首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We compared median runoff (R) and precipitation (P) relationships over 25 years from 20 mesoscale (50 to 5,000 km2) catchments on the Boreal Plains, Alberta, Canada, to understand controls on water sink and source dynamics in water‐limited, low‐relief northern environments. Long‐term catchment R and runoff efficiency (RP?1) were low and varied spatially by over an order of magnitude (3 to 119 mm/year, 1 to 27%). Intercatchment differences were not associated with small variations in climate. The partitioning of P into evapotranspiration (ET) and R instead reflected the interplay between underlying glacial deposit texture, overlying soil‐vegetation land cover, and regional slope. Correlation and principal component analyses results show that peatland‐swamp wetlands were the major source areas of water. The lowest estimates of median annual catchment ET (321 to 395 mm) and greatest R (60 to 119 mm, 13 to 27% of P) were observed in low‐relief, peatland‐swamp dominated catchments, within both fine‐textured clay‐plain and coarse‐textured glacial deposits. In contrast, open‐water wetlands and deciduous‐mixedwood forest land covers acted as water sinks, and less catchment R was observed with increases in proportional coverage of these land covers. In catchments dominated by hummocky moraines, long‐term runoff was restricted to 10 mm/year, or 2% of P. This reflects the poor surface‐drainage networks and slightly greater regional slope of the fine‐textured glacial deposit, coupled with the large soil‐water and depression storage and higher actual ET of associated shallow open‐water marsh wetland and deciduous‐forest land covers. This intercatchment study enhances current conceptual frameworks for predicting water yield in the Boreal Plains based on the sink and source functions of glacial landforms and soil‐vegetation land covers. It offers the capability within this hydro‐geoclimatic region to design reclaimed catchments with desired hydrological functionality and associated tolerances to climate or land‐use changes and inform land management decisions based on effective catchment‐scale conceptual understanding.  相似文献   

2.
A comprehensive framework for the assessment of water and salt balance for large catchments affected by dryland salinity is applied to the Boorowa River catchment (1550 km2), located in south‐eastern Australia. The framework comprised two models, each focusing on a different aspect and operating on a different scale. A quasi‐physical semi‐distributed model CATSALT was used to estimate runoff and salt fluxes from different source areas within the catchment. The effects of land use, climate, topography, soils and geology are included. A groundwater model FLOWTUBE was used to estimate the long‐term effects of land‐use change on groundwater discharge. Unlike conventional salinity studies that focus on groundwater alone, this study makes use of a new approach to explore surface and groundwater interactions with salt stores and the stream. Land‐use change scenarios based on increased perennial pasture and tree‐cover content of the vegetation, aimed at high leakage and saline discharge areas, are investigated. Likely downstream impacts of the reduction in flow and salt export are estimated. The water balance model was able to simulate both the daily observed stream flow and salt load at the catchment outlet for high and low flow conditions satisfactorily. Mean leakage rate of about 23·2 mm year?1 under current land use for the Boorowa catchment was estimated. The corresponding mean runoff and salt export from the catchment were 89 382 ML year?1 and 38 938 t year?1, respectively. Investigation of various land‐use change scenarios indicates that changing annual pastures and cropping areas to perennial pastures is not likely to result in substantial improvement of water quality in the Boorowa River. A land‐use change of about 20% tree‐cover, specifically targeting high recharge and the saline discharge areas, would be needed to decrease stream salinity by 150 µS cm?1 from its current level. Stream salinity reductions of about 20 µS cm?1 in the main Lachlan River downstream of the confluence of the Boorowa River is predicted. The FLOWTUBE modelling within the Boorowa River catchment indicated that discharge areas under increased recharge conditions could re‐equilibrate in around 20 years for the catchment, and around 15 years for individual hillslopes. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

3.
4.
This simulation study explores opportunities to reduce catchment deep drainage through better matching land use with soil and topography, including the ‘harvesting’ (evapotranspiration) of excess water running on to lower land units. A farming system simulator was coupled with a catchment hydrological framework to enable analysis of climate variability and 11 different land‐use options as they impact the catchment water balance. These land‐use options were arranged in different configurations down a sequence of three hydrologically interconnected slope units (uphill, mid‐slope and valley floor land units) in a subcatchment of Simmons Creek, southern New South Wales, Australia. With annual crops, the valley floor land units were predicted to receive 187 mm year?1 of run‐on water in addition to annual rainfall in 1 in 10 years, and in excess of 94 mm year?1 in 1 in 4 years. In this valley floor position, predicted drainage averaged approximately 110 mm year?1 under annual crops and pastures, whereas permanent tree cover or perennial lucerne was predicted to reduce drainage by up to 99%. The planting of trees or lucerne on the valley floor units could ‘harvest’ run‐on water, reducing drainage for the whole subcatchment with proportionately small reduction in land areas cropped. Upslope land units, even though often having shallower soil, will not necessarily be the most effective locations to plant perennial vegetation for the purposes of recharge reduction. Water harvesting opportunities are site specific, dependent on the amounts and frequency of flows of water to lower landscape units, the amounts and frequency of deep drainage on the different land units, the relative areas of the different land units, and interactions with land use in the different slope positions. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

5.
We investigated the influence of recent and future land‐cover changes on stream flow of a watershed northeastern Puerto Rico using hydrological modeling and simulation analysis. Monthly and average annual stream flows were compared between an agricultural period (1973–1980) and an urbanized/reforested period (1988–1995) using the revised Generalized Watershed Loading Function model. Our validated results show that a smaller proportion of rainfall became stream flows in the urbanized/forested period compared with the agricultural period, apparently because of reforestation. Sensitivity analysis of the model showed that evapotranspiration, precipitation, and curve number were the most significant factors influencing stream flow. Simulations of projected land‐cover scenarios indicate that annual stream flows would increase by 9·6% in a total urbanization scenario, decrease by 3·6% in a total reforestation scenario, and decrease by 1·1% if both reforestation and urbanization continue at their current rates to 2020. An imposed hurricane event that was similar in scale to the largest recent event on the three land‐cover scenarios would increase the daily stream flow by 62·1%, 68·4% and 67·1% respectively. Owing to the environmental setting of eastern Puerto Rico, where sea breezes caused by temperature differences between land surface and the ocean dominate the local climate, we suggest that managing local land‐cover changes can have important consequences for water management. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

6.
Changes in the water balance of the Samin catchment (277.9 km2) on Java, Indonesia, can be attributed to land use change using the Soil Water Assessment Tool model. A baseline‐altered method was used in which the simulation period 1990–2013 was divided into 4 equal periods to represent baseline conditions (1990–1995) and altered land use conditions (1996–2001, 2002–2007, and 2008–2013). Land use maps for 1994, 2000, 2006, and 2013 were acquired from satellite images. A Soil Water Assessment Tool model was calibrated for the baseline period and applied to the altered periods with and without land use change. Incorporating land use change resulted in a Nash–Sutcliffe efficiency of 0.7 compared to 0.6 when land use change is ignored. In addition, the model performance for simulations without land use change gradually decreased with time. Land use change appeared to be the important driver for changes in the water balance. The main land use changes during 1994–2013 are a decrease in forest area from 48.7% to 16.9%, an increase in agriculture area from 39.2% to 45.4%, and an increase in settlement area from 9.8% to 34.3%. For the catchment, this resulted in an increase of the runoff coefficient from 35.7% to 44.6% and a decrease in the ratio of evapotranspiration to rainfall from 60% to 54.8%. More pronounced changes can be observed for the ratio of surface runoff to stream flow (increase from 26.6% to 37.5%) and the ratio of base flow to stream flow (decrease from 40% to 31.1%), whereas changes in the ratio of lateral flow to stream flow were minor (decrease from 33.4% to 31.4%). At sub‐catchment level, the effect of land use changes on the water balance varied in different sub‐catchments depending on the scale of changes in forest and settlement area.  相似文献   

7.
Understanding how land cover change will impact water resources in snow-dominated regions is of critical importance as these locations produce disproportionate runoff relative to their land area. We coupled a land cover evolution model with a spatially explicit, physics-based, watershed process model to simulate land cover change and its impact on the water balance in a 5.0 km2 headwater catchment spanning the alpine–subalpine transition on the Colorado Front Range. We simulated two potential futures both with greater air temperature (+4°C/century) and more precipitation (+15%/century, MP) or less precipitation (−15%/century, LP) from 2000 to 2100. Forest cover in the catchment increased from 72% in 2000 to 84% and 83% in 2050 and to 95% and 92% in 2100 for MP and LP, respectively. Surprisingly, increases in forest cover led to mean increases in annual streamflow production of 12 mm (6%) and 2 mm (1%) for MP and LP in 2050 with an annual control streamflow of 208 mm. In 2100, mean streamflow production increased by 91 mm (44%) and 61 mm (29%) for MP and LP. This result counters previous work as runoff production increased with forested area due to decreases in snow wind-scour and increases in drifting leeward of vegetation, highlighting the need to better understand the impacts of forest expansion on the spatial pattern of snow scour, deposition and catchment effective precipitation. Identifying the hydrologic response of mountainous areas to climate warming induced land cover change is critically important due to the potential water resources impacts on downstream regions.  相似文献   

8.
The importance of riparian tree cover in reducing energy inputs to streams is increasingly recognized in schemes to mitigate climate change effects and protect freshwater ecosystems. Assessing different riparian management strategies requires catchment‐scale understanding of how different planting scenarios would affect the stream energy balance, coupled with a quantitative assessment of spatial patterns of streamflow generation. Here, we use the physically based MIKE SHE model to integrate simulations of catchment‐scale run‐off generation and in‐stream hydraulics with a heat transfer model. This was calibrated to model the spatio‐temporal distribution of hourly stream water temperature during warm low flow periods in a Scottish salmon stream. The model was explored as a “proof of concept” for a tool to investigate the effects of riparian management on high stream water temperatures that could affect juvenile Atlantic salmon. Uncertainty was incorporated into the assessment using the generalized likelihood uncertainty estimation approach. Results showed that by decreasing both the warming (daylight hours) and the cooling (night‐time hours) rates, forest cover leads to a reduction of the temperature range (with a delay of the time to peak by up to 2 hr) and can therefore be effectively used to moderate projected climate change effects. The modelling presented here facilitated the quantification of potential mitigating effects of alternative riparian management strategies and provided a valuable tool that has potential to be utilized as an evidence base for catchment management guidance.  相似文献   

9.
This study aimed to improve the understanding of hydrological processes in a humid (sub)tropical area in Africa with Inselberg topography. Additionally, the study intended to develop an approach for selective discharge data acquisition to determine water availability for smallholder irrigation in similar data-scarce catchments. During the December 2012–August 2013 field campaign meteorological and river stage data were collected at the Messica catchment in Central Mozambique. The 220 km2 catchment has an estimated 1000 ha of irrigated land, developed by smallholder farmers. Baseflow in the perennial tributary streams on the slopes of a meta-sedimentary Inselberg is the source of irrigation water. The baseflow recession curve of one of these tributaries is analysed and the water balance of an average year was determined. Precipitation, potential evapotranspiration, actual evapotranspiration and discharge were estimated to be 1224, 1462, 949 and 266 mm/year respectively. Differential gauging showed that the perennial tributaries gain water; the groundwater contribution increased with approximately 50% over two and a half month relative to the downstream discharge from March to May. In the downstream parts the groundwater contribution per metre stream length is between 30% and 100% higher compared to the upstream parts for two of the tributaries. Nevertheless, due to natural streambed infiltration and irrigation canals, discharge varies over the length of these tributaries. A rainfall–runoff model (HBV) was calibrated using the field data to examine the relation between precipitation characteristics and discharge at the start of the dry season. For precipitation scenarios with low and high intensity precipitation, discharges from June onwards were approximately similar in size according to the calibrated model. This suggest that discharge at the start of the dry season is mainly determined by total precipitation and the timing of precipitation (i.e. early or late in the wet season), not by individual rainfall events or rainfall intensity. It is concluded that the use of selective discharge measurements and low frequency precipitation measurements can effectively be used for water availability assessments in Inselberg catchments. Further research should be conducted to verify the validity of the used techniques in other humid sub-tropical Inselberg areas.  相似文献   

10.
Abstract

This article addresses the critical need for a better quantitative understanding of how water resources from the Hérault River catchment in France have been influenced by climate variability and the increasing pressure of human activity over the last 50 years. A method is proposed for assessing the relative impacts of climate and growing water demand on the decrease in discharge observed at various gauging stations in the periods 1961–1980 and 1981–2010. An annual water balance at the basin scale was calculated first, taking into account precipitation, actual evapotranspiration, water withdrawals and water discharge. Next, the evolution of the seasonal variability in hydroclimatic conditions and water withdrawals was studied. The catchment was then divided into zones according to the main geographical characteristics to investigate the heterogeneity of the climatic and human dynamics. This delimitation took into account the distribution of climate, topography, lithology, land cover and water uses, as well as the availability of discharge series. At the area scale, annual water balances were calculated to understand the internal changes that occurred in the catchment between both past periods. The decrease in runoff can be explained by the decrease in winter precipitation in the upstream areas and by the increase during summer in both water withdrawals and evapotranspiration in the downstream areas, mainly due to the increase in temperature. Thus, water stress increased in summer by 35%. This work is the first step of a larger research project to assess possible future changes in the capacity to satisfy water demand in the Hérault River catchment, using a model that combines hydrological processes and water demand.
Editor Z.W. Kundzewicz  相似文献   

11.
Jing Fu  Jun Niu  Bellie Sivakumar 《水文研究》2018,32(12):1814-1827
Vegetation cover plays an important role in linking the atmosphere, water, and land and is deemed as a key indicator in the terrestrial ecological system. Therefore, it is of great importance to monitor vegetation dynamics and understand the mechanisms of vegetation change, including that driven by climate change. This study examines (a) the evolution of vegetation dynamics over the Heihe River Basin in the typical arid zone in north‐western China using nonparametric Mann–Kendall test and Thiel Sen's slope; (b) the relationships between remotely sensed vegetation indices (normalized difference vegetation index [NDVI] and enhanced vegetation index [EVI]) and hydroclimatic variables based on correlation analysis; and (c) the prediction of vegetation anomalies using a multiple linear regression model. For the analysis, the Moderate Resolution Imaging Spectroradiometer NDVI/EVI product and the gridded daily meteorological data at a spatial resolution of 0.125° over the period 2001–2010 are considered. The results indicate that vegetation cover improved over a large proportion during 2001–2010, with a significant trend towards warm and wet, characterized by an increase in average annual temperature and precipitation by 0.042 °C/year and 5.8 mm/year, respectively. We test the feasibility of NDVI and EVI in quantifying the responses of vegetation anomaly to climate change and develop a statistical model to predict vegetation dynamics in the basin. The NDVI‐based model is found to be more reliable than the EVI‐based model, partly due to the vegetation characteristics and geomorphologic properties of the study region. The proposed model performs well when there is no lag time between meteorological factors and vegetation indices for grassland and cropland, whereas 1‐month lead time prediction is found to be best for forest. The soil water content is introduced as an extra explanatory variable, which effectively improves the prediction accuracy for different land use types. In general, the predictive ability of the proposed model is stable and satisfactory, and the model can provide useful early warning information for regional water resources management under changing climate.  相似文献   

12.
Run‐off transmission loss into karstified consolidated aquifer bedrock below ephemeral streams (wadis) has rarely been described nor quantified. This study presents unique data of long‐term high‐resolution field measurements and field observations in a semiarid to subhumid Mediterranean carbonatic mountainshed. The catchment with a 103 km2 surface area is subdivided into 5 subcatchments. Coupled run‐off measurements were made in the different stream sections (reaches), and transmission loss calculated from differences in discharge. Rainfall and run‐off observations from 9 automated precipitation gauging stations and 5 pressure transducers for automatic water level recording are complemented by manual measurements during 34 run‐off events covering a total measurement period of 8 consecutive years. Run‐off generation is strongly event based depending on rainfall intensities and depths. Both, run‐off generation and transmission losses are related to spatial patterns of bedrock lithologies (and hydrostratigraphy). Transmission losses range between 62% and 80% of generated run‐off, with most of the smaller events showing 100% transmission loss. Therefore, although event run‐off coefficients in the mountains can reach up to 22%, only 0.11% of total annual precipitation leaves the catchment as run‐off. Most run‐off infiltrates directly into the regional karst aquifers (Upper Cretaceous carbonate series), with transmission loss intensities of up to 40 mm/h below the stream channels. The factors determining run‐off—such as geology, pedology, vegetation cover and land use, relief and morphology, the semiarid to subhumid Mediterranean climate with a strong elevation gradient, and the patchiness of individual storm events distributed over the winter seasons—as well as the lithology and epikarst features of the bedrock are all characteristic for larger areas in the Mediterranean region. Therefore, we expect that our findings can be generalized to a large extent.  相似文献   

13.
Global climate change will likely increase temperature and variation in precipitation in the Himalayas, modifying both supply of and demand for water. This study assesses combined impacts of land‐cover and climate changes on hydrological processes and a rainfall‐to‐streamflow buffer indicator of watershed function using the Soil Water Assessment Tool (SWAT) in Kejie watershed in the eastern Himalayas. The Hadley Centre Coupled Model Version 3 (HadCM3) was used for two Intergovernmental Panel on Climate Change (IPCC) emission scenarios (A2 and B2), for 2010–2099. Four land‐cover change scenarios increase forest, grassland, crops, or urban land use, respectively, reducing degraded land. The SWAT model predicted that downstream water resources will decrease in the short term but increase in the long term. Afforestation and expansion in cropland will probably increase actual evapotranspiration (ET) and reduce annual streamflow but will also, through increased infiltration, reduce the overland flow component of streamflow and increase groundwater release. An expansion in grassland will decrease actual ET, increase annual streamflow and groundwater release, while decreasing overland flow. Urbanization will result in increases in streamflow and overland flow and reductions in groundwater release and actual ET. Land‐cover change dominated over effects on streamflow of climate change in the short and middle terms. The predicted changes in buffer indicator for land‐use plus climate‐change scenarios reach up to 50% of the current (and future) range of inter‐annual variability. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
We apply an integrated hydrology‐stream temperature modeling system, DHSVM‐RBM, to examine the response of the temperature of the major streams draining to Puget Sound to land cover and climate change. We first show that the model construct is able to reconstruct observed historic streamflow and stream temperature variations at a range of time scales. We then explore the relative effect of projected future climate and land cover change, including riparian vegetation, on streamflow and stream temperature. Streamflow in summer is likely to decrease as the climate warms especially in snowmelt‐dominated and transient river basins despite increased streamflow in their lower reaches associated with urbanization. Changes in streamflow also result from changes in land cover, and changes in stream shading result from changes in riparian vegetation, both of which influence stream temperature. However, we find that the effect of riparian vegetation changes on stream temperature is much greater than land cover change over the entire basin especially during summer low flow periods. Furthermore, while future projected precipitation change will have relatively modest effects on stream temperature, projected future air temperature increases will result in substantial increases in stream temperature especially in summer. These summer stream temperature increases will be associated both with increasing air temperature, and projected decreases in low flows. We find that restoration of riparian vegetation could mitigate much of the projected summer stream temperature increases. We also explore the contribution of riverine thermal loadings to the heat balance of Puget Sound, and find that the riverine contribution is greatest in winter, when streams account for up to 1/8 of total thermal inputs (averaged from December through February), with larger effects in some sub‐basins. We project that the riverine impact on thermal inputs to Puget Sound will become greater with both urbanization and climate change in winter but become smaller in summer due to climate change. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
The spatial distribution of forests, meadows, arable land, water bodies and settlements in a catchment influences the spatial and temporal dynamics of evapotranspiration, surface runoff, soil moisture and ground water recharge. Four digital data sets from different sources were available for land cover distribution to be applied in a regional case study in the Ucker catchment with an area of about 2415 km2. The first data set was obtained from the German digital topographic data set “Atkis” and the second one from the federal German biotope mapping procedure “Biotoptypenkartierung”. In addition, Corine land cover data and a land cover obtained from a supervised, multitemporal classification of three Landsat-TM5-scenes from the year 2000 were used in our study. These data sets differ in spatial resolution and in information content and this leads to different areal proportions of the main land cover classes forests, meadows, arable land, water bodies and settlements. This has to be considered as an uncertainty in the land cover data. In our case study, we analyzed how and to which extent this uncertainty influences the outputs of a hydrological catchment model such as evapotranspiration and discharge. For the time period 1996-2001, meteorological time series were obtained from four meteorological stations and five additional precipitation stations. Measured daily discharge rates were available from two gauges located in the catchment. In the different land cover data sets, the proportions of arable land ranged from 52.7% to 61.7% of the catchment area and for forests from 19.5% to 24.6%. These different proportions showed only minor impacts with small differences below ±10 mm y−1 on the simulated annual rates of evapotranspiration and ground water recharge. In contrast, the simulated surface runoff rates showed a strong correlation to the amount of the settlement areas in the catchment. The highest proportion of settlements with 4.9% of the catchment area in comparison to the lowest proportion of 2.9% leads to an increase in the simulated surface runoff of 70%.  相似文献   

16.
Analysis of measured evapotranspiration shows that subsurface plant‐accessible water storage (PAWS) can sustain evapotranspiration through multiyear dry periods. Measurements at 25 flux tower sites in the semiarid western United States, distributed across five land cover types, show both resistance and vulnerability to multiyear dry periods. Average (±standard deviation) evapotranspiration ranged from 660 ± 230 mm yr?1 (October–September) in evergreen needleleaf forests to 310 ± 200 mm yr?1 in grasslands and shrublands. More than 52% of the annual evapotranspiration in Mediterranean climates is supported on average by seasonal drawdown of subsurface PAWS, versus 29% in monsoon‐influenced climates. Snowmelt replenishes dry‐season PAWS by as much as 20% at sites with significant seasonal snow accumulation but was insignificant at most sites. Evapotranspiration exceeded precipitation in more than half of the observation years at sites below 35°N. Annual evapotranspiration at non‐energy‐limited sites increased with precipitation, reaching a mean wet‐year evapotranspiration of 833 mm for evergreen needleleaf forests, 861 mm for mixed forests, 558 mm for woody savannas, 367 mm for grasslands, and 254 mm for shrublands. Thirteen sites experienced at least one multiyear dry period, when mean precipitation was more than one standard deviation below the historical mean. All vegetation types except evergreen needleleaf forests responded to multiyear dry periods by lowering evapotranspiration and/or significant year‐over‐year depletion of subsurface PAWS. Sites maintained wet‐year evapotranspiration rates for 8–33 months before attenuation, with a corresponding net PAWS drawdown of as much as 334 mm. Net drawdown at many sites continued until the dry period ended, resulting in an overall cumulative withdrawal of as much as 558 mm. Evergreen needleleaf forests maintained high evapotranspiration during multiyear dry periods with no apparent PAWS drawdown; these forests currently avoid drought but may prove vulnerable to longer and warmer dry periods that reduce snowpack storage and accelerate evapotranspiration.  相似文献   

17.
The conversion of forests into agriculture has been identified as a key process for stream homogenization. However, the effects of this conversion can be scale-dependent. In this context, our aim was to identify the influence of different land uses at different spatial scales (catchment, drainage network and local) on instream features in agricultural streams. We defined six classes of land use: native forest, reforestation, herbaceous and shrubs, pasture, sugarcane and other categories. We obtained 22 variables related to instream, riparian area, stream morphology and water physicochemical characteristics in 86 stream reaches. To identify and isolate the effect of different land uses at different spatial scales on instream features, we performed a partial redundancy analysis (p-RDA). Different land uses and scales influenced instream features and defined two stream groups: (i) homogeneous streams with a higher proportion of sand substrate and instream grasses that were associated with the proportion of herbaceous vegetation at the local scale and with pasture at all scales and (ii) heterogeneous streams with a higher physical habitat integrity associated with the proportion of forest and sugarcane at the local and catchment scales. Land use at the catchment scale affected the physicochemical water properties and stream morphology, whereas stream physical habitat (i.e., substrate, instream cover, marginal vegetation and stream physical habitat condition) was mainly influenced by land use at the local scale (i.e., 150 m radius). Pure catchment, drainage network and local land uses explained 9%, 7% and 4%, respectively, of the total variation of instream features. Thus, to be most effective, stream conservation and restoration efforts should not be limited to only one scale.  相似文献   

18.
The recession of bomb tritium in river discharge of large basins indicates a contribution of slowly moving water. For an appropriate interpretation it is necessary to consider different runoff components (e.g. direct runoff and ground water components) and varying residence times of tritium in these components. The spatially distributed catchment model (tracer aided catchment model, distributed; TACD) and a tritium balance model (TRIBIL) were combined to model process‐based tritium balances in a large German river basin (Weser 46 240 km2) and seven embedded sub‐basins. The hydrological model (monthly time step, 2 × 2 km2) estimated the three major runoff components: direct runoff, fast‐moving and slow‐moving ground water for the period of 1950 to 1999. The model incorporated topography, land use, geomorphology, geology and hydro‐meteorological data. The results for the different basins indicated a contribution of direct runoff of 30–50% and varying amounts for fast and slow ground water components. Combining these results with the TRIBIL model allowed us to estimate the residence time of the components. Mean residence times of 8 to 14 years were found for the fast ground water component, 21 to 93 years for the slow ground water component and 14 to 50 years for an overall mean residence time within these basins. Balance calculations for the Weser basin indicate an over‐estimation of loss of tritium through evapotranspiration (more than 60%) and decay (10%). About 28% were carried in stream‐flow where direct runoff contributed about 12% and ground water runoff 13% in relation to precipitation input over the studied 50‐year period. Neighbouring basins and nuclear power plants contributed about 1% each over this time period. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
Few long-term studies have explored how intensively managed short rotation forest plantations interact with climate variability. We examine how prolonged severe drought and forest operations affect runoff in 11 experimental catchments on private corporate forest land near Nacimiento in south central Chile over the period 2008–2019. The catchments (7.7–414 ha) contain forest plantations of exotic fast-growing species (Pinus radiata, Eucalyptus spp.) at various stages of growth in a Mediterranean climate (mean long-term annual rainfall = 1381 mm). Since 2010, a drought, unprecedented in recent history, has reduced rainfall at Nacimiento by 20%, relative to the long-term mean. Pre-drought runoff ratios were <0.2 under 8-year-old Eucalyptus; >0.4 under 21-year-old Radiata pine and >0.8 where herbicide treatments had controlled vegetation for 2 years in 38% of the catchment area. Early in the study period, clearcutting of Radiata pine (85%–95% of catchment area) increased streamflow by 150 mm as compared with the year before harvest, while clearcutting and partial cuts of Eucalyptus did not increase streamflow. During 2008–2019, the combination of emerging drought and forestry treatments (replanting with Eucalyptus after clearcutting of Radiata pine and Eucalyptus) reduced streamflow by 400–500 mm, and regeneration of previously herbicide-treated vegetation combined with growth of Eucalyptus plantations reduced streamflow by 1125 mm (87% of mean annual precipitation 2010–2019). These results from one of the most comprehensive forest catchment studies in the world on private industrial forest land indicate that multiple decades of forest management have reduced deep soil moisture reservoirs. This effect has been exacerbated by drought and conversion from Radiata pine to Eucalyptus, apparently largely eliminating subsurface supply to streamflow. The findings reveal tradeoffs between wood production and water supply, provide lessons for adapting forest management to the projected future drier climate in Chile, and underscore the need for continued experimental work in managed forest plantations.  相似文献   

20.
Inter‐basin differences in streamflow response to changes in regional hydroclimatology may reflect variations in storage characteristics that control the retention and release of water inputs. These aspects of storage could mediate a basin's sensitivity to climate change. The hypothesis that temporal trends in stream baseflow exhibit a more muted reaction to changes in precipitation and evapotranspiration for basins with greater storage was tested on the Oak Ridges Moraine (ORM) in Southern Ontario, Canada. Long‐term (>25 years) baseflow trends for 16 basins were compared to corresponding trends in precipitation amount and type and in potential evapotranspiration as well as shorter trends in groundwater levels for monitoring wells on the ORM. Inter‐basin differences in storage properties were characterized using physiographic, hydrogeologic, land use/land cover, and streamflow metrics. The latter included the slope of the basin's flow duration curve and basin dynamic storage. Most basins showed temporal increases in baseflow, consistent with limited evidence of increases and decreases in regional precipitation and snowfall: precipitation ratio, respectively, and recent increases in groundwater recharge along the crest of the ORM. Baseflow trend magnitude was uncorrelated to basin physiographic, hydrogeologic, land use/land cover, or flow duration curve characteristics. However, it was positively related to a basin's dynamic storage, particularly for basins with limited coverage of open water and wetlands. The dynamic storage approach assumes that a basin behaves as a first‐order dynamical system, and extensive open water and wetland areas in a basin may invalidate this assumption. Previous work suggested that smaller dynamic storage was linked to greater damping of temporal variations in water inputs and reduced interannual variability in streamflow regime. Storage and release of water inputs to a basin may assist in mediating baseflow response to temporal changes in regional hydroclimatology and may partly account for inter‐basin differences in that response. Such storage characteristics should be considered when forecasting the impacts of climate change on regional streamflow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号