首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
通过对呼和浩特市活动断层地震危险性评价的技术途径、目标区内主要断裂的活动特征的综合分析,确定目标区内主断裂未来可能发生的最大震级;采用"时间相依"大陆模型、BPT模型及河套模型,对目标区内断裂进行地震危险性的综合评估。结果表明,呼和浩特段的发震危险性高于毕克齐段,在未来100年均具有较高程度的发震危险性,其潜在地震的最大震级均为M_S7.2。  相似文献   

2.
重庆市主要构造地震危险性评价   总被引:2,自引:2,他引:0  
以重庆市活断层探测资料为基础,通过对该工作区的地震构造、地震活动性、构造应力场与形变场的分析,综合判定出目标区未来可能发生地震的最大震级为5.5≤MS≤6.0.尝试将地震空间光滑模型应用到弱活动区城市活断层地震危险性评价中,充分利用历史强震和微震目录,分别建立了2种地震空间光滑模型,并采用泊松模型,对目标区未来百年的地震危险性(发震概率)进行了定量分析.结果表明:单条断裂发震概率值较低,未来发生5.5级以上破坏性地震的可能性较小.  相似文献   

3.
断裂地震地表断错危险性评价   总被引:6,自引:1,他引:6       下载免费PDF全文
引入地震断错危险性概念 ,用概率表示发生断错的可能性大小 ,断错危险性涉及到地震危险性和断错发生与分布特点。断错危险性的表达式为 :P =P1×P2 ×P3,式中 ,P表示断错危险性 ;P1表示地震发生的危险性 ;P2 指不同震级条件下地表断错出现的概率 ;P3为断错量值分布概率。以中国和世界地表地震断错资料为基础 ,建立震级 -断错概率指数P2 和断错幅度及其分布概率指数 ,包括幅值及其分布、宽度和覆盖层厚度影响等指数P3,为地表断错危险性量化评估奠定了基础  相似文献   

4.
交城断裂带北段最大潜在地震发震概率评估1   总被引:1,自引:1,他引:0  
基于太原市目标区交城断裂带的定量研究,特别是对活动断裂上的古地震资料进行的系统、详细的分析与总结,建立了反映该断裂地震地质特点和运动学属性的复发模式和概率模型.引入震级-地表破裂长度、震级-震源破裂长度、震级-断层破裂面积以及震级-地震矩的经验关系进行震级估计,最后进行综合评估以确定交城断裂带北段潜在地震的最大震级.复发模式的建立兼顾了泊松和准周期两种模式,利用专家意见法组合相应的Poisson模型和BPT模型,计算活动断裂最大潜在地震的复发概率.结果表明,交城断裂带北段潜在地震最大震级为Ms7.2级,而未来50a、100a、200a发生Ms7.2级地震的概率分别为2.1%、4.0%和7.9%.  相似文献   

5.
6~7级地震地表位错量往往很小甚至不断错地表,其发震断裂很容易被误判为非全新世活动断裂而导致其未来强震危险性被忽视.对此,文中特提出未来可能发生6~7级地震的地表弱活动断裂类型.甄别地表弱活动断裂是6~7级地震中长期预测技术的关键,技术要点是:在目标断裂所属构造系统的发震能力判定基础上,构建起目标断裂与同一构造背景中具历史地震记载或古地震地质记录的活动断裂之间的某种联系.实际案例解析结果表明,同一级次相似构造、同一构造系统不同孕震构造单元,以及特定构造过程中不同阶段构造级次的类比,是地表弱活动断裂6~7级地震中长期预测较为有效的技术方法.昆明市普渡河-西山断裂、龙门山断裂带北段汉中盆地活动构造系和南段大川-双石断裂为地表弱活动断裂,潜在震级6.5~7.0,陇县-宝鸡断裂带的桃园-龟川寺、固关-虢镇以及陇县-岐山-马召断裂潜在震级依次为6.0 ~6.5、6.5 ~7.0、7.5级左右.  相似文献   

6.
宿松—枞阳断裂最新活动时代及未来地震危险性研究   总被引:2,自引:0,他引:2  
宿松—枞阳断裂卫星影像清晰,是一条对构造、地貌、中新生代盆地有着控制意义的断裂。本文对该断裂所处的区域地震地质构造背景进行了分析,结合断裂的发育历史,选择典型剖面,对断裂的最新活动特征进行调查。根据野外地质考察和断裂沿线地震活动统计结果,对断裂未来的地震危险性进行了定量评估。分析认为,该断裂晚第四纪以来仍然有所活动,但活动强度已减弱,未来可能发生无地表位错的中强地震,最大震级综合判定为M5.5。  相似文献   

7.
火山活动区内的地震活动有其特殊性与复杂性。针对我国第四纪典型火山区的火山活动及地震活动特征进行了分析总结,认为第四纪火山区内的地震活动的最大震级不高于6.5级,且火山区内的地震活动强度相对其周边地区来说要弱,这表明火山活动区不利于积累大的弹性应变能,其地壳内岩浆房的存在,可能限制了地壳岩石的孕震能力,从而使火山区无强震发生,火山区内活动断裂的活动主要表现在作为深部岩浆的上涌通道,故对火山区的未来地震危险性评价方面要有所区别。同时由于中强地震多发生在火山区的外部边缘,因此我们要特别注意火山外缘地区的中强地震活动,特别是加强对位于火山外缘地区的活动断裂的研究。  相似文献   

8.
中国大陆活动地块边界带最大震级分布特征研究   总被引:3,自引:0,他引:3  
中国大陆活动地块边界带是强震活动的集中带,也是地震预测研究与防灾减灾的主要目标区,而最大地震震级是描述区域地震活动性的一个基本参数,被广泛应用于地震危险性分析研究中,因此有必要开展各活动地块边界带最大震级分布特征研究.本文利用广义极值(GEV)分布对各边界带作极值统计分析,对于分布参数进行估计,比较极值分布99%分位数和b值截距法最大震级、历史最大震级,并计算各震级水平下地震平均复发周期与发震次数,探讨活动地块各边界带未来强震活动的危险性.  相似文献   

9.
在收集整理最新取得的柴达木盆地南、北中央断裂物、化探资料的基础上, 分析了这两条断裂的构造活动特征及其未来发生地震的危险性并粗略计算了各断层 段发生上限震级地震的地表位移量以供工程界参考。  相似文献   

10.
在甘肃省陇南市活断层探测与地质填图研究的基础上,归纳了开展地震危险性评估所需的主要活动断裂的基本活动性参数;采用震级—破裂尺度关系、震级—频度关系等方法评估了陇南市相关断裂(带)的潜在最大震级和平均复发间隔;利用时间相依的地震潜势概率模型和泊松分布模型评估了各断裂或断层小区在未来50、100、200年内发生破坏性地震的概率。同时利用b值空间图像扫描的方法给出了研究区的b值图像,分析了高应力区的地震危险性。通过对以上结果的综合分析,结果表明盖山—迭山断裂或光盖山—迭山断层小区的西端表现为高应力累积区,且发生破坏性地震的概率较高,是未来危险程度较高的断裂段。  相似文献   

11.
以《中国地震活动断层探测技术系统技术规程》为依据,结合沈阳、抚顺的实际情况,设计了沈阳市活断层探测的思路。沈阳市活断层探测划分为沈阳、抚顺两个目标区,确定沈阳目标区6条、抚顺目标区2条共8条断裂为目标断层。活断层探测实际上包括初查与目标断层地震危险性评价、详查与主要目标断层地震危害性评价两大阶段的工作内容,具体按照初查阶段目标断层的综合探测、深部地震构造环境探测、目标断层地震危险性综合评价、主要目标断层详细探测、地震危害性评价及活断层信息管理系统建设等几个步骤实施。目标断层的探测手段选取地球化学、地球物理(浅层地震、多道直流电法和探地雷达等)、钻孔探测等,同时结合高分辩率遥感、地震地质调查等方法,各种探测方法和手段根据其探测精度和适宜性分别应用于初查、详查等不同的探测阶段中,探测技术参数的选取在不同阶段也具有差异性,目的是为了实现各个阶段的探测目标。  相似文献   

12.
孙丽娜  齐玉妍  金学申 《地震》2017,37(2):147-156
河北是华北地区乃至中国大陆东部地区地震活动最为活跃的地区之一, 构造背景复杂, 断层发育。 随着全省11个城市活断层探测与地震危险性评价项目的推进, 若干科研课题的研究, 地质构造资料逐步积累, 晚更新世以来的断层资料得到进一步更新。 如何评估这些活动断层上的最大潜在地震震级及危险性是地震中长期预测中较为重要的一个问题。 本文采用闻学泽等提出的潜在地震最大震级评估模型, 对河北地区晚更新世以来的活动断层进行断层小区划分, 建立了断层小区内最大地震震级Mmax与震级频度关系at/b值之间的经验关系, 并利用公式外推获得断层小区内的推测潜在震级上限值。 另外, 本文用强震等待时间的指数分布关系式计算了部分断层小区未来的中强地震发震概率。  相似文献   

13.
五峰山-西来桥断裂和丹徒-建山断裂是镇江地区2条主要的NW向断裂,可能与镇江多次破坏性地震相关.文中通过浅层地震勘探和钻孔联合剖面探测方法,对五峰山-西来桥断裂和丹徒-建山断裂的展布特征及第四纪活动性进行了系统研究.五峰山-西来桥断裂在浅层地震剖面上倾向NE,倾角约为60°,断距约为5~9m,以正断活动为主;大路镇场地...  相似文献   

14.
The Qian-Gorlos earthquake, which occurred in the Songliao basin in Jilin Province in 1119 AD, was the largest earthquake to occur in NE China before the 1975 Haicheng earthquake. Based on historical records and surface geological investigations, it has been suggested previously that the earthquake epicenter was in the Longkeng area. However, other workers have considered the epicenter to be in the Halamaodu area based on the landslides and faults found in this region. No seismogenic structure has yet been found in either of these two regions. We tried to detect active faults in the urban areas of Songyuan City, where the historical earthquake was probably located. One of the aims of this work was to clarify the seismogenic structure so that the seismic risk in the city could be more accurately evaluated. The area was investigated and analyzed using information from remote sensing and topographic surveys, seismic data from petroleum exploration, shallow seismic profiles, exploratory geological trenches on fault outcrops, and borehole data. The geophysical data did not reveal any evidence of faults cutting through Cretaceous or later strata under the Longkeng scarp, which has been suggested to be structural evidence of the Qian-Gorlos earthquake. The continuous fault surfaces on the back edge of terraces in the Halamaodu area stretch for >3.5 km and were probably formed by tectonic activity. However, results from shallow seismic profiles showed that the faults did not extend downward, with the corresponding deep structure being identified as a gentle kink band. A new reverse fault was found to the west of the two suggested epicenters, which presented as a curvilinear fault extending to the west, and was formed by two groups of NE- and NW-trending faults intersecting the Gudian fault. Three-dimensional seismic and shallow seismic data from petroleum exploration revealed its distinct spatial distribution and showed that the fault may cut through Late Quaternary strata. Exploration boreholes and later geomorphological studies provided further proof of this. Based on these results and analysis, the Gudian fault was confirmed as having been an active fault since the Late Quaternary, with the possibility of earthquakes of magnitude >7 in the future. The Qian-Gorlos earthquake was most probably the result of breakage on one or two sections of this 66-km-long fault.  相似文献   

15.
In order to provide a basis for the earthquake resistance protection zoning of Anshan City, westudied the activity of faults. In the study, the synthetic geophysical prospecting techniqueswere used. These techniques include the shallow artificial earthquake method, electric method,geologic radar method, etc., with shallow artificial earthquake sounding as the main means.In the meantime, the data of geophysical prospecting and borehole record of this city werecollected and the methods of field investigation and sample age dating were also used incombination. The results show that there are 5 hidden or semi-hidden faults in Anshon City.Among these faults, Dashitou-Songsantai fault, Ningyuantun fault and Dayangqi fault trendNW, the middle Pleistotene Tanggangzi fault trends NE, while the early Pleistocene or Pre-Quaternary Ertaizi fault trend NW. According to the definition of active faults, none of thesefaults is active. This paper also discussed the cause for the formation of seriously damagedareas in Ans  相似文献   

16.
郑州市断裂最大潜在地震发震概率评价   总被引:1,自引:1,他引:0  
根据“郑州市城市活断层探测与地震危险性评价(二期)”综合目标区断层最大潜在地震判定结果,郑州市近东西向断裂有老鸦陈断裂和上街断裂等.老鸦陈断裂第四纪不活动,上街断裂等可能具有发生5-5.5级地震的能力.为了得到最大地震的发震概率,划分了统计区及潜在震源区,得到了地震活动性参数及空间分布函数.最终得出了郑州市断裂未来50年发生1次5级以上地震的概率为6%,未来100年发生1次5级以上地震的概率为11%.  相似文献   

17.
广东地区断裂安全度的计算   总被引:1,自引:0,他引:1  
以准静态非稳定地震模型为理论依据,采用二维有限元方法与正交设计法,联合反演本世纪以来广东省及其邻近地区的5次强震活动对断裂安全度的影响。进行探讨潜在的地震危险区。结果表明,断裂安全度下降剧烈特别是安全度接近为零的地区具有较大的危险性。阳江地震以后,广东东部的几条北西断裂安全度数值较低,最近期地震危险最突出的地段。此外,珠江三角洲南侧的北东东向断裂与北西向断裂的交汇处也具有一定的潜在地震危险。  相似文献   

18.
徐州活动断层探测项目主要断层活动性研究   总被引:2,自引:0,他引:2  
对徐州市主要可能的发震断层开展了活动性探测及地震危险性评价工作,这对徐州市开展防震减灾工作具有重大意义.根据前人资料,分析了威胁徐州市区安全的主要5条隐伏断层,它们分别为幕集-刘集断裂、不老河断裂、废黄河断裂、班井断裂和邵楼断裂.同时根据徐州市活动断层探测项目的要求,针对这5条主要断层开展了浅层地震勘探、钻孔联合剖面探测、野外地震地质调查等相关工作,评价了这5条断层的活动历史、活动性质、规模、展布和地貌特征,及其最新活动时代.结果表明,废黄河断裂最新活动时代为中更新世中期,邵楼断裂最新活动时代为早更新世,这2条断层是目标区具备一定程度发震能力和地震危险性最大的断层.  相似文献   

19.
A strong earthquake with magnitude MS6.2 hit Hutubi, Xinjiang at 13:15:03 on December 8th, 2016(Beijing Time). In order to better understand its mechanism, we performed centroid moment tensor inversion using the broadband waveform data recorded at stations from the Xinjiang regional seismic network by employing gCAP method. The best double couple solution of the MS6.2 mainshock on December 8th, 2016 estimated from local and near-regional waveforms is strike:271°, dip:64ånd rake:90° for nodal plane I, and strike:91°, dip:26ånd rake:90°for nodal plane Ⅱ; the centroid depth is about 21km and the moment magnitude(MW)is 5.9. ISO, CLVD and DC, the full moment tensor, of the earthquake accounted for 0.049%, 0.156% and 99.795%, respectively. The share of non-double couple component is merely 0.205%. This indicates that the earthquake is of double-couple fault mode, a typical tectonic earthquake featuring a thrust-type earthquake of squeezing property.The double difference(HypoDD)technique provided good opportunities for a comparative study of spatio-temporal properties and evolution of the aftershock sequences, and the earthquake relocation was done using HypoDD method. 486 aftershocks are relocated accurately and 327 events are obtained, whose residual of the RMS is 0.19, and the standard deviations along the direction of longitude, latitude and depth are 0.57km, 0.6km and 1.07km respectively. The result reveals that the aftershocks sequence is mainly distributed along the southern marginal fault of the Junggar Basin, extending about 35km to the NWW direction as a whole; the focal depths are above 20km for most of earthquakes, while the main shock and the biggest aftershock are deeper than others. The depth profile shows a relatively steep dip angle of the seismogenic fault plane, and the aftershocks dipping northward. Based on the spatial and temporal distribution features of the aftershocks, it is considered that the seismogenic fault plane may be the nodal plane I and the dip angle is about 271°. The structure of the Hutubi earthquake area is extremely complicated. The existing geological structure research results show that the combination zone between the northern Tianshan and the Junggar Basin presents typical intracontinental active tectonic features. There are numerous thrust fold structures, which are characterized by anticlines and reverse faults parallel to the mountains formed during the multi-stage Cenozoic period. The structural deformation shows the deformation characteristics of longitudinal zoning, lateral segmentation and vertical stratification. The ground geological survey and the tectonic interpretation of the seismic data show that the recoil faults are developed near the source area of the Hutubi earthquake, and the recoil faults related to the anticline are all blind thrust faults. The deep reflection seismic profile shows that there are several listric reverse faults dipping southward near the study area, corresponding to the active hidden reverse faults; At the leading edge of the nappe, there are complex fault and fold structures, which, in this area, are the compressional triangular zone, tilted structure and northward bedding backthrust formation. Integrating with geological survey and seismic deep soundings, the seismogenic fault of the MS6.2 earthquake is classified as a typical blind reverse fault with the opposite direction close to the southern marginal fault of the Junggar Basin, which is caused by the fact that the main fault is reversed by a strong push to the front during the process of thrust slip. Moreover, the Manas earthquake in 1906 also occurred near the southern marginal fault in Junggar, and the seismogenic mechanism was a blind fault. This suggests that there are some hidden thrust fault systems in the piedmont area of the northern Tianshan Mountains. These faults are controlled by active faults in the deep and contain multiple sets of active faults.  相似文献   

20.
2013年4月20日发生在龙门山南段的芦山MS7.0地震是继发生在龙门山中北段的汶川MS8.0地震之后的又一次强震。本文通过震后地表变形特征、余震分布、震源机制解、石油地震勘探剖面、历史地震数据等资料,结合前人对龙门山南段主干断裂、褶皱构造特征的研究以及野外实地考察,应用活动褶皱及"褶皱地震"的相关理论,初步分析芦山地震的发震构造模式。认为芦山地震为典型的褶皱地震,发震断裂为前山或山前带一隐伏断裂。构造挤压产生的地壳缩短大部分被褶皱构造吸收。认为龙门山南段前缘地区具有活褶皱-逆断层的运动学特征,表明龙门山逆冲作用正向四川盆地内部扩展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号