首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Vegetation feedback under future global warming   总被引:2,自引:0,他引:2  
It has been well documented that vegetation plays an important role in the climate system. However, vegetation is typically kept constant when climate models are used to project anthropogenic climate change under a range of emission scenarios in the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emission Scenarios. Here, an atmospheric general circulation model, and an asynchronously coupled system of an atmospheric and an equilibrium terrestrial biosphere model are forced by monthly sea surface temperature and sea ice extent for the periods 2051?C2060 and 2090?C2098 as projected with 17 atmosphere?Cocean general circulation models participating in the IPCC Fourth Assessment Report, and by appropriate atmospheric carbon dioxide concentrations under the A2 emission scenario. The effects of vegetation feedback under future global warming are then investigated. It is found that the simulated composition and distribution of vegetation during 2051?C2060 (2090?C2098) differ greatly from the present, and global vegetation tends to become denser as expressed by a 21% (36%) increase in global mean leaf area index, which is most pronounced at the middle and high northern latitudes. Vegetation feedback has little effect on globally averaged surface temperature. On a regional scale, however, it induces statistically significant changes in surface temperature, in particular over most parts of continental Eurasia east of about 60°E where annual surface temperature is expected to increase by 0.1?C1.0?K, with an average of about 0.4?K for each future period. These changes can mostly be explained by changes in surface albedo resulting from vegetation changes in the context of future global warming.  相似文献   

2.
Maize is grown by millions of smallholder farmers in South Asia (SA) under diverse environments. The crop is grown in different seasons in a year with varying exposure to weather extremes, including high temperatures at critical growth stages which are expected to increase with climate change. This study assesses the impact of current and future heat stress on maize and the benefit of heat-tolerant varieties in SA. Annual mean maximum temperatures may increase by 1.4–1.8 °C in 2030 and 2.1–2.6 °C in 2050, with large monthly, seasonal, and spatial variations across SA. The extent of heat stressed areas in SA could increase by up to 12 % in 2030 and 21 % in 2050 relative to the baseline. The impact of heat stress and the benefit from heat-tolerant varieties vary with the level of temperature increase and planting season. At a regional scale, climate change would reduce rainfed maize yield by an average of 3.3–6.4 % in 2030 and 5.2–12.2 % in 2050 and irrigated yield by 3–8 % in 2030 and 5–14 % in 2050 if current varieties were grown under the future climate. Under projected climate, heat-tolerant varieties could minimize yield loss (relative to current maize varieties) by up to 36 and 93 % in 2030 and 33 and 86 % in 2050 under rainfed and irrigated conditions, respectively. Heat-tolerant maize varieties, therefore, have the potential to shield maize farmers from severe yield loss due to heat stress and help them adapt to climate change impacts.  相似文献   

3.
The Early–Middle Eocene palynoflora and paleoclimate of Changchang Basin, Hainan Island, South China, is described in the present paper and is compared with that of the Middle–Late Eocene, Hunchun City, Jilin Province, North China. The nearest living relatives (NLRs) of the recovered palynotaxa suggest a subtropical evergreen or deciduous broad-leaved forest at the center of the basin but a temperate evergreen or deciduous broad-leaved forest and needle-leaved forest growing in the peripheral part of the basin. Based on the climatic preferences of the NLRs, the climate in the Changchang Basin during the Early–Middle Eocene was warm and humid subtropical with a mean annual temperature of 14.2–19.8°C, a mean temperature of the warmest month of 22.5–29.1°C, a mean temperature of the coldest month of 1.7–11.9°C, a difference of temperature between coldest and warmest months of 12.1–24.6°C, a mean annual precipitation of 784.7–1,113.3 mm, a mean maximum monthly precipitation of 141.5–268.1 mm and a mean minimum monthly precipitation of 6.9–14.1 mm. A comparison of the palynoflora and paleoclimate between the Changchang Basin and Hunchun City, suggests essentially a similar climate in South and North China during Eocene time in contrast to the oceanic tropical climate in South China and cool dry temperate climate in North China as at present.  相似文献   

4.
The aim of this study was to estimate the potential impacts of climate change on the spatial patterns of primary production and net carbon sequestration in relation to water availability in Norway spruce (Picea abies) dominated forests throughout Finland (N 60°–N 70°). The Finnish climatic scenarios (FINADAPT) based on the A2 emission scenario were used. According to the results, the changing climate increases the ratio of evapotranspiration to precipitation in southern Finland, while it slightly decreases the ratio in northern Finland, with regionally lower and higher soil water content in the south and north respectively. During the early simulation period of 2000–2030, the primary production and net carbon sequestration are higher under the changing climate in southern Finland, due to a moderate increase in temperature and atmospheric CO2. However, further elevated temperature and soil water stress reduces the primary production and net carbon sequestration from the middle period of 2030–2060 to the final period of 2060–2099, especially in the southernmost region. The opposite occurs in northern Finland, where the changing climate increases the primary production and net carbon sequestration over the 100-year simulation period due to higher water availability. The net carbon sequestration is probably further reduced by the stimulated ecosystem respiration (under climate warming) in southern Finland. The higher carbon loss of the ecosystem respiration probably also offset the increased primary production, resulting in the net carbon sequestration being less sensitive to the changing climate in northern Finland. Our findings suggest that future forest management should carefully consider the region-specific conditions of sites and adaptive practices to climate change for maintained or enhanced forest production and carbon sequestration.  相似文献   

5.
The study evaluates statistical downscaling model (SDSM) developed by annual and monthly sub-models for downscaling maximum temperature, minimum temperature, and precipitation, and assesses future changes in climate in the Jhelum River basin, Pakistan and India. Additionally, bias correction is applied on downscaled climate variables. The mean explained variances of 66, 76, and 11 % for max temperature, min temperature, and precipitation, respectively, are obtained during calibration of SDSM with NCEP predictors, which are selected through a quantitative procedure. During validation, average R 2 values by the annual sub-model (SDSM-A)—followed by bias correction using NCEP, H3A2, and H3B2—lie between 98.4 and 99.1 % for both max and min temperature, and 77 to 85 % for precipitation. As for the monthly sub-model (SDSM-M), followed by bias correction, average R 2 values lie between 98.5 and 99.5 % for both max and min temperature and 75 to 83 % for precipitation. These results indicate a good applicability of SDSM-A and SDSM-M for downscaling max temperature, min temperature, and precipitation under H3A2 and H3B2 scenarios for future periods of the 2020s, 2050s, and 2080s in this basin. Both sub-models show a mean annual increase in max temperature, min temperature, and precipitation. Under H3A2, and according to both sub-models, changes in max temperature, min temperature, and precipitation are projected as 0.91–3.15 °C, 0.93–2.63 °C, and 6–12 %, and under H3B2, the values of change are 0.69–1.92 °C, 0.56–1.63 °C, and 8–14 % in 2020s, 2050s, and 2080s. These results show that the climate of the basin will be warmer and wetter relative to the baseline period. SDSM-A, most of the time, projects higher changes in climate than SDSM-M. It can also be concluded that although SDSM-A performed well in predicting mean annual values, it cannot be used with regard to monthly and seasonal variations, especially in the case of precipitation unless correction is applied.  相似文献   

6.
This research investigates the effect of climate change on the thermal structure of lakes in response to watershed hydrology. We applied a hydrodynamic water quality model coupled to a hydrological model with a future climate scenario projected by a GCM A2 emission scenario to the Yongdam Reservoir, South Korea. In the climate change scenario, the temperature will increase by 2.1°C and 4.2°C and the precipitation will increase by 178.4?mm and 464.4?mm by the 2050 and 2090, respectively, based on 2010. The pattern changes of precipitation and temperature increase due to climate change modify the hydrology of the watershed. The hydrological model results indicate that they increase both surface runoff itself and temperature. The reservoir model simulation with the hydrological model results showed that increasing air temperature is related to higher surface water temperature. Surface water temperature is expected to increase by about 1.2°C and 2.2°C from the 2050 and 2090, respectively, based on the 2010 results. The simulation results of the effects of climate warming on the thermal structure of the Asian Monsoon Area Lake showed consistent results with those of previous studies in terms of greater temperature increases in the epilimnion than in the hypolimnion, increased thermal stratification, and decreasing thermocline depths during the summer and fall. From this study, it was concluded that the hydrodynamic water quality model coupled to the hydrological model could successfully simulate the variability of the epilimnetic temperature, changed depth and magnitude of the thermocline and the changed duration of summer stratification.  相似文献   

7.
The potential effects of climate change on the hydrology and water resources of the Columbia River Basin (CRB) were evaluated using simulations from the U.S. Department of Energy and National Center for Atmospheric Research Parallel Climate Model (DOE/NCAR PCM). This study focuses on three climate projections for the 21st century based on a `business as usual' (BAU) global emissions scenario, evaluated with respect to a control climate scenario based on static 1995 emissions. Time-varying monthly PCM temperature and precipitation changes were statistically downscaled and temporally disaggregated to produce daily forcings that drove a macro-scale hydrologic simulation model of the Columbia River basin at 1/4-degree spatial resolution. For comparison with the direct statistical downscaling approach, a dynamical downscaling approach using a regional climate model (RCM) was also used to derive hydrologic model forcings for 20-year subsets from the PCM control climate (1995–2015) scenario and from the three BAU climate(2040–2060) projections. The statistically downscaled PCM scenario results were assessed for three analysis periods (denoted Periods 1–3: 2010–2039,2040–2069, 2070–2098) in which changes in annual average temperature were +0.5,+1.3 and +2.1 °C, respectively, while critical winter season precipitation changes were –3, +5 and +1 percent. For RCM, the predicted temperature change for the 2040–2060 period was +1.2 °C and the average winter precipitation change was –3 percent, relative to the RCM controlclimate. Due to the modest changes in winter precipitation, temperature changes dominated the simulated hydrologic effects by reducing winter snow accumulation, thus shifting summer streamflow to the winter. The hydrologic changes caused increased competition for reservoir storage between firm hydropower and instream flow targets developed pursuant to the Endangered Species Act listing of Columbia River salmonids. We examined several alternative reservoir operating policies designed to mitigate reservoir system performance losses. In general, the combination of earlier reservoir refill with greater storage allocations for instream flow targets mitigated some of the negative impacts to flow, but only with significant losses in firm hydropower production (ranging from –9 percent in Period1 to –35 percent for RCM). Simulated hydropower revenue changes were lessthan 5 percent for all scenarios, however, primarily due to small changes inannual runoff.  相似文献   

8.
The aim of this research is to study the spatial and temporal variability of aridity in Iran, through analysis of temperature and precipitation trends during the 48-year period of 1961–2008. In this study, four different aridity criteria have been used to investigate the aridity situation. These aridity indexes included Lang’s index or rain factor, Budyko index or radiational index of dryness, UNEP aridity index, and Thornthwaite moisture index. The results of the analysis indicated that the highest and lowest mean temperatures occurred in July and January respectively in all locations. Among the study locations, Ahvaz with 37.1 °C and Kermanshah with 20.2 °C has the highest and lowest in July. For January, the highest was 12.4 °C for Ahvaz and the lowest was ?4.5 °C for Hamedan and Kermanshah together. The range of monthly mean temperature of study locations indicated that the maximum and minimum difference between day and night temperatures, almost in all study locations, occurred in September and January, respectively, and the highest and lowest fluctuation of temperature was observed in Kerman and Tehran. The temperature anomalies showed that the most significant increasing temperature occurred at the beginning of twenty-first century (2000–2008) in all locations. The long-term mean of monthly rainfall showed that, in most study locations, the maximum and minimum of mean precipitation occurred in winter and summer, respectively. Rasht with 1,355 mm had the highest and Yazd with 55 mm had the lowest of total precipitation compared with other locations. According to precipitation anomalies, all locations experienced dry and wet periods, but generally dry periods occurred more often especially in the beginning of twenty-first century. According to applied different aridity indexes, all the study locations often experienced semi-arid to arid climate, severe water deficit to desert climate, arid to hyperarid climate, and semi-arid climate during the study period.  相似文献   

9.
This paper investigates monthly and seasonal precipitation–temperature relationships (PTRs) over Northeast China using a method proposed in this study. The PTRs are influenced by clouds, latent and sensible heat conversion, precipitation type, etc. In summer, the influences of these factors on temperature decrease are different for various altitudes, latitudes, longitudes, and climate types. Stronger negative PTRs ranging from ?0.049 to ?0.075 °C/mm mostly occur in the semi-arid region, where the cold frontal-type precipitation dominates. In contrast, weaker negative PTRs ranging from ?0.004 to ?0.014 °C/mm mainly distribute in Liaoning Province, where rain is mainly orographic rain controlled by the warm and humid air of East Asian summer monsoon. In winter, surface temperature increases owing to the release of latent heat and sensible heat when precipitation occurs. The stronger positive PTRs ranging from 0.963 to 3.786 °C/mm mostly occur at high altitudes and latitudes due to more release of sensible heat. The enhanced atmospheric counter radiation by clouds is the major factor affecting increases of surface temperature in winter and decreases of surface temperature in summer when precipitation occurs.  相似文献   

10.
华中地区2030年前气温和降水量变化预估   总被引:3,自引:0,他引:3  
 根据区域气候模式对华中地区1961-1990年和2001-2030年的逐月平均气温和降水量的模拟值(0.5°×0.5°经纬度格点,A2情景),以1961-1990年为基准,计算并分析了该区域未来30 a(2001-2030年)的年、季平均气温和降水量的变化趋势。对气温变化而言,未来30 a华中地区年平均气温呈上升趋势,平均升温0.3℃,东部增温大于西部;春、夏季平均气温上升,分别为0.1~1.3℃、0.8~2.2℃;秋季北部地区气温下降,南部地区气温升高;冬季平均气温下降0.0~1.0℃。就降水而言,未来30 a华中地区年平均降水量大部分地区呈减少趋势,空间分布有南增北减的特点;春、夏、冬季平均降水量大部分地区减少,冬季平均降水量的减幅要大于春、夏季;秋季大部分地区平均降水量增加。  相似文献   

11.
Climate changes may have great impacts on the fragile agro-ecosystems of the Loess Plateau of China, which is one of the most severely eroded regions in the world. We assessed the site-specific impacts of climate change during 2010?C2039 on hydrology, soil loss and crop yields in Changwu tableland region in the Loess Plateau of China. Projections of four climate models (CCSR/NIES, CGCM2, CSIRO-Mk2 and HadCM3) under three emission scenarios (A2, B2 and GGa) were used. A simple spatiotemporal statistical method was used to downscale GCMs monthly grid outputs to station daily weather series. The WEPP (Water and Erosion Prediction Project) model was employed to simulate the responses of agro-ecosystems. Compared with the present climate, GCMs projected a ?2.6 to 17.4% change for precipitation, 0.6 to 2.6°C and 0.6 to 1.7°C rises for maximum and minimum temperature, respectively. Under conventional tillage, WEPP predicted a change of 10 to 130% for runoff, ?5 to 195% for soil loss, ?17 to 25% for wheat yield, ?2 to 39% for maize yield, ?14 to 18% for plant transpiration, ?8 to 13% for soil evaporation, and ?6 to 9% for soil water reserve at two slopes during 2010?C2039. However, compared with conventional tillage under the present climate, conservation tillage would change runoff by ?34 to 71%, and decrease soil loss by 26 to 77% during 2010?C2039, with other output variables being affected slightly. Overall, climate change would have significant impacts on agro-ecosystems, and adoption of conservation tillage has great potential to reduce the adverse effects of future climate changes on runoff and soil loss in this region.  相似文献   

12.
Seasonal snow directly affects New Zealand??s economy through the energy, agriculture and tourism sectors. In New Zealand, little is known about the long-term variability of the snow cover and the expected impacts of climate change on snow cover. The lack of systematic historical snow observations in New Zealand means that information on interannual variability, trends and projections of future seasonal snow must be generated using simulation models. We use a temperature index snow model to calculate the accumulation and ablation of the current (1980?C1999) snowpack for more than 37,000 third-order river basins with 100?m contour intervals, resulting in over 200,000 individual model elements in New Zealand. Using this model, which captures the gross features of snow under the current climate, we assess the range of likely effects of climate change on seasonal snow in New Zealand using downscaled temperature and precipitation changes from the middle of the road (A1B) climate change projections from 12 general circulation models (GCMs). For each of the 12 GCMs, we consider two future time periods 2030?C2049 (mid-point reference 2040) and 2080?C2099 (mid-point reference 2090). These future time periods are compared to simulations of current, 1980?C1999 (mid-point reference 1990), seasonal snow. Our results show that on average at a national scale, at nearly all elevations, the 2040s and 2090s result in a decrease in snow as described by all of our summary statistics: snow duration, percentage of precipitation that is snow and peak snow accumulation in each year. This decrease in snow is more marked at elevations below 1,000?m but is evident at all but the very highest elevations. Relative to snow simulations for average peak snow accumulation for the present, we observe that by the 2040s, depending on the GCM used, there is a reduction of between 3 and 44?% at 1,000?m, and an increase of 8?% through to a reduction of 22?% at 2,000?m. By the 2090s, the average reduction is greater, with a decrease of between 32 and 79?% at 1,000?m and between 6 and 51?% at 2,000?m. More substantial reductions are observed below these elevations. When we consider the elevation where snow duration exceeds 3?months, we see a rise in this elevation from 1,550?m in the 1990s to between 1,550 and 1,750?m by the 2040s and 1,700 and 2,000?m by the 2090s, depending on the GCM used. The results of this work are consistent with our understanding of snow processes in general and with work from other similar mid-latitude locations.  相似文献   

13.
Differences between true mean daily, monthly and annual air temperatures T0 [Eq. (1)] and temperatures calculated with three different equations [(2), (3) and (4)] (commonly used in climatological practice) were investigated at three main meteorological Croatian stations from 1 January 1999 to 31 December 2011. The stations are situated in the following three climatically distinct areas: (1) Zagreb-Gri? (mild continental climate), (2) Zavi?an (cold mountain climate), and (3) Dubrovnik (hot Mediterranean climate). T1 [Eq. (2)] and T3 [Eq. (4)] mean temperatures are defined by the algorithms based on the weighted means of temperatures measured at irregularly spaced, yet fixed hours. T2 [Eq. (3)] is the mean temperature defined as the average of daily maximum and minimum temperature. The equation as well as the time of observations used introduces a bias into mean temperatures. The largest differences occur for mean daily temperatures. The calculated daily difference value from all three equations and all analysed stations varies from ?3.73 °C to +3.56 °C, from ?1.39 °C to +0.79 °C for monthly differences and from ?0.76 °C to +0.30 °C for annual differences.  相似文献   

14.
The spatial patterns of precipitation anomalies during five 30-yr warm periods of 691-720, 1231-1260, 1741-1770, 1921-1950, and 1981-2000 were investigated using a dryness/wetness grading dataset covering 48 stations from Chinese historical documents and 22 precipitation proxy series from natural archives. It was found that the North China Plain (approximately 35 -40 N, east of 105 E) was dry in four warm periods within the centennial warm epochs of 600-750, the Medieval Warm Period (about 900-1300) and after 1900. A wet condition prevailed over most of China during 1741-1770, a 30-yr warm peak that occurred during the Little Ice Age (about 1650-1850). The spatial pattern of the precipitation anomaly in 1981-2000 over East China (25 -40 N, east of 105 E) is roughly consistent with that in 1231-1260, but a difference in the precipitation anomaly appeared over the Tibetan Plateau. The spatial patterns of the precipitation anomalies over China varied between all five 30-yr warm periods, which implies that the matching pattern between temperature and precipitation change is multiform, and the precipitation anomaly could be positive or negative when a decadal warm climate occurs in different climate epochs. This result may provide a primary reference for the mechanism detection and climate simulation of the precipitation anomaly of the future warm climate.  相似文献   

15.
作者使用国际耦合模式比较计划第六阶段(CMIP6)的历史模拟试验数据,评估了42个全球气候模式对1995-2014年新疆温度和降水气候态的模拟能力.结果表明,CMIP6模式能够合理模拟新疆年和季节的温度和降水气候态的空间分布.相较于观测,多模式中位数的年均,春季,夏季,秋季和冬季区域平均温度偏差分别为0.1℃,-1.6...  相似文献   

16.
In this study, regional climate changes for seventy years (1980–2049) over East Asia and the Korean Peninsula are investigated using the Special Reports on Emission Scenarios (SRES) B1 scenario via a high-resolution regional climate model, and the impact of global warming on extreme climate events over the study area is investigated. According to future climate predictions for East Asia, the annual mean surface air temperature increases by 1.8°C and precipitation decreases by 0.2 mm day?1 (2030–2049). The maximum wind intensity of tropical cyclones increases in the high wind categories, and the intra-seasonal variation of tropical cyclone occurrence changes in the western North Pacific. The predicted increase in surface air temperature results from increased longwave radiations at the surface. The predicted decrease in precipitation is caused primarily by northward shift of the monsoon rain-band due to the intensified subtropical high. In the nested higher-resolution (20 km) simulation over the Korean Peninsula, annual mean surface air temperature increases by 1.5°C and annual mean precipitation decreases by 0.2 mm day?1. Future surface air temperature over the Korean Peninsula increases in all seasons due to surface temperature warming, which leads to changes in the length of the four seasons. Future total precipitation over the Korean Peninsula is decreased, but the intensity and occurrence of heavy precipitation events increases. The regional climate changes information from this study can be used as a fruitful reference in climate change studies over East Asia and the Korean peninsula.  相似文献   

17.
Seasonal snow in New Zealand is likely to be subject to substantial change due to the impacts of climate change. These changes will have wide ranging impacts on the New Zealand's economy through the energy, agricultural and tourism sectors. In this paper, we assess the impact of climate change, at a micro-scale for a selection of ski area locations in New Zealand. Where available, we have used current observations of snow depth to calibrate the snow model output for the current climate. We consider the change in the number of days with snow depths exceeding 0.30?m, ??snow-days??, at each of these locations for the 2030?C2049 (mid-point reference 2040) and 2080?C2099 (mid-point reference 2090) time periods, for the three different emission scenarios (B1, A1B and A1FI). These future scenarios are compared to simulations of current, 1980?C1999 (mid-point reference 1990), number of snow-days at these locations. We consider both an average year in each 20-year period, as well as a ??worst-case?? year. At each ski area, we consider an upper and lower elevation site. Depending on the elevation and location of the specific site, our analysis shows that there will be a reduction in the number of snow-days in nearly all of the future scenarios and time periods. When we consider a worst-case or minimum snow year in the 1990s, the number of snow-days at each site ranges from 0 to 229, while by the 2040s, it ranges from 0 to 187 (B1), 0 to 183 (A1B) and 0 to 176 (A1FI). By the 2090s the number of snow-days ranges from 0 to 155 (B1), 0 to 90 (A1B) and 0 to 74 (A1FI). We also simulate the hourly future climate for the 2040s and 2090s, for the A1FI scenario, to enable calculations of the potential available time for snowmaking in these two future time periods. We use simulated temperatures and humidity to calculate the total potential snowmaking hours in the future climates. For the snowmaking analysis, only a worst-case year in each time period, rather than an average year, was used to assess the snowmaking potential. This was done to ensure consistency with snowmaking design practices. At all sites, for the A1FI emissions scenario and for both future time periods, a reduction in potential snowmaking hours is observed. By the 2040s, there is only 82 to 53?%, and by the 2090s, there is only 59 to 17?% of the snowmaking time as compared to the 1990s in a worst-case year. Despite this reduction in snowmaking opportunity, snowmaking was still possible at all sites examined. Furthermore, the amount of snow which could be made was sufficient to reinstate the number of snow-days to the lesser of either that observed in the 1990s for each site or to exceed 100?days. While our snowmaking analysis has some limitations, such as neglecting calculation of melt in the man-made snow component, this study highlights the importance of considering adaptation options such as snowmaking for a more complete impact assessment.  相似文献   

18.
Lop Nur in Xinjiang, Northwest China, is located in the lowest part of the Tarim Basin at an altitude of 780?m and experiences an extremely dry climate with an annual precipitation of only 17?mm and a high evaporation rate of 2,728?mm. The pollen and spores from the Late Miocene strata of a borehole in Lop Nur were analyzed with a view to interpreting the paleoenvironmental evolution of Lop Nur. Main types of pollen such as Chenopodiaceae, Nitraria, Ephedra and Artemisia reflect an arid climate. By collating the palynological data in this area as recorded in other literature and by applying the method of Coexistence Analysis, we have obtained the paleoclimatic parameters from Late Miocene to Holocene in Lop Nur. These suggest that temperatures increased from the Late Miocene (10.2°C) to the Pliocene (13.4°C), decreased from Pliocene to Pleistocene (4.7°C), and were more stable from Holocene (12.1°C) until now (11.5°C). The precipitation was stable (about 900?mm) from Late Miocene to Early Pleistocene, then decreased markedly (to about 300?mm) in Middle and Late Pleistocene, and reached its lowest value (17.4?mm) in the Holocene. The changes in paleoclimate at Lop Nur provide new evidence for understanding the uplift of the Qinghai-Tibetan Plateau.  相似文献   

19.
Results from high resolution 7-km WRF regional climate model (RCM) simulations are used to analyse changes in the occurrence frequencies of heat waves, of precipitation extremes and of the duration of the winter time freezing period for highly populated urban areas in Central Europe. The projected climate change impact is assessed for 11 urban areas based on climate indices for a future period (2021–2050) compared to a reference period (1971–2000) using the IPCC AR4 A1B Scenario as boundary conditions. These climate indices are calculated from daily maximum, minimum and mean temperatures as well as precipitation amounts. By this, the vulnerability of these areas to future climate conditions is to be investigated. The number of heat waves, as well as the number of single hot days, tropical nights and heavy precipitation events is projected to increase in the near future. In addition, the number of frost days is significantly decreased. Probability density functions of monthly mean summer time temperatures show an increase of the 95th percentile of about 1–3 °C for the future compared with the reference period. The projected increase of cooling and decrease of heating degree days indicate the possible impact on urban energy consumption under future climate conditions.  相似文献   

20.
This article assesses Japan's carbon budgets up to 2100 in the global efforts to achieve the 2?°C target under different effort-sharing approaches based on long-term GHG mitigation scenarios published in 13 studies. The article also presents exemplary emission trajectories for Japan to stay within the calculated budget.

The literature data allow for an in-depth analysis of four effort-sharing categories. For a 450?ppm CO2e stabilization level, the remaining carbon budgets for 2014–2100 were negative for the effort-sharing category that emphasizes historical responsibility and capability. For the other three, including the reference ‘Cost-effectiveness’ category, which showed the highest budget range among all categories, the calculated remaining budgets (20th and 80th percentile ranges) would run out in 21–29 years if the current emission levels were to continue. A 550?ppm CO2e stabilization level increases the budgets by 6–17 years-equivalent of the current emissions, depending on the effort-sharing category. Exemplary emissions trajectories staying within the calculated budgets were also analysed for ‘Equality’, ‘Staged’ and ‘Cost-effectiveness’ categories. For a 450?ppm CO2e stabilization level, Japan's GHG emissions would need to phase out sometime between 2045 and 2080, and the emission reductions in 2030 would be at least 16–29% below 1990 levels even for the most lenient ‘Cost-effectiveness’ category, and 29–36% for the ‘Equality’ category. The start year for accelerated emissions reductions and the emissions convergence level in the long term have major impact on the emissions reduction rates that need to be achieved, particularly in the case of smaller budgets.

Policy relevance

In previous climate mitigation target formulation processes for 2020 and 2030 in Japan, neither equity principles nor long-term management of cumulative GHG emissions was at the centre of discussion. This article quantitatively assesses how much more GHGs Japan can emit by 2100 to achieve the 2?°C target in light of different effort-sharing approaches, and how Japan's GHG emissions can be managed up to 2100. The long-term implications of recent energy policy developments following the Fukushima nuclear disaster for the calculated carbon budgets are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号