首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In this paper,the effects of sea spray on tropical cyclone(TC)structure and intensity variation are evaluated through numerical simulations using an advanced sea-spray parameterization from the National Oceanic and Atmospheric Administration/Earth System Research Laboratory(NOAA/ESRL),which is incorporated in the idealized Advanced Research version of the Weather Research and Forecast (WRF-ARW)model.The effect of sea spray on TC boundary-layer structure is also analyzed.The results show that there is a significant increase in TC intensity when its boundary-layer wind includes the radial and tangential winds,their structure change,and the total surface wind speed change.Diagnosis of the vorticity budget shows that an increase of convergence in TC boundary layer enhances TC vorticity due to the dynamic effect of sea spay.The main kinematic effect of the friction velocity reduction by sea spray produces an increment of large-scale convergence in the TC boundary layer,while the radial and tangential winds significantly increase with an increment of the horizontal gradient maximum of the radial wind, resulting in a final increase in the simulated TC intensity.The surface enthalpy flux enlarges TC intensity and reduces storm structure change to some degree,which results in a secondary thermodynamic impact on TC intensification.Implications of the new interpretation of sea-spray effects on TC intensification are also discussed.  相似文献   

2.
To examine effects of sea spray evaporation and dissipative heating on structure and intensity of a real tropical cyclone,the sea spray flux parameterization scheme was incorporated into the fifth-generation Pennsylvania State University-National Center for Atmospheric Research Mesoscale Model(MM5).Sensitivity tests were performed with varying the spray source function intensities and with and without dissipation heating.The numerical results indicate that sea spray evaporation increases the interfacial sensible heat flux,which is increased by 16% for the moderate spray and 47% for the heavy spray,but has little effect on the interfacial latent heat flux.The net effect of sea spray evaporation is to decrease the total sensible heat flux and to increase the total latent heat flux.The total enthalpy flux is increased by 1% and 12% with moderate and strong spray amounts,respectively.Consistent with these results,the intensity of the tropical cyclone is increased by 5% and 16% in maximum 10-m wind speed,respectively,due to sea spray evaporation.Sea spray evaporation and dissipative heating modify the tropical cyclone structure in important but complex ways.The effect of sea spray on the near-surface temperature and moisture depends on the spray amounts and its location within the tropical cyclone.Within the high-wind region of a tropical cyclone,the lower atmosphere becomes cooler and moister due to the evaporation of sea spray.However,the dissipative heating offsets the cooling due to sea spray evaporation,which makes the lower atmosphere warmer.  相似文献   

3.
Based on different parameterization schemes of planetary boundary layer (PBL), the uncertainty of intensity and structure of the Super-strong Typhoon Rammasun (1409) is investigated using the WRF model (v3.4) with six PBL parameterization schemes. Results indicate that PBL uncertainty leads to the uncertainty in tropical cyclone (TC) prediction, which increases with forecast time. The uncertainty in TC prediction is mainly reflected in the uncertainty in TC intensity, with significant differences in the TC intensity forecasts using various PBL schemes. The uncertainty in TC prediction is also reflected in the uncertainty in TC structures. Greater intensity is accompanied by smaller vortex width, tighter vortex structure, stronger wind in the near-surface layer and middle and lower troposphere, stronger inflow (outflow) wind at the lower (upper) levels, stronger vertical upward wind, smaller thickness of the eye wall, smaller outward extension of the eye wall, and warmer warm core at the upper levels of eye. PBL height, surface upward heat flux and water vapor flux are important factors that cause the uncertainty in TC intensity and structure. The more surface upward heat flux and water vapor flux and the lower PBL height, the faster TC development and the stronger TC intensity.  相似文献   

4.
基于1980—2014中国670站日最大风速资料,利用改进的客观天气图分析法(OSAT)分离出中国陆地的台风大风(6级以上,≥10.8 m/s),并定义了台风极端大风,进而研究了台风大风和台风极端大风的变化特征。分析表明:在地理分布上,台风大风年均日数和占比均自海岸线向内陆迅速减小,在海南、华南和东南沿海省份以及江苏南部,台风大风占比一般为30%~70%;台风极端大风年均日数大值主要分布在沿海省市(除河北和天津),特别是华东和华南沿海,局部地区台风极端大风日数占比达100%。从季节变化看,在台风活跃的7—9月,中国台风极端大风频次总体上超过了季风极端大风;就全国而言,当阈值从最低值(11.5 m/s)提升至12级(32.7 m/s)时,台风极端大风频数占比则从12%急剧攀升至77%。1980—2014年,中国台风大风和台风极端大风年日数均显著减少,而台风极端大风年平均强度增强;这期间引起中国台风大风和台风极端大风的台风频数均显著减少,但引起台风极端大风的台风在生命期和影响期的平均强度均显著增强,这可能是上述显著变化特征的主要原因。  相似文献   

5.
In this paper,characteristics of the asymmetric flow of Tropical Cyclone (TC) Shanshan (2006) during its turning and intensification period over the oceanic area east of Taiwan are investigated,based o...  相似文献   

6.
The Weather Research and Forecasting model version 3.2 (WRF v3.2) was used with the bogus data assimilation (BDA) scheme and sea spray parameterization (SSP), and experiments were conducted to assess the impacts of the BDA and SSP on prediction of the typhoon ducting process induced by Typhoon Mindule (2004). The global positioning system (GPS) dropsonde observations were used for comparison. The results show that typhoon ducts are likely to form in every direction around the typhoon center, with the main type of ducts being elevated duct. With the BDA scheme included in the model initialization, the model has a better performance in predicting the existence, distribution, and strength of typhoon ducts. This improvement is attributed to the positive effect of the BDA scheme on the typhoon’s ambient boundary layer structure. Sea spray affects typhoon ducts mainly by changing the latent heat (LH) flux at the air-sea interface beyond 270 km from the typhoon center. The strength of the typhoon duct is enhanced when the boundary layer under this duct is cooled and moistened by the sea spray; otherwise, the typhoon duct is weakened. The sea spray induced changes in the air-sea sensible heat (SH) flux and LH flux are concentrated in the maximum wind speed area near the typhoon center, and the changes are significantly weakened with the increase of the radial range.  相似文献   

7.
Boundary-layer wind structure in a landfalling tropical cyclone   总被引:1,自引:0,他引:1  
In this study, a slab boundary layer model with a constant depth is used to analyze the boundary-layer wind structure in a landfalling tropical cyclone. Asymmetry is found in both the tangential and radial components of horizontal wind in the tropical cyclone boundary layer at landfall. For a steady tropical cyclone on a straight coastline at landfall, the magnitude of the radial component is greater in the offshoreflow side and the tangential component is greater over the sea, slightly offshore, therefore the greater total wind speed occurs in the offshore-flow side over the sea. The budget analysis suggests that: (1) a greater surface friction over land produces a greater inflow and the nonlinear effect advects the maximum inflow downstream, and (2) a smaller surface friction over the sea makes the decrease of the tangential wind component less than that over land. Moreover, the boundary layer wind structures in a tropical cyclone are related to the locations of the tropical cyclone relative to the coastline due to the different surface frictions. During tropical cyclone landfall, the impact of rough terrain on the cyclone increases, so the magnitude of the radial component of wind speed increases in the offshore-flow side and the tangential component outside the radius of maximum wind speed decreases gradually.  相似文献   

8.
根据1961—2010年热带气旋资料,按登陆地段或移动路径将登陆影响福建的热带气旋分为11种路径,分析各种路径的致灾因子空间分布特征,结果表明:热带气旋雨灾最严重的区域位于北部和中部沿海,风灾最严重的是南部沿海;从路径来看,降水强度最强是登台入闽北路径,强风区域最大的是直接登陆闽南路径和登台入闽中部路径,风力最强的是登台入闽南路径。采用相关系数客观赋权法建立了致灾因子风险评估模型,分析不同热带气旋路径致灾因子风险等级,登台入闽中和登台入闽北路径风险最大,其次是直接登陆闽南和登陆珠江口及以东路径;高风险区域 (包括次高危险和高危险区) 集中在沿海地区、闽西和闽北的局部。  相似文献   

9.
A western North Pacific tropical cyclone (TC) intensity prediction scheme (WIPS) is developed based on TC samples from 1996 to 2002 using the stepwise regression technique, with the western North Pacific divided into three sub-regions: the region near the coast of East China (ECR), the South China Sea region (SCR), and the far oceanic region (FOR). Only the TCs with maximum sustained surface wind speed greater than 17.2 m s-1 are used in the scheme. Potential predictors include the climatology and persistence factors, synoptic environmental conditions, potential intensity of a TC and proximity of a TC to land. Variances explained by the selected predictors suggest that the potential intensity of a TC and the proximity of a TC to land are significant in almost all the forecast equations. Other important predictors include vertical wind shear in ECR, 500-hPa geopotential height anomaly at the TC center, zonal component of TC translation speed in SCR, intensity change of TC 12 or 24 h prior to initial time, and the longitude of TC center in FOR. Independent tests are carried out for TCs in 4 yr (2004-2007), with mean absolute errors of the maximum surface wind being 3.0, 5.0, 6.5, 7.3, 7.6, and 7.9 m s-1 for 12- to 72-h predictions at 12-h intervals, respectively. Positive skills are obtained at all leading time levels as compared to the climatology and persistence prediction scheme, and the large skill scores (near or over 20%) after 36 h imply that WIPS performs especially better at longer leading times. Furthermore, it is found that the amendment in TC track prediction and real-time model analysis can significantly improve the performance of WIPS in the SCR and ECR. Future improvements will focus on applying the scheme for weakening TCs and those near the coastal regions.  相似文献   

10.
The mean kinematic and thermodynamic structures of tropical cyclones (TCs) making landfall in main-land China are examined by using sounding data from 1998 to 2009. It is found that TC landfall is usually accompanied with a decrease in low-level wind speed, an expansion of the radius of strong wind, weakening of the upper-level warm core, and drying of the mid-tropospheric air. On average, the warm core of the TCs dissipates 24 h after landfall. The height of the maximum low-level wind and the base of the stable layer both increase with the increased distance to the TC center;however, the former is always higher than the latter. In particular, an asymmetric structure of the TC after landfall is found. The kinematic and thermodynamic structures across various areas of TC circulation diff er, especially over the left-front and right-rear quadrants (relative to the direction of TC motion). In the left-front quadrant, strong winds locate at a smaller radius, the upper-level temperature is warmer with the warm core extending into a deep layer, while the wet air occupies a shallow layer. In the right-rear quadrant, strong wind and wet air dwell in an area that is broader and deeper, and the warmest air is situated farther away from the TC center.  相似文献   

11.
Variable thicknesses in the lowest half-ηmodel level (LML) are often used in atmospheric models to compute surface diagnostic fields such as surface latent and sensible heat fluxes.The effects of the LML on simulated tropical cyclone (TC)evolution were investigated in this study using the Weather Research and Forecasting (WRF) model.The results demonstrated notable influences of the LML on TC evolution when the LML was placed below 12 m.The TC intensification rate decreased progressively with a lowering of the LML,but its ultimate intensity change was relatively small.The maximum 10-m winds showed different behavior to minimum sea level pressure and azimuthally-averaged tangential winds,and thus the windpressure relationship was changed accordingly by varying the LML.The TC circulation was more contracted in association with a higher LML.Surface latent heat fluxes were enhanced greatly by elevating the LML,wherein the wind speed at the LML played a dominant role.The changes in the wind speed at the LML were dependent not only on their profile differences,but also the different heights they were taken from.Due to the enhanced surface heat fluxes,more intense latent heat release occurred in the eyewall,which boosted the storm's intensification.A higher LML tended to produce a stronger storm,and therefore the surface friction was reinforced,which in turn induced stronger boundary layer inflow together with increased diabatic heating.  相似文献   

12.
This study examines the long-term change in the threat of landfalling tropical cyclones(TCs) in East Asia over the period 1975–2020 with a focus on rapidly intensifying(RI) TCs. The increase in the annual number of RI-TCs over the western North Pacific and the northwestward shift of their genesis location lead to an increasing trend in the annual number of landfalling RI-TCs along the coast of East Asia. The annual power dissipation index(PDI), a measure of the destructive potential of RI-TCs at landfall, also shows a significant increasing trend due to increases in the annual frequency and mean landfall intensity of landfalling RI-TCs. The increase in mean landfall intensity is related to a higher lifetime maximum intensity(LMI) and the LMI location of the landfalling RI-TCs being closer to the coast. The increase in the annual PDI of East Asia is mainly associated with landfalling TCs in the southern(the Philippines, South China, and Vietnam) and northern parts(Japan and the Korean Peninsula) of East Asia due to long-term changes in vertical wind shear and TC heat potential. The former leads to a northwestward shift of favorable environments for TC genesis and intensification, resulting in the northwestward shift in the genesis, RI, and LMI locations of RI-TCs. The latter provides more heat energy from the ocean for TC intensification, increasing its chances to undergo RI.  相似文献   

13.
沿海风工程设计风速中泊松-耿贝尔法的应用   总被引:2,自引:0,他引:2       下载免费PDF全文
每年西北太平洋热带气旋(TC)发生的次数、移动路径和强度都是随机的,我国东南沿海各地每年受TC影响的次数便构成了某种离散型分布,而TC影响下的最大风速则可以构成某种连续型分布。该文采用上海台风研究所提供的1961—2006年TC中心风速和TC影响期间各台站大风资料,利用泊松-耿贝尔联合极值风速计算方法,计算了沿海各气象站TC影响大风的多年一遇风工程设计最大风速。结果表明:当观测资料样本序列较短,特别是像TC这样随机性很强的天气事件,泊松-耿贝尔联合极值算法更具优势;我国沿海地区有53.9%的台站50年一遇最大风速在25 m/s以下,最大风速大于42.5 m/s以上的台站分布于浙江的大陈岛、嵊山、石浦,福建的北茭和台山,广东的遮浪、上川岛和海南的西沙岛,在这些地区进行风电开发风险较大,应引起足够重视。  相似文献   

14.
Based on gradient wind equations,including frictional force,and considering the effect of the movement of a tropical cyclone on wind speed,the Fujita Formula is improved and further simplified,and the numerical scheme for calculating the maximum wind speed radius and wind velocity distribution of a moving tropical cyclone is derived.In addition,the effect of frictional force on the internal structure of the tropical cyclone is discussed.By comparison with observational data,this numerical scheme demonstrate...  相似文献   

15.
利用目前国际上最先进的中尺度WRF模式模拟热带气旋生成,网格分辨率从9 km增加到3 km,3 km网格中积云参数化方案不起作用,依靠微物理方案来模拟对流尺度系统特征,模式中热带气旋的生成过程变得迟缓。当低压扰动发展到一定程度后再加入3 km网格,生成过程有加快趋势。本研究针对该现象进行分析。结果表明:只用微物理方案使低层(950~700 hPa)风速的垂直切变减小,不利于对流发展;切变减小主要是由于动量垂直输送项的差异所致。在加入细网格的6 h内,低层对流尺度(减去区域平均)的动量垂直输送量平均增加了一倍,某些时刻达到了5倍以上;动量混合增加是由于微物理方案模拟的垂直速度增加所致。此外,只用微物理方案导致对流有效位能迅速被消耗。低层垂直切变和对流有效位能的减小都不利于对流发展,从而导致热带气旋生成发展过程迟缓。本研究表明,目前WRF中的微物理方案在模拟热带气旋生成过程中的对流发展时仍然存在问题。  相似文献   

16.
蒋承霖 《气象科学》2023,43(6):847-852
采用泊松耿贝尔分布,基于中国气象局发布的《CMA-STI热带气旋最佳路径数据集》资料来估算海上极端风速,并以上川岛气象站多年实测资料通过概率评估来加以验证。结果表明,采用泊松耿贝尔分布可以得到较为保守的海上极值风速取值。对于海上的小面积区域的重现期风速估算,采用50 km半径区域进行评估,可以得到较为合理的估算结果,当评估区域较大时,则需考虑适当扩大评估半径。  相似文献   

17.
热带气旋(TC)登陆时中心最大风速会发生明显衰减,研究此时的风压关系对风暴潮模拟和预测具有重要意义。采用中国气象局上海台风研究所数据资料,对1949—2016年风压关系序列的一致性进行检验,登陆风压关系公式拟合及误差分析。结果表明:1970s后风压关系发生变异;新公式在计算登陆风速时要优于原公式,尤其是大风速情况下;相同气压下台风在近岸时风速明显小于大洋中,且登陆时风速越大衰减越剧烈。  相似文献   

18.
西北太平洋热带气旋频数和强度变化趋势初探   总被引:4,自引:0,他引:4       下载免费PDF全文
利用1951—2006年西北太平洋 (含南海) 热带气旋资料, 研究了不同强度热带气旋的气候变化特征。结果表明:超强台风 (近中心最大风速≥58m/s, 简称超强台风Ⅱ) 频数、强度和初、终旋日期的变化特征都不同于其他级别热带气旋; 西北太平洋热带气旋的总频数有长期减少趋势, 主要由热带低压和超强台风Ⅱ的长期减少趋势引起; 随着热带气旋强度增强, 出现月最大频数的月份逐渐推迟; 超强台风月频数最大值发生在秋季; 超强台风Ⅱ频数的年变化与除了超强台风Ⅰ(近中心最大风速为51~58m/s) 外的其他级别热带气旋反相关; 受超强台风Ⅱ减少影响, 热带气旋年平均最大风速有减小的长期趋势; 热带气旋的初、终旋日期没有显著的长期变化趋势, 但超强台风Ⅱ的初旋日期有推迟趋势, 终旋日期有提前趋势, 发生时间缩短。  相似文献   

19.
A dataset entitled "A potential risk index dataset for landfalling tropical cyclones over the Chinese mainland" (PRITC dataset V1.0) is described in this paper, as are some basic statistical analyses. Estimating the severity of the impacts of tropical cyclones (TCs) that make landfall on the Chinese mainland based on observations from 1401 meteorological stations was proposed in a previous study, including an index combining TC-induced precipitation and wind (IPWT) and further information, such as the corresponding category level (CAT_IPWT), an index of TC-induced wind (IWT), and an index of TC-induced precipitation (IPT). The current version of the dataset includes TCs that made landfall from 1949–2018; the dataset will be extended each year. Long-term trend analyses demonstrate that the severity of the TC impacts on the Chinese mainland have increased, as embodied by the annual mean IPWT values, and increases in TC-induced precipitation are the main contributor to this increase. TC Winnie (1997) and TC Bilis (2006) were the two TCs with the highest IPWT and IPT values, respectively. The PRITC V1.0 dataset was developed based on the China Meteorological Administration's tropical cyclone database and can serve as a bridge between TC hazards and their social and economic impacts.  相似文献   

20.
登陆热带气旋与夏季风相互作用对暴雨的影响   总被引:3,自引:1,他引:2       下载免费PDF全文
利用《热带气旋年鉴》资料、NCEP/NCAR再分析资料采用动态合成分析方法,研究了登陆热带气旋降水与夏季风急流之间的关系,同时对登陆热带气旋与夏季风急流发生相互作用的典型个例强热带风暴Bilis (0604) 利用数值模拟方法研究了二者之间的相互作用对暴雨的影响。结果表明:登陆后造成大范围强降水的热带气旋往往与低层急流长时间相连,其水汽通量和潜热能显著大于弱降水热带气旋。数值试验结果表明:夏季风低空急流向热带气旋输送水汽对热带气旋结构维持有利,当水汽输送被截断后,热带气旋气旋性结构被破坏,强降水减弱、范围明显缩小;季风急流风速增强时可增加水汽通量输送,使得强降水范围增加、强度增强;在夏季风影响背景下,热带气旋在陆上的移动改变水汽和不稳定能量的分布,而热带气旋本身独特的动力结构使得强降水强度增加。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号