首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Today, the agricultural sector accounts for approximately 15% of total global anthropogenic emissions, mainly methane and nitrous oxide. Projecting the future development of agricultural non-CO2 greenhouse gas (GHG) emissions is important to assess their impacts on the climate system but poses many problems as future demand of agricultural products is highly uncertain. We developed a global land use model (MAgPIE) that is suited to assess future anthropogenic agricultural non-CO2 GHG emissions from various agricultural activities by combining socio-economic information on population, income, food demand, and production costs with spatially explicit environmental data on potential crop yields. In this article we describe how agricultural non-CO2 GHG emissions are implemented within MAgPIE and compare our simulation results with other studies. Furthermore, we apply the model up to 2055 to assess the impact of future changes in food consumption and diet shifts, but also of technological mitigation options on agricultural non-CO2 GHG emissions. As a result, we found that global agricultural non-CO2 emissions increase significantly until 2055 if food energy consumption and diet preferences remain constant at the level of 1995. Non-CO2 GHG emissions will rise even more if increasing food energy consumption and changing dietary preferences towards higher value foods, like meat and milk, with increasing income are taken into account. In contrast, under a scenario of reduced meat consumption, non-CO2 GHG emissions would decrease even compared to 1995. Technological mitigation options in the agricultural sector have also the capability of decreasing non-CO2 GHG emissions significantly. However, these technological mitigation options are not as effective as changes in food consumption. Highest reduction potentials will be achieved by a combination of both approaches.  相似文献   

2.
Global agricultural development programs aim to support smallholder farmers and farming communities by strengthening sustainable and resilient food production systems – which can also promote climate change mitigation as a co-benefit by reducing the emissions and enhancing removals of greenhouse gases (GHG). This study presents estimated GHG emissions reductions of almost 100 agricultural development projects over 51 low- and middle-income countries supported by the International Fund for Agriculture Development (IFAD), USAID-Feed the Future (FTF) Initiative, and Foreign, Commonwealth and Development Office (FCDO, previously DfID). Together, these projects promoted a net GHG emissions reduction of 6.5 MtCO2e per year. The forest management and promotion of improved agroforestry systems in the project areas contributed the most to the total mitigation co-benefits of the investment portfolios (∼3.9 MtCO2e/y). Improved crop management with minimum tillage practices, residue incorporation, water management in paddy rice, and the use of organic fertilizers also made a large contribution to the GHG emissions reduction (∼1.5 MtCO2e/y). Grass and pasture land management across the selected projects account for a net emission reduction of 0.2 MtCO2e/y. The implementation of improved agricultural practices in combination proves more effective for improving productivity and generating mitigation co-benefits than used in isolation. However, the aggregate impacts of soil organic carbon (SOC) sequestration should be interpreted carefully, which quickly can be lost quick. The interventions promoted by the global agricultural development programs have shown immense potential in reducing net GHG emissions or emission intensity in agriculture and allied sectors. For moving forward to achieve the net-zero and 1.5 °C goals including food security, the global agriculture development programs need to prioritize working on agriculture policy development and implementation so that agriculture expansion does not continue to drive land-use change. This needs to move from the traditional agriculture development programs to transformational changes.  相似文献   

3.
Climate benefits of changing diet   总被引:3,自引:3,他引:0  
Climate change mitigation policies tend to focus on the energy sector, while the livestock sector receives surprisingly little attention, despite the fact that it accounts for 18% of the greenhouse gas emissions and for 80% of total anthropogenic land use. From a dietary perspective, new insights in the adverse health effects of beef and pork have lead to a revision of meat consumption recommendations. Here, we explored the potential impact of dietary changes on achieving ambitious climate stabilization levels. By using an integrated assessment model, we found a global food transition to less meat, or even a complete switch to plant-based protein food to have a dramatic effect on land use. Up to 2,700 Mha of pasture and 100 Mha of cropland could be abandoned, resulting in a large carbon uptake from regrowing vegetation. Additionally, methane and nitrous oxide emission would be reduced substantially. A global transition to a low meat-diet as recommended for health reasons would reduce the mitigation costs to achieve a 450 ppm CO2-eq. stabilisation target by about 50% in 2050 compared to the reference case. Dietary changes could therefore not only create substantial benefits for human health and global land use, but can also play an important role in future climate change mitigation policies.  相似文献   

4.
Uncertainty analysis facilitates identification of the most important categories affecting greenhouse gas (GHG) inventory uncertainty and helps in prioritisation of the efforts needed for development of the inventory. This paper presents an uncertainty analysis of GHG emissions of all Kyoto sectors and gases for Finland consolidated with estimates of emissions/removals from LULUCF categories. In Finland, net GHG emissions in 2003 were around 69 Tg (±15 Tg) CO2 equivalents. The uncertainties in forest carbon sink estimates in 2003 were larger than in most other emission categories, but of the same order of magnitude as in carbon stock change estimates in other land use, land-use change and forestry (LULUCF) categories, and in N2O emissions from agricultural soils. Uncertainties in sink estimates of 1990 were lower, due to better availability of data. Results of this study indicate that inclusion of the forest carbon sink to GHG inventories reported to the UNFCCC increases uncertainties in net emissions notably. However, the decrease in precision is accompanied by an increase in the accuracy of the overall net GHG emissions due to improved completeness of the inventory. The results of this study can be utilised when planning future GHG mitigation protocols and emission trading schemes and when analysing environmental benefits of climate conventions.  相似文献   

5.
Transportation contributes to a significant and rising share of global energy use and GHG emissions. Therefore modeling future travel demand, its fuel use, and resulting CO2 emission is highly relevant for climate change mitigation. In this study we compare the baseline projections for global service demand (passenger-kilometers, ton-kilometers), fuel use, and CO2 emissions of five different global transport models using harmonized input assumptions on income and population. For four models we also evaluate the impact of a carbon tax. All models project a steep increase in service demand over the century. Technology change is important for limiting energy consumption and CO2 emissions, the study also shows that in order to stabilise or even decrease emissions radical changes would be required. While all models project liquid fossil fuels dominating up to 2050, they differ regarding the use of alternative fuels (natural gas, hydrogen, biofuels, and electricity), because of different fuel price projections. The carbon tax of 200 USD/tCO2 in 2050 stabilizes or reverses global emission growth in all models. Besides common findings many differences in the model assumptions and projections indicate room for further understanding long-term trends and uncertainty in future transport systems.  相似文献   

6.
Methane emissions from livestock enteric fermentation and manure management represent about 40% of total anthropogenic greenhouse gas emissions from the agriculture sector and are projected to increase substantially in the coming decades, with most of the growth occurring in non-Annex 1 countries. To mitigate livestock methane, incentive policies based on producer-level emissions are generally not feasible because of high administrative costs and producer transaction costs. In contrast, incentive policies based on sectoral emissions are likely administratively feasible, even in developing countries. This study uses an economic model of global agriculture to estimate the effects of two sectoral mitigation policies: a carbon tax and an emissions trading scheme based on average national methane emissions per unit of commodity. The analysis shows how the composition and location of livestock production and emissions change in response to the policies. Results illustrate the importance of global mitigation efforts: when policies are limited to Annex 1 countries, increased methane emissions in non-Annex 1 countries offset approximately two-thirds of Annex 1 emissions reductions. While non-Annex 1 countries face substantial disincentives to enacting domestic carbon taxes, developing countries could benefit from participating in a global sectoral emissions trading scheme. We illustrate one scheme in which non-Annex 1 countries collectively earn USD 2.4 billion annually from methane emission permit sales when methane is priced at USD 30/t CO2-eq.  相似文献   

7.
For agriculture, there are three major options for mitigating greenhouse gas (GHG) emissions: 1) productivity improvements, particularly in the livestock sector; 2) dedicated technical mitigation measures; and 3) human dietary changes. The aim of the paper is to estimate long-term agricultural GHG emissions, under different mitigation scenarios, and to relate them to the emissions space compatible with the 2 °C temperature target. Our estimates include emissions up to 2070 from agricultural soils, manure management, enteric fermentation and paddy rice fields, and are based on IPCC Tier 2 methodology. We find that baseline agricultural CO2-equivalent emissions (using Global Warming Potentials with a 100 year time horizon) will be approximately 13 Gton CO2eq/year in 2070, compared to 7.1 Gton CO2eq/year 2000. However, if faster growth in livestock productivity is combined with dedicated technical mitigation measures, emissions may be kept to 7.7 Gton CO2eq/year in 2070. If structural changes in human diets are included, emissions may be reduced further, to 3–5 Gton CO2eq/year in 2070. The total annual emissions for meeting the 2 °C target with a chance above 50 % is in the order of 13 Gton CO2eq/year or less in 2070, for all sectors combined. We conclude that reduced ruminant meat and dairy consumption will be indispensable for reaching the 2 °C target with a high probability, unless unprecedented advances in technology take place.  相似文献   

8.
Forests have an important role to play in climate change mitigation through carbon sequestration and wood supply. However, the lower albedo of mature forests compared to bare land implies that focusing only on GHG accounting may lead to biased estimates of forestry's total climatic impacts. An economic model with a high degree of detail of the Norwegian forestry and forest industries is used to simulate GHG fluxes and albedo impacts for the next decades. Albedo is incorporated in a carbon tax/subsidy scheme in the Norwegian forest sector using a partial, spatial equilibrium model. While a price of EU€100/tCO2e that targets GHG fluxes only results in reduced harvests, the same price including albedo leads to harvest levels that are five times higher in the first five years, with 39% of the national productive forest land base being cleared. The results suggest that policies that only consider GHG fluxes and ignore changes in albedo will not lead to an optimal use of the forest sector for climate change mitigation.

Policy relevance

Bare land reflects a larger share of incoming solar energy than dense forest and thus has higher albedo. Earlier research has suggested that changes in albedo caused by management of boreal forest may be as important as carbon fluxes for the forest's overall global warming impacts. The presented analysis is the first attempt to link albedo to national-scale forest climate policies. A policy with subsidies to forest owners that generate carbon sequestration and taxes levied on carbon emissions leads to a reduced forest harvest. However, including albedo in the policy alongside carbon fluxes yields very different results, causing initial harvest levels to increase substantially. The inclusion of albedo impacts will make harvests more beneficial for climate change mitigation as compared to a carbon-only policy. Hence, it is likely that carbon policies that ignore albedo will not lead to optimal forest management for climate change mitigation.  相似文献   

9.
Previous research has demonstrated that soil carbon sequestration through adoption of conservation tillage can be economically profitable depending on the value of a carbon offset in a greenhouse gas (GHG) emissions market. However adoption of conservation tillage also influences two other potentially important factors, changes in soil N2O emissions and CO2 emissions attributed to changes in fuel use. In this article we evaluate the supply of GHG offsets associated with conservation tillage adoption for corn-soy-hay and wheat-pasture systems of the central United States, taking into account not only the amount of carbon sequestration but also the changes in soil N2O emission and CO2 emissions from fuel use in tillage operations. The changes in N2O emissions are derived from a meta-analysis of published studies, and changes in fuel use are based on USDA data. These are used to estimate changes in global warming potential (GWP) associated with adoption of no-till practices, and the changes in GWP are then used in an economic analysis of the potential supply of GHG offsets from the region. Simulation results demonstrate that taking N2O emissions into account could result in substantial underestimation of the potential for GHG mitigation in the central U.S. wheat pasture systems, and large over-estimation in the corn-soy-hay systems. Fuel use also has quantitatively important effects, although generally smaller than N2O. These findings suggest that it is important to incorporate these two effects in estimates of GHG offset potential from agricultural lands, as well as in the design of GHG offset contracts for more complete accounting of the effect that no-till adoption will have on greenhouse gas emissions.  相似文献   

10.
The number of electric and electronic products (e-products) owned by Chinese households has multiplied in the past decade. In this study, we analyz the GHG emissions from e-products in Chinese households in order to understand and determine how to mitigate their effects on climate change. The results show that the usage stage of e-products has become an important source of GHG emissions in China, with total GHG emissions of these household e-products reaching about 663 million tons CO2 eq., accounting for about 8.85 % of all Chinese GHG emissions in 2012. The average GHG emission per household per year in China was 1538 kg CO2 eq. in 2012, a little higher than that of Norwegian households (1200 kg CO2 eq.). The electricity mix plays a very important role in GHG emissions, and the 78 % coal-fired power consumption accounted for 99.69 % of the total GHG emissions. Our research also supports the view that GHG emissions from household e-products increased with economic level. To reduce the GHG emissions of household e-products, the development of energy-saving e-products and changes to the electricity mix would be very effective measures.  相似文献   

11.
Global greenhouse gas (GHG) emissions models generally project a downward trend in CO2 emissions from land use change, assuming significant crop yield improvements. For some crops, however, significant yield gaps persist whilst demand continues to rise. Here we examine the land use change and GHG implications of meeting growing demand for maize. Integrating economic and biophysical models at an unprecedented spatial resolution, we show that CO2 emissions from land conversion may rise sharply if future yield growth follows historical trends. Our results show that ~4.0 Gt of additional CO2 would be emitted from ~23 Mha agricultural expansion from 2015 to 2026, under historical yield improvement trends. If yield gaps are closed expeditiously, however, GHG emissions can be reduced to ~1.1 Gt CO2 during the period. Our results highlight the urgent need to close global yield gaps to minimize agricultural expansion and for continued efforts to constrain agricultural expansion in carbon-rich lands and forests.  相似文献   

12.
IPCC特别报告SRCCL关于气候变化与粮食安全的新认知与启示   总被引:3,自引:0,他引:3  
气候变化对粮食安全的影响是广泛的,不但影响粮食产量和品质,还会影响到农户的生计以及农业相关的产业发展等;而粮食系统在保障粮食安全的同时,又会产生一系列的环境问题,其中农业源温室气体(GHG)的排放加剧全球变暖。IPCC在2019年8月份发布的《气候变化与土地特别报告》(SRCCL),从粮食生产、加工、储存、运输及消费的各个环节评估气候变化对粮食安全的影响及粮食系统的温室气体排放对气候系统的影响;系统梳理粮食系统供给侧和需求侧的适应与减缓措施、适应与减缓的协同和权衡问题,以及气候变化条件下保障粮食安全的政策环境等。SRCCL评估结论认为,由于大量施用氮肥和消耗水资源,目前粮食系统GHG排放占全球总排放的21%~37%;农业和粮食系统是全球应对气候变化的重要方面,供给侧和需求侧的综合措施可以减少食物浪费、减少GHG排放、增加粮食系统的恢复力。未来工作的重点应丰富和扩展气候变化影响评估内容,量化适应效果,加深对适应、减缓及其协同和权衡的科学认知,大力加强应对气候变化能力建设。  相似文献   

13.
This paper employs a computable general equilibrium model (CGE) to analyse how a carbon tax and/or a national Emissions Trading System (ETS) would affect macroeconomic parameters in Turkey. The modelling work is based on three main policy options for the government by 2030, in the context of Turkey’s mitigation target under its Intended Nationally Determined Contribution (INDC), that is, reducing greenhouse gas (GHG) emissions by up to 21% from its Business as Usual (BAU) scenario in 2030: (i) improving the productivity of renewable energy by 1% per annum, a target already included in the INDC, (ii) introducing a new flat rate tax of 15% per ton of CO2 (of a reference carbon price in world markets) imposed on emissions originating from carbon-intensive sectors, and (iii) introducing a new ETS with caps on emission permits. Our base path scenario projects that GHG emissions in 2030 will be much lower than Turkey’s BAU trajectory of growth from 430 Mt CO2-eq in 2013 to 1.175 Mt CO2-eq by 2030, implying that the government’s commitment is largely redundant. On the other hand, if the official target is assumed to be only a simple reduction percentage in 2030 (by 21%), but based on our more realistic base path, the government’s current renewable energy plans will not be sufficient to reach it.
  • Turkey’s official INDC is based on over-optimistic assumptions of GDP growth and a highly carbon-intensive development pathway;

  • A carbon tax and/or an ETS would be required to reach the 21% reduction target over a realistic base path scenario for 2030;

  • The policy options considered in this paper have some effects on major sectors’ shares in total value-added. Yet the reduction in the shares of agriculture, industry, and transportation does not go beyond 1%, while the service sector seems to benefit from most of the policy options;

  • Overall employment would be affected positively by the renewable energy target, carbon tax, and ETS through the creation of new jobs;

  • Unemployment rates are lower, economic growth is stronger, and households become better off to a larger extent under an ETS than carbon taxation.

  相似文献   

14.
Agricultural GHG mitigation policies are important if ambitious climate change goals are to be achieved, and have the potential to significantly lower global mitigation costs [Reisinger, A., Havlik, P., Riahi, K., van Vliet, O., Obersteiner, M., & Herrero, M. (2013). Implications of alternative metrics for global mitigation costs and greenhouse gas emissions from agriculture. Climatic Change, 117, 677–690]. In the post-Paris world of ‘nationally determined contributions’ to mitigation, the prospects for agricultural mitigation policies may rest on whether they are in the national economic interest of large agricultural producers. New Zealand is a major exporter of livestock products; this article uses New Zealand as a case study to consider the policy implications of three global policy scenarios at the global, national and farm levels. Building on global modelling, a model dairy farm and a model sheep and beef farm are used to estimate the changes in profit when agricultural emissions are priced and mitigated globally or not, and priced domestically or not, in 2020. Related to these scenarios is the metric or GHG exchange rate. Most livestock emissions are non-CO2, with methane being particularly sensitive to the choice of metric. The results provide evidence that farm profitability is more sensitive to differing international policy scenarios than national economic welfare. The impact of the choice of metric is not as great as the impact of whether other countries mitigate agricultural emissions or not. Livestock farmers do best when agricultural emissions are not priced, as livestock commodity prices rise significantly due to competition for land from forestry. However, efficient farmers may still see a rise in profitability when agricultural emissions are fully priced worldwide.

Policy relevance

Exempting agricultural emissions from mitigation significantly increases the costs of limiting warming to 2 °C, placing the burden on other sectors. However, there may be a large impact on farmers if agricultural emissions are priced domestically when other countries are not doing the same. The impacts of global and national climate policies on farmers need to be better understood in order for climate policies to be politically sustainable. Transitional assistance that is not linked to emission levels could help, as long as the incentives to mitigate are maintained. In the long run, efficient farmers may benefit from climate policy; international efforts should focus on mitigation options and effective domestic policy development, rather than on metrics.  相似文献   

15.
Global pet ownership, especially of cats and dogs, is rising with income growth, and so too are the environmental impacts associated with their food. The global extent of these impacts has not been quantified, and existing national assessments are potentially biased due to the way in which they account for the relative impacts of constituent animal by-products (ABPs). ABPs typically have lower value than other animal products (i.e. meat, milk and eggs), but are nevertheless associated with non-negligible environmental impacts. Here we present the first global environmental impact assessment of pet food. The approach is novel in applying an economic value allocation approach to the impact of ABPs and other animal products to represent better the environmental burden. We find annual global dry pet food production is associated with 56–151 Mt CO2 equivalent emissions (1.1%−2.9% of global agricultural emissions), 41–58 Mha agricultural land-use (0.8–1.2% of global agricultural land use) and 5–11 km3 freshwater use (0.2–0.4% of water extraction of agriculture). These impacts are equivalent to an environmental footprint of around twicethe UK land area, and would make greenhouse gas emission from pet food around the 60th highest emitting country, or equivalent to total emissions from countries such as Mozambique or the Philippines. These results indicate that rising pet food demand should be included in the broader global debate about food system sustainability.  相似文献   

16.
Designing effective mitigation policies for greenhouse gas (GHG) emissions from agriculture requires understanding the mechanisms by which management practices affect emissions in different agroclimatic conditions. Agricultural GHG emissions and carbon sequestration potentials have been extensively studied in the Mediterranean biome, which is a biodiversity hot spot that is highly vulnerable to environmental changes. However, the absolute magnitude of GHG emissions and the extent to which research efforts match these emissions in each production system, are unknown. Here, we estimated GHG emissions and potential carbon sinks associated with crop and livestock production systems in the Mediterranean biome, covering 31 countries and assessing approximately 10,000 emission items. The results were then combined with a bibliometric assessment of 797 research publications to compare emissions estimates obtained with research efforts for each of the studied items. Although the magnitude of GHG emissions from crop production and the associated carbon sequestration potential (261 Tg CO2eq yr−1) were nearly half of those from livestock production (367 Tg CO2eq yr−1), mitigation research efforts were largely focused on the former. As a result, the relative research intensity, which relates the number of publications to the magnitude of emissions, is nearly one order of magnitude higher for crop production than for livestock production (2.6 and 0.4 papers Tg CO2eq−1, respectively). Moreover, this mismatch is even higher when crop and livestock types are studied separately, which indicates major research gaps associated with grassland and many strategic crop types, such as fruit tree orchards, fiber crops, roots and tubers. Most life cycle assessment studies do not consider carbon sequestration, although this single process has the highest magnitude in terms of annual CO2eq. In addition, these studies employ Tier 1 IPCC factors, which are not suited for use in Mediterranean environments. Our analytical results show that a strategic plan is required to extend on-site field GHG measurements to the Mediterranean biome. Such a plan needs to be cocreated among stakeholders and should be based on refocusing research efforts to GHG balance components that have been afforded less attention. In addition, the outcomes of Mediterranean field studies should be integrated into life cycle assessment-based carbon footprint analyses in order to avoid misleading conclusions.  相似文献   

17.
As the world’s population continues to grow, agricultural expansion is expected to increase to meet future food demand often at the expense of other land uses. However, there are limited studies examining the degree to which forest cover will change and the underlying assumptions driving these projections. Focusing on food and forest scenarios for the middle to the end of the current century, we review 63 main scenarios and 28 global modelling studies to address variations in land use projections and evaluate the potential outcomes on forest cover. Further, their potential impacts on greenhouse gases (GHG) emission/sequestration and global temperature are explored. A majority (59%) of scenarios expected a reduction in both forests and pasturelands to make way for agricultural expansion (particularly reference and no mitigation scenarios). In most scenarios, the extent of forest loss is proportional to that of crop gain, which is associated with higher GHG emission and global temperature, loss of carbon sequestration potential and increase in soil erosion. However, 32% of scenarios predicted that meeting food security objectives is possible without leading to further deforestation if there is a global reduction in the demand for energy intensive foods, and improvements in crop yields. Forest gain and lower rates of deforestation are needed to achieve ambitious climate targets over the next decade. Our analysis also highlights carbon taxes (prices), reforestation/afforestation and bioenergy as important variables that can contribute to maintaining or increasing global forest area in the future.  相似文献   

18.
Over the last three decades, socio-economic, demographic and technological transitions have been witnessed throughout the world, modifying both sectorial and geographical distributions of greenhouse gas (GHG) emissions. Understanding these trends is central to the design of current and future climate change mitigation policies, requiring up-to-date methodologically robust emission inventories such as the Emissions Database for Global Atmospheric Research (EDGAR), the European Commission’s in-house, independent global emission inventory. EDGAR is a key tool to track the evolution of GHG emissions and contributes to quantifying the global carbon budget, providing independent and systematically calculated emissions for all countries.According to the results of the EDGAR v.5.0 release, total anthropogenic global greenhouse gas emissions (excluding land use, land use change and forestry) were estimated at 49.1 Gt CO2eq in 2015, 50 % higher than in 1990, despite a monotonic decrease in GHG emissions per unit of economic output. Between 1990 and 2015, emissions from developed countries fell by 9%, while emissions from low to medium income countries increased by 130%, predominantly from 2000 onwards. The 27 Member States of the European Union and the United Kingdom led the pathway for emission reductions in industrialised economies whilst, in developing countries, the rise in emissions was driven by higher emissions in China, India, Brazil and nations in the South-East Asian region. This diversity of patterns shows how different patterns for GHG emissions are and the need for identifying regionally tailored emission reduction measures.  相似文献   

19.
The Sustainable Development Goals (SDGs) imply country-led implementation. Yet, their achievement depends on sustainability targets compatible across different sectors and scales. Our study examines how the GHG emission intensity of agriculture (EIA) should evolve globally, regionally (Western Europe) and nationally (The Netherlands) under different socioeconomic pathways, so that two major aims of SDGs 2 and 13 (i.e. sufficient food production and climate change mitigation) are achieved simultaneously. Results show that, by 2050, relative to 2010 values, EIA should decrease at all three levels when measured on a product basis (GHG emissions per ton dry matter) and on a land basis (GHG emissions per ha). This indicates that, globally, agriculture should be intensified per unit area, while in Western Europe and even more so in the Netherlands additional emission reductions require increased production efficiency and lower production volumes. Projected reductions in methane and nitrous oxide emissions from enteric fermentation, manure management and fertilizer application in Dutch agriculture are much higher than what would be achieved through the extrapolation of current trends. Given the high costs of increasing production efficiency further, our analysis indicates the need for significantly more ambitious policy targets and systemic changes, including reduced consumption of animal-sourced food. Besides shedding light on the interaction between climate and agricultural strategies, our analysis illustrates the application of cross-scale thinking in the operationalization of the SDG agenda and underscores the need for concerted action amongst countries.  相似文献   

20.
On the basis of the IPCC B2, A1b and B1 baseline scenarios, mitigation scenarios were developed that stabilize greenhouse gas concentrations at 650, 550 and 450 and – subject to specific assumptions – 400 ppm CO2-eq. The analysis takes into account a large number of reduction options, such as reductions of non-CO2 gases, carbon plantations and measures in the energy system. The study shows stabilization as low as 450 ppm CO2-eq. to be technically feasible, even given relatively high baseline scenarios. To achieve these lower concentration levels, global emissions need to peak within the first two decades. The net present value of abatement costs for the B2 baseline scenario (a medium scenario) increases from 0.2% of cumulative GDP to 1.1% as the shift is made from 650 to 450 ppm. On the other hand, the probability of meeting a two-degree target increases from 0%–10% to 20%–70%. The mitigation scenarios lead to lower emissions of regional air pollutants but also to increased land use. The uncertainty in the cost estimates is at least in the order of 50%, with the most important uncertainties including land-use emissions, the potential for bio-energy and the contribution of energy efficiency. Furthermore, creating the right socio-economic and political conditions for mitigation is more important than any of the technical constraints.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号