首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The unique spectrographic observations of auroras on the Kola Peninsula, simultaneously performed in 1970 at Loparskaya and Kem stations using C-180-S cameras, have been analyzed by up-to-date digital data processing. The position and dynamics of proton precipitation relative to other manifestations of auroral and substorm activity (auroral arcs and electrojets) under moderately and weakly disturbed conditions have been analyzed. Several previously known regularities in the morphology of proton auroras have been confirmed. It has been indicated that the direction of motion of the proton band equatorward boundary in the evening sector changes at a sign reversal of the IMF Z component. Weak breakups affect the poleward boundary of the proton band but do not influence the position of the equatorward boundary of this band, which results in the expansion of the proton emission region. When a disturbance is stronger, the proton emission disappears near an active electron arc and subsequently appears poleward of its position before intensification. Short-term proton precipitation is also observed in the region of active electron precipitation during an intense breakup in the form of N–S structures.  相似文献   

2.
The structure and dynamics of auroras in the midnight sector during substorms, which develop during the magnetic storm main phase as compared to the characteristics of a typical auroral substorm, have been studied using the ground-based and satellite observations. It has been found out that a difference from the classical substorm is observed in auroras during the magnetic storm main phase. At the beginning of the storm main phase, the series of pseudobreakups with the most pronounced jump-like motion toward the equator shifts to lower latitudes. The substorm expansion phase can be observed not only as arc jumps to higher latitudes but also as an explosive expansion of a bright diffuse luminosity in all directions. During the magnetic storm main phase, auroras are mainly characterized by the presence of stable extensive rayed structures and by the simultaneous existence of different auroral forms, typical of different substorm phases, in the TV camera field of view.  相似文献   

3.
Observations and modelling are presented which illustrate the ability of the Finland CUTLASS HF radar to monitor the afternoon-evening equatorward auroral boundary during weak geomagnetic activity. The subsequent substorm growth phase development was also observed in the late evening sector as a natural continuation of the preceding auroral oval dynamics. Over an 8 h period the CUTLASS Finland radar observed a narrow (in range) and persistent region of auroral F- and (later) E-layer echoes which gradually moved equatorward, consistent with the auroral oval diurnal rotation. This echo region corresponds to the subvisual equatorward edge of the diffuse luminosity belt (SEEL) and the ionospheric footprint of the inner boundary of the electron plasma sheet. The capability of the Finland CUTLASS radar to monitor the E-layer SEEL-echoes is a consequence of the nearly zero E-layer rectilinear aspect angles in a region 5/10° poleward of the radar site. The F-layer echoes are probably the boundary blob echoes. The UHF EISCAT radar was in operation and observed a similar subvisual auroral arc and an F-layer electron density enhancement when it appeared in its antenna beam.  相似文献   

4.
5.
On 7 December 1992, a moderate substorm was observed by a variety of satellites and ground-based instruments. Ionospheric flows were monitored near dusk by the Goose Bay HF radar and near midnight by the EISCAT radar. The observed flows are compared here with magnetometer observations by the IMAGE array in Scandinavia and the two Greenland chains, the auroral distribution observed by Freja and the substorm cycle observations by the SABRE radar, the SAMNET magnetometer array and LANL geosynchronous satellites. Data from Galileo Earth-encounter II are used to estimate the IMF Bz component. The data presented show that the substorm onset electrojet at midnight was confined to closed field lines equatorward of the pre-existing convection reversal boundaries observed in the dusk and midnight regions. No evidence of substantial closure of open flux was detected following this substorm onset. Indeed the convection reversal boundary on the duskside continued to expand equatorward after onset due to the continued presence of strong southward IMF, such that growth and expansion phase features were simultaneously present. Clear indications of closure of open flux were not observed until a subsequent substorm intensification 25 min after the initial onset. After this time, the substorm auroral bulge in the nightside hours propagated well poleward of the pre-existing convection reversal boundary, and strong flow perturbations were observed by the Goose Bay radar, indicative of flows driven by reconnection in the tail.  相似文献   

6.
Based on results of the simultaneous TV observations at Barentsburg high-latitude observatory and Lovozero auroral observatory and using the IMAGE auroral luminosity images, the auroral fine structure and dynamics has been studied during the substorm of December 26, 2000, when the auroral luminosity distribution represented a double oval. It has been indicated that the interaction between the processes proceeding in different magnetospheric regions, the projections of which are the poleward and equatorward edges of the double oval, is observed in auroras in the process of substorm development.  相似文献   

7.
The spatial dynamics of geomagnetic variations and pulsations, auroras, and riometer absorption during the development of the main phase of the extremely strong magnetic storm of November 7–8, 2004, has been studied. It has been indicated that intense disturbances were observed in the early morning sector of auroral latitudes rather than in the nighttime sector, as usually takes place during magnetic storms. The unusual spatial dynamics was revealed at the beginning of the storm main phase. A rapid poleward expansion of disturbances from geomagnetic latitudes of 65°–66° to 74°–75° and the development of the so-called polar cap substorm with a negative bay amplitude of up to 2500 nT, accompanied by precipitation of energetic electrons (riometer absorption) and generation of Pi2–Pi3 pulsations, were observed when IMF B z was about ?45 nT. The geomagnetic activity maximum subsequently sharply shifted equatorward to 60°–61°. The spatial dynamics of the westward electrojet, Pi2–Pi3 geomagnetic pulsations, and riometer absorption was similar, which can indicate that the source of these phenomena is common.  相似文献   

8.
The dynamics of northern auroral structures drifting equatorward and bright auroral forms of substorm intensifications in the south, simultaneously moving northward, is analyzed based on data from the Lovozero, Loparskaya, and Tumanny auroral stations and using effective methods for filtering TV images. A fundamentally new fact that the structures of northern intensifications drifting southward cross the structures of southern intensifications propagating northward has been discovered. The effect is detected statistically and is only clearly defined on filtered keograms. The presence of this effect possibly means that northern structures and intense breakup auroras in the south have radically different sources and are caused by different mechanisms by which electrons accelerate and precipitate.  相似文献   

9.
The optical observations on Heiss Island and the ion drift measurements on the DMSP F8 satellite were used to study the aurora characteristics and ionospheric convection before and after SC registered at 2330 UT on January 13, 1988. It has been indicated that two zones of luminosity can be distinguished in morning-time auroras during the quiet period before SC: the soft zone with auroral arcs and the harder diffuse auroral zone (equatorward of the first zone). After SC, a gradual smooth activation of auroras in both zones was followed (4–5 min later) by a more abrupt intensification of diffuse luminosity and by the appearance of numerous bright discrete auroras throughout the sky. In the diffuse auroral zone, the variations in the luminosity intensity with a period of 6–7 min were observed after SC. Auroral and geomagnetic field pulsations are closely correlated. During the quiet period before SC, sunward convection was concentrated in the soft precipitation region in the form of jets located in the vicinity of auroral arcs. After SC, considerable sunward convection was observed in the diffuse auroral zone. Peaks of the upward ion drift velocity were registered in the vicinity of auroral arcs.  相似文献   

10.
The dynamics and fine structure of auroras before and during 60 auroral breakups, including pseudobreakups and breakups at moderate and high auroral activity, have been studied using the developed method for processing television images. The IMAGE and POLAR satellite and simultaneous ground images of auroras, ground magnetic data, and measurements of IMF and solar wind plasma parameters have been analyzed. The signatures that can be precursors of breakup have been found out in the auroral dynamics and morphology in the spatial—temporal vicinity of breakup. The morphological characteristics of auroral structures have been analyzed statistically. The directions of motion of weak subvisual structures have been determined. The velocities of motion of such structures are presented. The relation of the initial auroral arc bright-ening during breakups and pseudobreakups to the beginning of magnetic activation and formation of rayed structures has been analyzed.  相似文献   

11.
Certain large magnetic lays, registered by magnetometers in the auroral and subauroral zones simultaneously with SC instant and accompanying events, substantially differ from activations at the beginning of auroral substorm. Such basic substorm elements as energy accumulation during the growth phase and breakup—activation in the localized region near midnight—are absent. During such sudden auroral activations (SAs), a disturbance begins in a wide sector of longitudes and latitudes. It is proposed to combine SAs into an individual class of magnetospheric disturbances. The particle acceleration and injection mechanism, which causes SAs, is considered.  相似文献   

12.
We present combined observations made near midnight by the EISCAT radar, all-sky cameras and the combined released and radiation efects satellite (CRRES) shortly before and during a substorm. In particular, we study a discrete, equatorward-drifting auroral arc, seen several degrees poleward of the onset region. The arc passes through the field-aligned beam of the EISCAT radar and is seen to be associated with a considerable upflow of ionospheric plasma. During the substorm, the CRRES satellite observed two major injections, 17 min apart, the second of which was dominated by O+ ions. We show that the observed are was in a suitable location in both latitude and MLT to have fed O+ ions into the second injection and that the upward flux of ions associated with it was sufficient to explain the observed injection. We interpret these data as showing that arcs in the nightside plasma-sheet boundary layer could be the source of O+ ions energised by a dipolarisation of the mid- and near-Earth tail, as opposed to ions ejected from the dayside ionosphere in the cleft ion fountain.  相似文献   

13.
Rapid fading of auroral activity a few minutes before substorm breakup has earlier been analyzed in case-studies. Here we report on a study in which all-sky camera (ASC) and magnetic data over 3 years were examined to find breakups that were accompanied by a preceding fading. To illustrate typical features of the fading effect we analyze three events in detail and discuss seven other events to find the spatial and temporal behavior of the fading and the global conditions favoring this phenomenon, which is not associated with every breakup. In these ten events the precipitation diminished typically for about 2 min and a local breakup followed after 2–3 min. Usually the arc which broke up had faded earlier. Comparison with geostationary electron flux recordings shows that in many cases the global onset had already taken place when the fading was recorded at a different longitude. Thus fading is not just a growth-phase phenomenon as often thought, but can also appear as a precursor of the approaching auroral bulge. The AE index and solar-wind data reveal that the fading has a tendency to take place during magnetically disturbed conditions caused by continuous energy input from the solar wind. Furthermore, while a widely recognized phenomenon, we have found that the fading prior to breakup is not a very common feature in the spatio-temporal scale of auroral ASC recordings. In many cases the deepness of the fading had a longitudinal dependence, which leads to the suggestion that this phenomenon is related to azimuthal gradients in the tail magnetic field and/or plasma pressure. Possible scenarios causing fading both before and after the onset are discussed based on a few previously presented theoretical auroral-arc models.  相似文献   

14.
The irregularity velocity patterns observed by the SABRE coherent radar at substorm expansion phase onset, which is identified by magnetometer observations of Pi2 pulsations, are occasionally highly structured. In all the examples of structured velocity patterns examined, the SABRE viewing area is located at longitudes within the inferred substorm current wedge. Three types of structured velocity regime are apparent depending on the level of magnetic activity and the position of the radar viewing area relative to the substorm enhanced currents and the Pi2 pulsation generation region. Firstly, vortex-like velocity patterns are observed and these may be caused by the field-aligned currents associated with the substorm current wedge. Secondly, regions of equatorward velocity are also observed at times of substorm expansion phase onset moving longitudinally across the SABRE viewing area. The longitudinal movement is usually westward although an example of eastward motion has been observed. The phase velocity of these regions of equatorward flow is typically 1–3 km s?1. The observed equatorward velocities occur at the poleward edge or poleward of the background convection velocities observed by SABRE. These equatorward velocities may be related to the westward travelling surge and to the expansion (eastwards as well as westwards) of the brightening arc region at substorm onset. Thirdly, the flow rotates equatorward within the field of view but does not then appear to move longitudinally. These equatorward velocities may relate to the earthward surge of plasma from the magnetotail at substorm onset.  相似文献   

15.
A planetary pattern of substorm development in auroral precipitation has been constructed on the basis of the F6 and F7 satellite observations. The behavior of the auroral injection boundaries and characteristics of precipitating electrons in various precipitation regions during all phases of a statistically mean magnetospheric substorm with an intensity of AL ~ ?400 nT at a maximum is considered in detail. It is shown that during a substorm, the zone of structured auroral oval precipitation AOP and the diffuse auroral zone DAZ are the widest in the nighttime and daytime sectors, respectively. In the daytime sector, all precipitation regions synchronously shift equatorward not only at the origination phase but during the substorm development phase. The strongest shift to low latitudes of the daytime AOP region is observed at a maximum of the development phase. As a result of this shift, the area of the polar cap increases during the phases of substorm origination and development. It is shown that the average position of the precipitation boundaries and the energy fluxes of precipitating electrons at each phase are linearly related to the intensity of a magnetic disturbance. This makes it possible to develop a model of auroral precipitation development during each phase of substorms of any intensity.  相似文献   

16.
A discussion is given of plasma flows in the dawn and nightside high-latitude ionospheric regions during substorms occurring on a contracted auroral oval, as observed using the EISCAT CP-4-A experiment. Supporting data from the PACE radar, Greenland magnetometer chain, SAMNET magnetometers and geostationary satellites are compared to the EISCAT observations. On 4 October 1989 a weak substorm with initial expansion phase onset signatures at 0030 UT, resulted in the convection reversal boundary observed by EISCAT (at \sim0415 MLT) contracting rapidly poleward, causing a band of elevated ionospheric ion temperatures and a localised plasma density depletion. This polar cap contraction event is shown to be associated with various substorm signatures; Pi2 pulsations at mid-latitudes, magnetic bays in the midnight sector and particle injections at geosynchronous orbit. A similar event was observed on the following day around 0230 UT (\sim0515 MLT) with the unusual and significant difference that two convection reversals were observed, both contracting poleward. We show that this feature is not an ionospheric signature of two active reconnection neutral lines as predicted by the near-Earth neutral model before the plasmoid is “pinched off”, and present two alternative explanations in terms of (1) viscous and lobe circulation cells and (2) polar cap contraction during northward IMF. The voltage associated with the anti-sunward flow between the reversals reaches a maximum of 13 kV during the substorm expansion phase. This suggests it to be associated with the polar cap contraction and caused by the reconnection of open flux in the geomagnetic tail which has mimicked “viscous-like” momentum transfer across the magnetopause.  相似文献   

17.
The results of the ground-based optical observations of sunlit auroras, performed at Lovozero and Apatity observatories on April 10 (event 1) and April 27, 2007(event 2), are presented. The observations were performed in the (OI) 557.7 nm emission, using a new equipment based on a Fabry-Pérot interferometer connected to a PhotonMAX CCD camera. During event 1, the observations were performed in the Harang discontinuity region at a low magnetic disturbance. It has been indicated that an auroral arc was located in the polar part of the eastward electrojet, and the arc position coincides with the equatorward boundary of structured precipitation (b2e). During event 2, auroras were observed within the average statistical boundaries of the auroral oval and the region of structured precipitation under the conditions of rather high geomagnetic activity. However, during the period of low geomagnetic activity, discrete auroras were registered at a geomagnetic latitude of ~64° on that day, which is 3°—4° equatorward of the structured precipitation region. Such a low latitudinal position of auroras can be explained by the effect of a high solar wind velocity, which was ~580 km/s during the period of observations.  相似文献   

18.
About 100 breakups of different types and intensities are studied on the basis of Lovozero Observatory data. Magnetic pulsations in different frequency ranges, VLF emissions, and auroral activity are analyzed using the TV data. It is found that magnetic pulsations in all frequency ranges lag behind the moment of breakup by 0.5–2.0 min, and bursts of low-intensity broadband VLF emission hiss are observed 3–10 min before breakup. Hiss leading breakup corresponds to feeble auroras located northward of a pre-breakup arc.  相似文献   

19.
The sensitive method for detecting and measuring the velocity of a weak luminosity wave, traveling from bottom to top along an arc or isolated auroral beams, has been developed. This wave is caused by dispersion of precipitating electrons over velocities and by a differential atmospheric penetration of different-energy electrons, and the wave velocity gives information about the location of the electron acceleration region in the magnetosphere. The method was tested using different model signals and was used to study pulsating auroras and auroral breakup. A luminosity wave has been detected in pulsating auroras, and it has been estimated that the injection region is located at a distance of 5–6 R e . The application of the method to intensification of auroras during breakup indicated that such a wave is absent; i.e., breakup electrons being accelerated near the ionosphere at altitudes of 2000–8000 km. It has been assumed that the regions of anomalous resistance, generated in the ionosphere by field-aligned currents during the breakup phase, cause intense local field-aligned electric fields. These fields accelerate thermal electrons and form the auroral breakup pattern.  相似文献   

20.
The results of coordinated EISCAT and TV-camera observations of a prebreakup event on 15 November 1993 have been considered. The variations of the luminosity of two parallel auroral arcs, plasma depletion on the poleward edge of one of these arcs as well as electron and ion temperatures in front of a westward travelling surge were studied. It was found that a shortlived brightening of a weak zenith arc before an auroral breakup was accompanied by fading of an equatorial arc and, vice versa. A plasma depletion in the E region was detected by the EISCAT radar on the poleward edge of the zenith arc just before the auroral breakup. The plasma depletion was associated with an enhancement of ion (at the altitudes of 150–200 km) and electron (in E region) temperatures. During its occurrence, the electric field in the E-region was extremely large (150 mV/m). A significant increase in ion temperature was also observed 1 min before the arrival of a westward travelling surge (WTS) at the radar zenith. This was interpreted as the existence of an extended area of enhanced electric field ahead of the WTS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号