首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Site effects characterize the filtering mechanisms within the soil sedimentary layers overlying bedrock. In regions of high seismicity such as California where strong motion records are relatively abundant, site coefficients can be developed by regression of recorded ground shaking parameters. In regions of low‐to‐moderate seismicity or of high seismicity but with a paucity of recorded strong motion data, such empirical models cannot be obtained in the same way. This study describes the theoretical development of a simple, rational manual procedure to calculate site coefficients, based on a single period approximation (SPA), and to construct displacement response spectra (RSD) for soil sites. The proposed simplified model, which takes into account the non‐linear behaviour of soil that is dependent on the level of shaking, impedance contrast at the soil–bedrock interface and the plasticity of soil material, has been verified by comparison with results obtained from non‐linear shear wave analyses and data recorded during the 1994 Northridge earthquake. The proposed model is believed to be a convenient tool for calculating non‐linear site responses and constructing site‐specific response spectra, which has the potential of being incorporated into code provisions. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

2.
The strong ground motion produced by the 17 October, 1989 Loma Prieta earthquake in northern California was recorded at over 100 stations. Accelerograms were generated at sites with significantly different geology, including land fill and soft sedimentary soil sites. In this study, the attenuation characteristics of the peak vertical and horizontal ground accelerations are studied for freefield recording conditions within 100 km of the source by the application of a non-linear multi-regression procedure. Two sets of attenuation models for weighted and unweighted observations are compared with those reported by other investigators for this earthquake and for regional and worldwide data. The peak ground acceleration (PGA) observations for this earthquake exceed previous predictions of standard attenuation models, particularly beyond 30 km (approximately 60 percent at 50 km). Higher attenuation of the vertical component compared to the horizontal is confirmed. The regression considers site geology as an independent parameter. Soil sites display as much as 23 per cent amplification relative to rock sites for horizontal PGA and as much as 40 per cent for vertical PGA. Amplification of the ground motion at sites characterized by soft soil geology is examined by comparing the recorded PGA with the corresponding prediction at sites underlain by stiff soil. Eight of ten of the soft soil sites display significant amplification relative to stiff soil sites (as much as 300 per cent for horizontal and 200 per cent for vertical components). Particular attention is paid to the so-called anomalous observations at distances beyond 50 km. The anomalous observations between 50 and 80 km may be attributed to various factors such as geology, basic geometry, azimuthal dependence, source mechanism and normal scatter of observations.  相似文献   

3.
With the recent emergence of wavelet‐based procedures for stochastic analyses of linear and non‐linear structural systems subjected to earthquake ground motions, it has become necessary that seismic ground motion processes are characterized through statistical functionals of wavelet coefficients. While direct characterization in terms of earthquake and site parameters may have to wait for a few more years due to the complexity of the problem, this study attempts such characterization through commonly available Fourier and response spectra for design earthquake motions. Two approaches have been proposed for obtaining the spectrum‐compatible wavelet functionals, one for input Fourier spectrum and another for input response spectrum, such that the total number of input data points are 30–35% of those required for a time‐history analysis. The proposed methods provide for simulating ‘desired non‐stationary characteristics’ consistent with those in a recorded accelerogram. Numerical studies have been performed to illustrate the proposed approaches. Further, the wavelet functionals compatible with a USNRC spectrum in the case of 35 recorded motions of similar strong motion durations have been used to obtain the strength reduction factor spectra for elasto‐plastic oscillators and to show that about ±20% variation may be assumed from mean to 5 and 95% confidence levels due to uncertainty in the non‐stationary characteristics of the ground motion process. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

4.
This study presents results from shake table experiments of a wood‐frame building conducted at the University of California, Berkeley. A 13.5‐ft × 19.5‐ft two‐story wood‐frame building representing San Francisco 1940s design of a residential building with a garage space on the first story (house‐over‐garage) was tested. The test building was subjected to scaled ground motion based on Los Gatos record from Loma Prieta 1989 earthquake. The strong motion time history was scaled to match design spectra of a site in Richmond district of San Francisco. The test results demonstrated the seismic vulnerability of the test building due to soft story mechanism and significant twisting when shaken in two horizontal directions. In addition to conventional instrumentation for measuring acceleration and position of selected points of the test building, high‐definition laser scanning technology was employed to assess global and local anomalies of the building after the shake table tests. The analysis conducted in this study showed very good correlation between conventional data recorded from position transducers and the laser scans. These laser scans expanded limits of conventional data at discrete points and allowed analyzing the whole building after shaking. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
A previously developed simplified model of ground motion amplification is applied to the simulation of acceleration time histories at several soft‐soil sites in the Valley of Mexico, on the basis of the corresponding records on firm ground. The main objective is to assess the ability of the model to reproduce characteristics such as effective duration, frequency content and instantaneous intensity. The model is based on the identification of a number of parameters that characterize the complex firm‐ground to soft‐soil transfer function, and on the adjustment of these parameters in order to account for non‐linear soil behavior. Once the adjusted model parameters are introduced, the statistical properties of the simulated and the recorded ground motions agree reasonably well. For the sites and for the seismic events considered in this study, it is concluded that non‐linear soil behavior may have a significant effect on the amplification of ground motion. The non‐linear soil behavior significantly affects the effective ground motion duration for the components with the higher intensities, but it does not have any noticeable influence on the lengthening of the dominant ground period. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

6.
A method for parametric system identification of classically damped linear system in frequency domain is adopted and extended for non‐classically damped linear systems subjected up to six components of earthquake ground motions. This method is able to work in multi‐input/multi‐output (MIMO) case. The response of a two‐degree‐of‐freedom model with non‐classical damping, excited by one‐component earthquake ground motion, is simulated and used to verify the proposed system identification method in the single‐input/multi‐output case. Also, the records of a 10 storey real building during the Northridge earthquake is used to verify the proposed system identification method in the MIMO case. In this case, at first, a single‐input/multi‐output assumption is considered for the system and modal parameters are identified, then other components of earthquake ground motions are added, respectively, and the modal parameters are identified again. This procedure is repeated until all four components of earthquake ground motions which are measured at the base level of the building are included in the identification process. The results of identification of real building show that consideration of non‐classical damping and inclusion of the multi‐components effect of earthquake ground motions can improve the least‐squares match between the finite Fourier transforms of recorded and calculated acceleration responses. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

7.
A discrete wave number approach in conjunction with a propagator-based formalism is used to synthesize the Loma Prieta earthquake ground motion at both the near and the far field, taking into account all kinds of seismic waves (body and surface). A bilaterally propagating shear slip over a rectangular fault is used to describe the seismic source mechanism, while the earth model is based on geological profiles of the Santa Cruz mountain area and consists of three layers overlaying a half-space. The synthesized ground motion is first compared with actual records from the Loma Prieta earthquake and the agreement between the two is found to be satisfactory, as far as magnitude, duration and essential wave form characteristics are concerned. Then, ground motions are synthesized and plotted at a dense grid of observer locations over a large area around the epicenter, at different time instants. Using such plots, it is possible to study the generation ana propagation of different kinds of seismic waves, the spatial variability of ground motion, as well as the development of the permanent gound deformation.  相似文献   

8.
In many parts of the world, the repetition of medium–strong intensity earthquake ground motions at brief intervals of time has been observed. The new design philosophies for buildings in seismic areas are based on multi‐level design approaches, which take into account more than a single damageability limit state. According to these approaches, a sequence of seismic actions may produce important consequences on the structural safety. In this paper, the effects of repeated earthquake ground motions on the response of single‐degree‐of‐freedom systems (SDOF) with non‐linear behaviour are analysed. A comparison is performed with the effect of a single seismic event on the originally non‐damaged system for different hysteretic models in terms of pseudo‐acceleration response spectra, behaviour factor q and damage parameters. The elastic–perfect plastic system is the most vulnerable one under repeated earthquake ground motions and is characterized by a strong reduction of the q‐factor. A moment resisting steel frame is analysed as well, showing a reduction of the q‐factor under repeated earthquake ground motions even larger than that of an equivalent SDOF system. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

9.
A parameterized stochastic model of near‐fault ground motion in two orthogonal horizontal directions is developed. The major characteristics of recorded near‐fault ground motions are represented. These include near‐fault effects of directivity and fling step; temporal and spectral non‐stationarity; intensity, duration, and frequency content characteristics; directionality of components; and the natural variability of ground motions. Not all near‐fault ground motions contain a forward directivity pulse, even when the conditions for such a pulse are favorable. The proposed model accounts for both pulse‐like and non‐pulse‐like cases. The model is fitted to recorded near‐fault ground motions by matching important characteristics, thus generating an ‘observed’ set of model parameters for different earthquake source and site characteristics. A method to generate and post‐process synthetic motions for specified model parameters is also presented. Synthetic ground motion time series are generated using fitted parameter values. They are compared with corresponding recorded motions to validate the proposed model and simulation procedure. The use of synthetic motions in addition to or in place of recorded motions is desirable in performance‐based earthquake engineering applications, particularly when recorded motions are scarce or when they are unavailable for a specified design scenario. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
A Markov method of analysis is presented for obtaining the seismic response of cable‐stayed bridges to non‐stationary random ground motion. A uniformly modulated non‐stationary model of the random ground motion is assumed which is specified by the evolutionary r.m.s. ground acceleration. Both vertical and horizontal components of the motion are considered to act simultaneously at the bridge supports. The analysis duly takes into account the angle of incidence of the earthquake, the spatial correlation of ground motion and the quasi‐static excitation. A cable‐stayed bridge is analysed under a set of parametric variations in order to study the non‐stationary response of the bridge. The results of the numerical study indicate that (i) frequency domain spectral analysis with peak r.m.s. acceleration as input could provide more r.m.s. response than the peak r.m.s. response obtained by the non‐stationary analysis; (ii) the longitudinal component of the ground motion significantly influences the vertical vibration of the bridge; and (iii) the angle of incidence of the earthquake has considerable influence on the deck response. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

11.
A procedure to generate horizontal pairs of synthetic near‐fault ground motion components for specified earthquake source and site characteristics is presented. Some near‐fault ground motions contain a forward directivity pulse; others do not, even when the conditions for such a pulse are favorable. The proposed procedure generates pulse‐like and non‐pulse‐like motions in appropriate proportions. We use our recent stochastic models of pulse‐like and non‐pulse‐like near‐fault ground motions that are formulated in terms of physically meaningful parameters. The parameters of these models are fitted to databases of recorded pulse‐like and non‐pulse‐like motions. Using these empirical “observations,” predictive relations are developed for the model parameters in terms of the earthquake source and site characteristics (type of faulting, earthquake magnitude, depth to top of rupture plane, source‐to‐site distance, site characteristics, and directivity parameters). The correlation coefficients between the model parameters are also estimated. For a given earthquake scenario, the probability of occurrence of a directivity pulse is first computed; pulse‐like and non‐pulse‐like motions are then simulated according to the predicted proportions using the empirical predictive models. The resulting time series are realistic and reproduce important features of recorded near‐fault ground motions, including the natural variability. Moreover, the statistics of their elastic response spectra agree with those of the NGA‐West2 dataset, with the additional feature of distinguishing between pulse‐like and non‐pulse‐like cases and between forward and backward directivity scenarios. The synthetic motions can be used in addition to or in place of recorded motions in performance‐based earthquake engineering, particularly when recorded motions are scarce.  相似文献   

12.
The problem addressed in this paper is the estimation of the (de)amplification of ground motion at soil sites (compared to rock sites) as a function of the intensity of the ground motion. A non‐parametric empirical approach, called the Conditional Average Estimator (CAE) method, has been used, which is different from all existing approaches. Site factors (SFs) for sites characterized with Vs30 between 180 and 360 m/s were predicted for the peak ground acceleration (PGA) and the spectral accelerations by using a combined database of recorded ground motions. Based on the results of the study, site factors for PGA and selected spectral accelerations are proposed, separately for weaker and stronger ground motions. Comparisons are made with the SFs used in two standards (Eurocode 8 and ASCE 7‐10) and with SFs proposed in the literature, including four Next Generation Attenuation (NGA) ground‐motion prediction equations. The study reveals that (i) SFs depend strongly on the ground‐motion intensity. In the case of stronger ground motions, they decrease with increasing acceleration. (ii) The SFs predicted in this study agree reasonably well with the existing SFs in the case of weak ground motion. For higher intensities of ground motion, they are generally smaller than the existing ones. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
In soil‐structure interaction modeling of systems subjected to earthquake motions, it is classically assumed that the incoming wave field, produced by an earthquake, is unidimensional and vertically propagating. This work explores the validity of this assumption by performing earthquake soil‐structure interaction modeling, including explicit modeling of sources, seismic wave propagation, site, and structure. The domain reduction method is used to couple seismic (near‐field) simulations with local soil‐structure interaction response. The response of a generic nuclear power plant model computed using full earthquake soil‐structure interaction simulations is compared with the current state‐of‐the‐art method of deconvolving in depth the (simulated) free‐field motions, recorded at the site of interest, and assuming that the earthquake wave field is spatially unidimensional. Results show that the 1‐D wave‐field assumption does not hold in general. It is shown that the way in which full 3‐D analysis results differ from those which assume a 1‐D wave field is dependent on fault‐to‐site geometry and motion frequency content. It is argued that this is especially important for certain classes of soil‐structure systems of which nuclear power plants subjected to near‐field earthquakes are an example.  相似文献   

14.
To verify the importance of the non‐stationary frequency characteristic of seismic ground motion, a joint time–frequency analysis technique of time signals, called chirplet‐based signal approximation, is developed to extract the non‐stationary frequency information from the recorded data. The chirplet‐based signal approximation is clear in concept, similar to Fourier Transform in mathematical expressions but with different base functions. Case studies show that the chirplet‐based signal approximation can represent the joint time–frequency variation of seismic ground motion quite well. Both the random models of uniform modulating process and evolutionary process are employed to generate artificial seismic waves. The joint time–frequency modulating function in the random model of evolutionary process is determined by chirplet‐based signal approximation. Finally, non‐linear response analysis of a SODF system and a frame structure is performed based on the generated artificial seismic waves. The results show that the non‐stationary frequency characteristic of seismic ground motion can significantly change the non‐linear response characteristics of structures, particularly when a structure goes into collapse phase under seismic action. It is concluded that non‐stationary frequency characteristic of seismic ground motion should be considered for the assessment of seismic capacity of structures. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

15.
This investigation is concerned with the seismic response of one‐story, one‐way asymmetric linear and non‐linear systems with non‐linear fluid viscous dampers. The seismic responses are computed for a suite of 20 ground motions developed for the SAC studies and the median values examined. Reviewed first is the behaviour of single‐degree‐of‐freedom systems to harmonic and earthquake loading. The presented results for harmonic loading are used to explain a few peculiar trends—such as reduction in deformation and increase in damper force of short‐period systems with increasing damper non‐linearity—for earthquake loading. Subsequently, the seismic responses of linear and non‐linear asymmetric‐plan systems with non‐linear dampers are compared with those having equivalent linear dampers. The presented results are used to investigate the effects of damper non‐linearity and its influence on the effects of plan asymmetry. Finally, the design implications of the presented results are discussed. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

16.
A comparative study of selected bridge damage due to the Wenchuan, Northridge, Loma Prieta and San Fernando earthquakes is described in this paper. Typical ground motion effects considered include large ground fault displacement, liquefaction, landslide, and strong ground shaking. Issues related to falling spans, inadequate detailing for structural ductility and complex bridge configurations are discussed within the context of the recent seismic design codes of China and the US. A significant lesson learned from the Great Wenchuan earthquake, far beyond the opportunities to improve the seismic design provisions for bridges, is articulated.  相似文献   

17.
The authors examine the reliability of site response estimations obtained by the horizontal to vertical (H/V) spectral ratios of microtremors by means of cross‐validation with the ratio of the horizontal spectra of earthquake motion with respect to reference sites. The data comprise microtremor and ground motion records recorded at 150 sites of Yokohama strong motion array. The use of non‐supervised pattern recognition techniques aims to group the sites with more objectivity. Attributes defining the overall shape of the amplification spectra serve as input in the computation of Euclidean distance similarity coefficients amongst sites. The implementation of the Ward clustering scheme leads to the attainment of a meaningful tree diagram. Its analysis shows the possibility of summarizing the results into six general patterns. A good coincidence of site effects estimates at 80 per cent of the sites becomes apparent. However, this coincidence appears poor for sites characterized by H/V amplification ratios around 2 or smaller and predominant periods longer than 0.5 s. In such cases, the presence of stiff, sandy sediments in the soil profile proves common. To proscribe H/V estimations, relying solely on the small spectral ratios criterion seems inadequate. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

18.
A wavelet‐based stochastic formulation has been presented in this paper for the seismic analysis of a base‐isolated structural system which is modelled as a two‐degree‐of‐freedom (2‐DOF) system. The ground motion has been modelled as a non‐stationary process (both in amplitude and frequency) by using modified Littlewood–Paley basis wavelets. The proposed formulation is based on replacing the non‐linear system by an equivalent linear system with time‐dependent damping properties. The expressions of the instantaneous damping and the power spectral density function (PSDF) of the superstructure response have been obtained in terms of the functionals of input wavelet coefficients. The proposed formulation has been validated by simulating a ground motion process. The effect of the frequency non‐stationarity on the non‐linear response has also been studied in detail, and it has been clearly shown how ignoring the frequency non‐stationarity in the ground motion leads to inaccurate non‐linear response calculations. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

19.
This paper presents a non-linear finite element study to back-interpret the free field seismic response recorded at the Lotung Large-Scale Seismic Test site. The study is carried out in the time domain by the Finite Element (FE) code PLAXIS 3D, considering the vertical wave propagation of both the horizontal components of motion. The non-linear soil behaviour is simulated through a constitutive model, the Hardening Soil model with Small-Strain Stiffness (HSsmall), capable of describing the cyclic response of the material at different strain levels. In the paper, the constitutive response of the HSsmall model is firstly investigated through numerical simulations of strain-controlled cyclic shear tests under single and multi-directional conditions at low strain levels. Then, it is adopted to back-analyse the recorded free field seismic response, comparing the FE numerical results to the in-situ down-hole and surface signals recorded during two earthquakes occurred on May 20th and July 17th 1986, characterized by different peak ground accelerations.  相似文献   

20.
The effect of peak ground velocity (PGV) on single‐degree‐of‐freedom (SDOF) deformation demands and for certain ground‐motion features is described by using a total of 60 soil site records with source‐to‐site distances less than 23 km and moment magnitudes between 5.5 and 7.6. The observations based on these records indicate that PGV correlates well with the earthquake magnitude and provides useful information about the ground‐motion frequency content and strong‐motion duration that can play a role on the seismic demand of structures. The statistical results computed from non‐linear response history analyses of different hysteretic models highlight that PGV correlates better with the deformation demands with respect to other ground motion intensity measures. The choice of PGV as ground motion intensity decreases the dispersion due to record‐to‐record variability of SDOF deformation demands, particularly in the short period range. The central tendencies of deformation demands are sensitive to PGV and they may vary considerably as a function of the hysteretic model and structural period. The results provided in this study suggest a consideration of PGV as a stable candidate for ground motion intensity measure in simplified seismic assessment methods that are used to estimate structural performance for earthquake hazard analysis. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号