Mg picrites becausethey lack spinifex-textured olivine. Although olivines in thesepicrites are cumulate crystals, causing the high MgO contentsof the bulk rocks, the high forsterite content of these olivines,Fo = 0·902 ± 0·011, suggests that the primitivemagmas parental to the picrites would have had  相似文献   

19.
Komatiitic and Iron-rich Tholeiitic Lavas of Munro Township, Northeast Ontario   总被引:12,自引:6,他引:12  
Munro Township, in the Archean Abitibi greenstone belt of northeastOntario, contains volcanic and hypabyssal rocks of two magmaseries: (1) an Fe-rich tholeiitic series of basaltic to daciticlava flows (3–10 m thick), layered peridotite-pyroxenite-gabbroflows (120 m thick), and layered sills (700 m thick); (2) anultramafic-mafic komatiitic series, comprising discrete lavaflows of peridotitic to andesitic composition (1–17 mthick), layered peridotite-gabbro flows (120 m thick), and layeredsills (500 m thick). The komatiitie lavas form a successionabout 1000 m thick that is both underlain and overlain by thickersuccessions of tholeiitic volcanic rocks. Three types of komatiite are recognized: peridotitic, pyroxenitic,and basaltic komatiites. The most ultramafic are peridotiticcumulates rich in forsteritic olivine (Fo89–94), at thebases of flows and sills. Many less mafic peridotitic komatiites(MgO: 20–30 per cent), which typically form the upperparts of flows and the marginal parts of small intrusions, exhibitspinifex textures indicative of their formation from ultrabasicliquids. Pyroxenitic komatiites (MgO: 12–20 per cent)also may contain olivine, but are dominated by clinopyroxene,usually in spinifex textures. Basaltic komatiites (MgO <12per cent) are composed mainly of clino-pyroxene and plagioclaseor devitrified glass, rarely in spinifex texture and more commonlyin equigranular textures. Peridotitic komatiite with roughly30 per cent MgO appears to represent a parental liquid fromwhich the more ultramafic komatiites formed by accumulationof olivine, and the less mafic types were derived by fractionationof olivine, joined and finally succeeded in later stages byclinopyroxene and plagioclase. Komatiites of Munro Township share many of the characteristicsof the komatiites from the Barberton Mountain Land, South Africa(Voljoen & Viljoen, 1969a and b), but lack the high CaO/Al2O3ratios that distinguish the Barberton rocks. The Munro komatiitesare identical in this respect to ultramafic volcanic rocks inAustralia, Canada, Rhodesia, and India. It is proposed thatthe definition of the term komatiite be broadened so that itincludes all members of this ultramafic-mafic rock series, notonly those from Barberton Mountain Land. The proposed criteriaare: (1) highly ultramafic compositions in noncumulate lavas;(2) unusual volcanic structures such as spinifex texture andpolyhedral jointing; (3) low Fe/Mg ratios at given Al2O3 valuesor high CaO/Al2O3 ratios; low TiO2 at given SiO2; and high MgO,NiO, and Cr2O3.  相似文献   

20.
A Complex Petrogenesis for an Arc Magmatic Suite, St Kitts, Lesser Antilles   总被引:2,自引:0,他引:2  
St Kitts forms one of the northern group of volcanic islandsin the Lesser Antilles arc. Eruptive products from the Mt Liamuigacentre are predominantly olivine + hypersthene-normative, low-Kbasalts through basaltic andesites to quartz-normative, low-Kandesites. Higher-Al and lower-Al groups can be distinguishedin the suite. Mineral assemblages include olivine, clinopyroxene,orthopyroxene, plagioclase and titanomagnetite with rarer amphibole,ilmenite and apatite. Eruptive temperatures of the andesitesare estimated as 963–950°C at fO2 NNO + 1 (whereNNO is the nickel–nickel oxide buffer). Field and mineralchemical data provide evidence for magma mixing. Glass (melt)inclusions in the phenocrysts range in composition from andesiteto high-silica rhyolite. Compositional variations are broadlyconsistent with the evolution of more evolved magmas by crystalfractionation of basaltic parental magmas. The absence of anycovariation between 87Sr/86Sr or 143Nd/144Nd and SiO2 rulesout assimilation of older silicic crust. However, positive correlationsbetween Ba/La, La/Sm and 208Pb/204Pb and between 208Pb/204Pband SiO2 are consistent with assimilation of small amounts (<10%)of biogenic sediments. Trace element and Sr–Nd–Pbisotope data suggest derivation from a normal mid-ocean ridgebasalt (N-MORB)-type mantle source metasomatized by subductedsediment or sediment melt and fluid. The eruptive rocks arecharacterized by 238U excesses that indicate that fluid additionof U occurred <350 kyr ago; U–Th isotope data for mineralseparates are dominated by melt inclusions but would allow crystallizationages of 13–68 ka. However, plagioclase is consistentlydisplaced above these ‘isochrons’, with apparentages of 39–236 ka, and plagioclase crystal size distributionsare concave-upwards. These observations suggest that mixingprocesses are important. The presence of 226Ra excesses in twosamples indicates some fluid addition <8 kyr ago and thatthe magma residence times must also have been less than 8 kyr. KEY WORDS: Sr–Nd–Pb isotopes; U-series isotopes; crystal size distribution; petrogenesis  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号