首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 98 毫秒
1.
High-resolution surface air temperature data are critical to regional climate modeling in terms of energy balance, urban climate change, and so on. This study demonstrates the feasibility of using Moderate Resolution Imaging Spectroradiometer (MODIS) land surface temperature (LST) to estimate air temperature at a high resolution over the Yangtze River Delta region, China. It is found that daytime LST is highly correlated with maximum air temperature, and the linear regression coefficients vary with the type of land surface. The air temperature at a resolution of 1 km is estimated from the MODIS LST with linear regression models. The estimated air temperature shows a clear spatial structure of urban heat islands. Spatial patterns of LST and air temperature differences are detected, indicating maximum differences over urban and forest regions during summer. Validations are performed with independent data samples, demonstrating that the mean absolute error of the estimated air temperature is approximately 2.5°C, and the uncertainty is about 3.1°C, if using all valid LST data. The error is reduced by 0.4°C (15%) if using best-quality LST with errors of less than 1 K. The estimated high-resolution air temperature data have great potential to be used in validating high-resolution climate models and other regional applications.  相似文献   

2.
In this study, urban climate in Nanjing of eastern China is simulated using 1-km resolution Weather Research and Forecasting (WRF) model coupled with a single-layer Urban Canopy Model. Based on the 10-summer simulation results from 2000 to 2009 we find that the WRF model is capable of capturing the high-resolution features of urban climate over Nanjing area. Although WRF underestimates the total precipitation amount, the model performs well in simulating the surface air temperature, relative humidity, and precipitation frequency and inter-annual variability. We find that extremely hot events occur most frequently in urban area, with daily maximum (minimum) temperature exceeding 36°C (28°C) in around 40% (32%) of days. Urban Heat Island (UHI) effect at surface is more evident during nighttime than daytime, with 20% of cases the UHI intensity above 2.5°C at night. However, The UHI affects the vertical structure of Planet Boundary Layer (PBL) more deeply during daytime than nighttime. Net gain for latent heat and net radiation is larger over urban than rural surface during daytime. Correspondingly, net loss of sensible heat and ground heat are larger over urban surface resulting from warmer urban skin. Because of different diurnal characteristics of urban-rural differences in the latent heat, ground heat and other energy fluxes, the near surface UHI intensity exhibits a very complex diurnal feature. UHI effect is stronger in days with less cloud or lower wind speed. Model results reveal a larger precipitation frequency over urban area, mainly contributed by the light rain events (< 10 mm d?1). Consistent with satellite dataset, around 10?C20% more precipitation occurs in urban than rural area at afternoon induced by more unstable urban PBL, which induces a strong vertical atmospheric mixing and upward moisture transport. A significant enhancement of precipitation is found in the downwind region of urban in our simulations in the afternoon.  相似文献   

3.
Urbanization and climate change are among the most important global trends affecting human well-being during the twenty-first century. One region expected to undergo enormous urbanization and be significantly affected by climate change is Africa. Studies already find increases in temperature and high temperature events for the region. How many people will be exposed to heat events in the future remains unclear. This paper attempts to provide a first estimate of the number of African urban residents exposed to very warm 15-day heat events (>42 °C). Using the Shared Socio-economic Pathways and Representative Concentration Pathways framework we estimate the numbers of exposed, sensitive (those younger than 5 and older than 64 years), and those in low-income nations, with gross national products of $4000 ($2005, purchasing power parity), from 2010 to 2100. We examine heat events both with and without urban heat island estimates. Our results suggest that at the low end of the range, under pathways defined as sustainable (SSP 1) and low relative levels of climate change (RCP 2.6) without including the urban heat island effect there will be large populations (>300 million) exposed to very warm heat wave by 2100. Alternatively, by 2100, the high end exposure level is approximately 2.0 billion for SSP 4 under RCP 4.5 where the urban heat island effect is included.  相似文献   

4.
The evolution of the Parisian urban climate under a changing climate is analyzed from long-term offline numerical integrations including a specific urban parameterization. This system is forced by meteorological conditions based on present-climate reanalyses (1970–2007), and climate projections (2071–2099) provided by global climate model simulations following two emission scenarios (A1B and A2). This study aims at quantifying the impact of climate change on air temperature within the city and in the surroundings. A systematic increase of 2-meter air temperature is found. In average according to the two scenarios, it reaches +?2.0/2.4°C in winter and +?3.5/5.0°C in summer for the minimum and maximum daily temperatures, respectively. During summer, the warming trend is more pronounced in the surrounding countryside than in Paris and suburbs due to the soil dryness. As a result, a substantial decrease of the strong urban heat islands is noted at nighttime, and numerous events with negative urban heat islands appear at daytime. Finally, a 30% decrease of the heating degree days is quantified in winter between present and future climates. Inversely, the summertime cooling degree days significantly increase in future climate whereas they are negligible in present climate. However, in terms of accumulated degree days, the increase of the demand in cooling remains smaller than the decrease of the demand in heating.  相似文献   

5.
昆明城市热岛效应立体分布特征   总被引:17,自引:10,他引:17  
利用低纬高原城市昆明城内外垂直观测资料,探讨了低纬高原城市的城市气候立体分布特征,通过比较分析,得出如下初步结果:昆明城市热岛效应不仅在地面附近存在,而且在城市上空也存在;其城市热岛效应为夜间强,影响高度高(>50m);昼间弱,影响高度低(<50m);近地面强,上空弱;昆明城市区域的气温垂直分布昼间为随高度增高温度递减,而夜间为逆温分布;受昆明城市周边环境影响,昆明城市热岛效应最大值中心呈现随高度增高而偏多现象。如此的气温立体空间分布,将对城市污染扩散、建筑物的设计、城市节能等产生影响。  相似文献   

6.
Recent temperature projections for urban areas have only been able to reflect the expected change due to greenhouse-induced warming, with little attempt to predict urbanisation effects. This research examines temperature changes due to both global warming and urbanisation independently and applies them differentially to urban and rural areas over a sub-tropical city, Hong Kong. The effect of global warming on temperature is estimated by regressing IPCC data from eight Global Climate Models against the background temperature recorded at a rural climate station. Results suggest a mean background temperature increase of 0.67 °C by 2039. To model temperature changes for different degrees of urbanization, long-term temperature records along with a measureable urbanisation parameter, plot ratio surrounding different automatic weather stations (AWS) were used. Models representing daytime and nighttime respectively were developed, and a logarithmic relationship between the rate of temperature change and plot ratio (degree of urbanisation) is observed. Baseline air temperature patterns over Hong Kong for 2009 were derived from two ASTER thermal satellite images, for summer daytime and nighttime respectively. Dynamic raster modeling was employed to project temperatures to 2039 in 10-year intervals on a per-pixel basis according to the degree of urbanization predicted. Daytime and nighttime temperatures in the highly urbanized areas are expected to rise by ca. 2 °C by 2039. Validation by projecting observed temperature trends at AWS, gave low average RMS errors of 0.19 °C for daytime and 0.14 °C for nighttime, and suggests the reliability of the method.  相似文献   

7.
High temperatures and heatwaves can cause large societal impacts by increasing health risks, mortality rates, and personal discomfort. These impacts are exacerbated in cities because of the Urban Heat Island (UHI) effect, and the high and increasing concentrations of people, assets and economic activities. Risks from high temperatures are now widely recognised but motivation and implementation of proportionate policy responses is inhibited by inadequate quantification of the benefits of adaptation options, and associated uncertainties. This study utilises high spatial resolution probabilistic projections of urban temperatures along with projections of demographic change, to provide a probabilistic risk assessment of heat impacts on urban society. The study focuses on Greater London and the surrounding region, assessing mortality risk, thermal discomfort in residential buildings, and adaptation options within an integrated framework. Climate change is projected to increase future heat-related mortality and residential discomfort. However, adjusting the temperature response function by 1–2 °C, to simulate adaptation and acclimatisation, reduced annual heat related mortality by 32–69 % across the scenarios tested, relative to a no adaptation scenario. Similar benefits of adaptation were seen for residential discomfort. The study also highlights additional benefits in terms of reduced mortality and residential discomfort that mitigating the urban heat island, by reducing albedo and anthropogenic heat emissions, could have.  相似文献   

8.
9.
This study demonstrates that urban heat island (UHI) intensity can be estimated by comparing observational data and the outputs of a well-developed high-resolution regional climate model. Such an estimate is possible because the observations include the effects of UHI, whereas the model used does not include urban effects. Therefore, the errors in the simulated surface air temperature, defined as the difference between simulated and observed temperatures (simulated minus observed), are negative in urban areas but 0 in rural areas. UHI intensity is estimated by calculating the difference in temperature error between urban and rural areas. Our results indicate that overall UHI intensity in Japan is 1.5 K and that the intensity is greater in nighttime than in daytime, consistent with the previous studies. This study also shows that root mean square error and the magnitude of systematic error for the annual mean temperature are small (within 1.0 K).  相似文献   

10.
Temperate zone deciduous tree phenology may be vulnerable to projected temperature change, and associated geographical impact is of concern to ecologists. Although many phenology models have been introduced to evaluate climate change impact, there has been little attempt to show the spatial variation across a geographical region due to contamination by the urban heat island (UHI) effect as well as the insufficient spatial resolution of temperature data. We present a practical method for assessing climate change impact on tree phenology at spatial scales sufficient to accommodate the UHI effect. A thermal time-based two-step phenological model was adapted to simulate and project flowering dates of Japanese cherry (Prunus serrulata var. spontanea) in South Korea under the changing climates. The model consists of two sequential periods: the rest period described by chilling requirements and the forcing period described by heating requirements. Daily maximum and minimum temperature are used to calculate daily chill units until a pre-determined chilling requirement for rest release is met. After the projected rest release date, daily heat units (growing degree days) are accumulated until a pre-determined heating requirement for flowering is achieved. Model parameters were derived from the observed bud-burst and flowering dates of cherry tree at the Seoul station of the Korea Meteorological Administration (KMA), along with daily temperature data for 1923–1948. The model was validated using the observed data at 18 locations across South Korea during 1955–2004 with a root mean square error of 5.1 days. This model was used to project flowering dates of Japanese cherry in South Korea from 1941 to 2100. Gridded data sets of daily maximum and minimum temperature with a 270 m grid spacing were prepared for the climatological normal years 1941–1970 and 1971–2000 based on observations at 56 KMA stations and a geospatial interpolation scheme for correcting urban heat island effect as well as elevation effect. We obtained a 25 km-resolution, 2011–2100 temperature projection data set covering peninsular Korea under the auspices of the Inter-governmental Panel on Climate Change—Special Report on Emission Scenarios A2 from the Meteorological Research Institute of KMA. The data set was converted to 270 m gridded data for the climatological years 2011–2040, 2041–2070 and 2071–2100. The phenology model was run by the gridded daily maximum and minimum temperature data sets, each representing climatological normal years for 1941–1970, 1971–2000, 2011–2040, 2041–2070, and 2071–2100. According to the model calculation, the spatially averaged flowering date for the 1971–2000 normal is earlier than that for 1941–1970 by 5.2 days. Compared with the current normal (1971–2000), flowering of Japanese cherry is expected to be earlier by 9, 21, and 29 days in the future normal years 2011–2040, 2041–2070, and 2071–2100, respectively. Southern coastal areas might experience springs with incomplete or even no flowering caused by insufficient chilling required for breaking bud dormancy.  相似文献   

11.
1. IntroductionThe basic role of urban-rural boundary layer re-search is to study all kinds of physical process changesin the atmosphere boundary layer over urban and itssurrounding areas. Urban heat island (UHI) is a well-known feature of urban-rural climate. Attempts toincrease the understanding of the causes of the UHIand other urban-rural boundary layer phenomena haveused observational, theoretical and modelling methodssince long before. Seaman (1989) used a hydrostaticmodel, with real …  相似文献   

12.
Gridded temperature data are necessary to run ecological models at regional scales for climate impact studies and have been generated by spatially interpolating measured values at synoptic stations. Because there are few synoptic stations with long-term records in rural areas in Korea, data from urban stations have been used for this purpose. Due to the overlapping of the rapid urbanization-industrialization period with the global warming era in Korea, climate data from these urbanized areas might be contaminated with urban heat island effect. This study was conducted to differentiate urbanization and regional climate change effects on apparent temperature change. Monthly averages of daily minimum, maximum, and mean temperature at 14 synoptic stations were prepared for 1951-1980 (past normal) and 1971-2000 (current normal) periods, respectively.Differences in two temperature normals were regressed to the logarithm of the population increase at 14 corresponding cities from 1966 to 1985. The regression equations were used to determine potential effects of urbanization and to extract the net contribution of regional climate change to the apparent temperature change. According to the model calculation, urbanization effect was common in all months except April. Up to 0.5° warming of nighttime temperature was induced by urbanization in the current normal period compared with the past normal period. There was little effect of regional climate change on local warming in the warm season (May through November). The cool season was warmed mainly by regionally increased daytime temperature. The results could be used to remove urbanization effects embedded in raw data, helping restore unbiased rural temperature trends in South Korea.  相似文献   

13.
This paper addresses the contribution of urban land use change to near-surface air temperature during the summer extreme heat events of the early twenty-first century in the Beijing–Tianjin–Hebei metropolitan area. This study uses the Weather Research Forecasting model with a single urban canopy model and the newest actual urban cover datasets. The results show that urban land use characteristics that have evolved over the past ~20 years in the Beijing–Tianjin–Hebei metropolitan area have had a significant impact on the extreme temperatures occurring during extreme heat events. Simulations show that new urban development has caused an intensification and expansion of the areas experiencing extreme heat waves with an average increase in temperature of approximately 0.60 °C. This change is most obvious at night with an increase up to 0.95 °C, for which the total contribution of anthropogenic heat is 34 %. We also simulate the effects of geo-engineering strategies increasing the albedo of urban roofs, an effective way of reducing urban heat island, which can reduce the urban mean temperature by approximately 0.51 °C and counter approximately 80 % of the heat wave results from urban sprawl during the last 20 years.  相似文献   

14.
The study has analyzed influence of an atmospheric circulation on urban heat island (UHI) and urban cold island (UCI) in Poznań. Analysis was conducted on the basis of temperature data from two measurement points situated in the city center and in the ?awica airport (reference station) and the data concerning the air circulation (Nied?wied?’s calendar of circulation types and reanalysis of National Centers for Environmental Prediction (NCEP)/National Center for Atmospheric Research (NCAR)). The cases with UHI constitute about 85 % of all data, and UCI phenomena appear with a frequency of 14 % a year. The intensity of UHI phenomenon is higher in the anticyclonic circulation types. During the year in anticyclonic circulation, intensity of UHI is 1.2 °C on average while in cyclonic is only 0.8 °C. The occurring of UHI phenomena is possible throughout all seasons of the year in all hours of the day usually in anticyclonic circulation types. The cases with highest UHI intensity are related mostly to nighttime. The cases of UCI phenomena occurred almost ever on the daytime and the most frequently in colder part of the year together with cyclonic circulation. Study based on reanalysis data indicates that days with large intensity of UHI (above 4, 5, and 6 °C) are related to anticyclonic circulation. Anticyclonic circulation is also promoting the formation of the strongest UCI. Results based on both reanalysis and the atmospheric circulation data (Nied?wied?’s circulation type) confirm that cases with the strongest UHI and UCI during the same day occur in strong high-pressure system with the center situated above Poland or central Europe.  相似文献   

15.
城市空间形态学参数与晴好天气下热岛强度关系   总被引:1,自引:0,他引:1       下载免费PDF全文
以澳大利亚阿德莱德中心城区为研究区,基于高分辨率城市三维建筑物数据计算得到天空开阔度 (sky view factor,SVF) 与迎风面积指数 (frontal area index,FAI),并将其与晴好天气下四季的城市热岛强度进行相关性分析。结果表明:晴好天气下,阿德莱德城市热岛强度 (urban heat island intensity,UHII) 在2010—2011年四季均呈现出夜间强、白天弱的变化特征。SVF与UHII在夜间呈显著线性负相关,白天呈线性正相关;而FAI与UHII在四季的夜间和早晨时段呈对数关系,白天呈线性负相关。SVF和FAI对不同季节、不同时刻的城市热岛影响不同,在不同空间尺度下的适用性也存在差异,SVF在不同空间尺度下适用性更强。  相似文献   

16.
The July urban heat island of Bucharest as derived from modis images   总被引:2,自引:1,他引:1  
The urban heat island (UHI) of the city of Bucharest (Romania) is analyzed in terms of its extension, geometry, and magnitude using the surface thermal data provided by the moderate resolution imaging spectroradiometer (MODIS) sensors. An objective method is developed that allows to delineate the UHI. The study focuses on the months of July from the 2000–2006 time interval. The average surface temperatures obtained for each pixel (1 km resolution) were analyzed on cross-profiles that helped us to determine the outline of the UHI. The shifting points identified by the Rodionov test in the temperature series of each profile were considered as possible limits of the UHI. Seemingly, the land cover has a major influence on the extension and the geometry of the Bucharest UHI in July. The magnitude of the heat island was calculated by comparing the average temperature inside its limits and the average temperature of the 5 km (a) and of the 10 km (b) buffers around it. The thermal difference between the UHI and the surrounding area of Bucharest is higher and more variable during the daytime, and is noticeably related to the land cover.  相似文献   

17.
北京地区热岛非均匀分布特征的卫星遥感-地面观测   总被引:1,自引:0,他引:1  
针对北京城市热岛的空间变化特征及其发展趋势,重点探讨了北京城市热岛总体演变趋势及其多尺度非均匀分布特征与城市建筑群面积、中高层建筑群空间布局的相关关系。采用晴空过程北京城郊地面自动气象站AWS(Automatic weather station)气温观测真值对卫星遥感云顶黑体温度TBB(Temperature of black body on the top of cloud)高分辨率场实施变分订正,解决城市热岛研究中高分辨率卫星遥感的客观性订正问题。研究结果揭示了北京城市建筑群面积及中高层建筑群布局对城市热岛群总体演变趋势、多尺度热岛群非均匀分布特征的显著影响效应。结果表明,北京晴空过程城区及近郊区多尺度热岛效应可由强、弱程度不同的热岛群"合成",北京地区热岛分布呈多尺度非均匀特征,即城区东西两侧为强热岛区,城西北园林区与古城中轴线区域为相对弱热岛区;在北京城市高速发展背景下,城郊街区热岛群的非均匀分布特征与城市建筑群布局之间存在着相关关系;城市建筑群面积及中高层建筑密集程度的差异可产生区域性强弱不同的热岛效应,这间接反映出北京城郊中高层建筑群暖气或空调排放热源的局地影响效应。上述研究结果可为城市发展有关建筑群布局与园林绿地规划设计提供科学依据。  相似文献   

18.
This study examines the impacts of land-use data on the simulation of surface air temperature in Northwest China by the Weather Research and Forecasting (WRF) model. International Geosphere–Biosphere Program (IGBP) landuse data with 500-m spatial resolution are generated from Moderate Resolution Imaging Spectroradiometer (MODIS) satellite products. These data are used to replace the default U.S. Geological Survey (USGS) land-use data in the WRF model. Based on the data recorded by national basic meteorological observing stations in Northwest China, results are compared and evaluated. It is found that replacing the default USGS land-use data in the WRF model with the IGBP data improves the ability of the model to simulate surface air temperature in Northwest China in July and December 2015. Errors in the simulated daytime surface air temperature are reduced, while the results vary between seasons. There is some variation in the degree and range of impacts of land-use data on surface air temperature among seasons. Using the IGBP data, the simulated daytime surface air temperature in July 2015 improves at a relatively small number of stations, but to a relatively large degree; whereas the simulation of daytime surface air temperature in December 2015 improves at almost all stations, but only to a relatively small degree (within 1°C). Mitigation of daytime surface air temperature overestimation in July 2015 is influenced mainly by the change in ground heat flux. The modification of underestimated temperature comes mainly from the improvement of simulated net radiation in December 2015.  相似文献   

19.
The spatial resolution gap between global or regional climate models and the requirements for local impact studies motivates the need for climate downscaling. For impact studies that involve glacier modelling, the sparsity or complete absence of climate monitoring activities within the regions of interest presents a substantial additional challenge. Downscaling methods for this application must be independent of climate observations and cannot rely on tuning to station data. We present new, computationally-efficient methods for downscaling precipitation and temperature to the high spatial resolutions required to force mountain glacier models. Our precipitation downscaling is based on an existing linear theory for orographic precipitation, which we modify for large study regions by including moist air tracking. Temperature is downscaled using an interpolation scheme that reconstructs the vertical temperature structure to estimate surface temperatures from upper air data. Both methods are able to produce output on km to sub-km spatial resolution, yet do not require tuning to station measurements. By comparing our downscaled precipitation (1 km resolution) and temperature (200 m resolution) fields to station measurements in southern British Columbia, we evaluate their performance regionally and through the annual cycle. Precipitation is improved by as much as 30% (median relative error) over the input reanalysis data and temperature is reconstructed with a mean bias of 0.5°C at locations with high vertical relief. Both methods perform best in mountainous terrain, where glaciers tend to be concentrated.  相似文献   

20.
周晶  刘蕾  霍飞  鲍婷婷 《气象科学》2018,38(3):342-350
利用中尺度数值模式WRF,分别选用新旧两种下垫面资料和不同城市冠层模型设计试验,以江苏一次秋末高温天气个例(2014年11月20—21日)为背景,研究城市化进程对气温的影响和可能机制。将模式结果与江苏国家气象观测站和地面加密区域自动站观测资料进行对比,并分析3组试验结果发现:(1)采用BEP城市方案对2 m气温、2 m相对湿度和10 m风速等物理量的日变化模拟最优。(2)相比USGS数据,MODIS较新地表覆盖变化数据能更真实反映研究区域当前地表类型分布情况,且能提高近地面风温湿要素空间分布的模拟。(3)分析不同试验模拟的地表能量平衡过程差异,发现相比UCM单层城市冠层方案,BEP多层城市冠层方案在白天能更好模拟出城市地区的温度升高以及相对应的地表感热通量和地面热通量的增加。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号