首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The inflow characteristics to each one of the rudders of single-propeller twin-rudder system are investigated. It is shown that this inflow is not parallel to ship's centerline. This may result in asymmetric maneuvering characteristic of the ship thereby reducing ship's maneuvering performance. For this purpose, a method of installing single-propeller twin-rudder system is proposed. This method is called “virtual zero rudder angle” arrangement. Here, each one of the twin-rudder is set at an angle corresponding to the inflow to the rudder. The improvement in ship's maneuvering characteristics with “virtual zero rudder angle” arrangement is investigated using experiments and numerical simulations for different ship types. It is shown that this arrangement may also improve ship's propulsion performance.  相似文献   

2.
This technical communication is concerned with the design of inland ship-steering autopilots characterized by turning rate regulation rather than heading regulation found on most ocean-going vessel autopilots. The autopilot design is based on the internal model control approach which allows clear connections between the controller structure and that of the ship model to be established. To fully utilize the limited rudder power without introducing the controller wind-up, which may lead to undesirable long transients, an inverse of the rudder saturation (SAT) and slew rate limitation (SRL) is implemented in the controller. Specifically, an inversion by feedback technique is employed by implementing the noninverted dynamics in a local feedback loop. This resolves the difficulty associated with inversion of the SAT and SRL mathematically. Consequently, high turning rate maneuver can be achieved in case of emergency encounters without causing the controller wind-up. This feature is particularly important for inland ships, since unexpected encounters with other ships are quite common and the capability of quick response is vital to ensure safe maneuvers  相似文献   

3.
Mark A. Grosenbaugh   《Ocean Engineering》2007,34(11-12):1532-1542
The dynamic behavior of a towed cable system that results from the tow ship changing course from a straight-tow trajectory to one involving steady circular turning at a constant radius is examined. For large-radius ship turns, the vehicle trajectory and vehicle depth assumed, monotonically and exponentially, the large-radius steady-state turning solution of Chapman [Chapman, D.A., 1984. The towed cable behavior during ship turning manoeuvers. Ocean Engineering 11, 327–361]. For small-radius ship turns, the vehicle trajectory initially followed a corkscrew pattern with the vehicle depth oscillating about and eventually decaying to the steady-state turning solution of Chapman (1984). The change between monotonic and oscillatory behavior in the time history of the vehicle depth was well defined and offered an alternate measure to Chapman's (1984) critical radius for the transition point between large-radius and small-radius behavior. For steady circular turning in the presence of current, there was no longer a steady-state turning solution. Instead, the vehicle depth oscillated with amplitude that was a function of the ship-turning radius and the ship speed. The dynamics of a single 360° turn and a 180° U-turn are discussed in terms of the transients of the steady turning maneuver. For a single 360° large-radius ship turn, the behavior was marked by the vehicle dropping to the steady-state turning depth predicted by Chapman (1984) and then rising back to the initial, straight-tow equilibrium depth once the turn was completed. For small ship-turning radius, the vehicle dropped to a depth corresponding to the first trough of the oscillatory time series of the steady turning maneuver before returning to the straight-tow equilibrium depth once the turn was completed. For some ship-turning radii, this resulted in a maximum vehicle depth that was greater than the steady-state turning depth. For a 180° turn and ship-turning radius less than the length of the tow cable, the vehicle never reached the steady-state turning depth.  相似文献   

4.
波浪作用下缆船拖带系统非线性运动数值模拟   总被引:1,自引:0,他引:1  
朱军  李炜  程虹 《海洋工程》2006,24(3):56-62
基于船舶操纵性运动方程和拖缆的三维动力学运动方程,提出了被拖点位置匹配的方法,建立了拖船—拖缆—被拖船系统整体非线性拖带动力学模型。为了考察被拖船航向稳定性与横向稳性的关系以及波浪载荷作用的影响,被拖船采用水平面四自由度运动方程,并引入了波浪的作用力和力矩。拖船采用PD控制方法较真实地模拟了拖船航向改变的运动过程。对一个拖船—拖缆—被拖船系统(5 000 t的拖船和3 000 t的被拖船)在时域内进行了规则波浪作用下拖带运动的模拟,计算结果表明被拖带船舶在波浪中运动呈现运动稳定、不稳定和临界状态3种可能的特性。根据模拟计算结果,认为波浪中拖带航向稳定是被拖带船舶保持稳性的必要条件。  相似文献   

5.
Propeller modelling in CFD simulations is a key issue for the correct prediction of hull-propeller interactions, manoeuvring characteristics and the flow field in the stern region of a marine vehicle. From this point of view, actuator disk approaches have proved their reliability and computational efficiency; for these reasons, they are commonly used for the analysis of propulsive performance of a ship. Nevertheless, these models often neglect peculiar physical phenomena which characterise the operating propeller in off-design condition, namely the in-plane loads that are of paramount importance when considering non-standard or unusual propeller/rudder arrangements. In order to emphasize the importance of these components (in particular the propeller lateral force) and the need of a detailed propeller model for the correct prediction of the manoeuvring qualities of a ship, the turning circle manoeuvre of a self-propelled fully appended twin screw tanker-like ship model with a single rudder is simulated by the unsteady RANS solver χnavis developed at CNR-INSEAN; several propeller models able to include the effect of the strong oblique flow component encountered during a manoeuvre have been considered and compared. It is emphasized that, despite these models account for very complex and fundamental physical effects, which would be lost by a traditional actuator disk approach, the increase in computational resources is almost negligible. The accuracy of these models is assessed by comparison with experimental data from free running tests. The main features of the flow field, with particular attention to the vortical structures detached from the hull are presented as well.  相似文献   

6.
The unsteady cavity patterns around the gap of the conventional and newly developed semi-spade rudders for marine ships are visualized qualitatively using a high-speed CCD camera. Time-resolved PIV analysis is also performed with the bubble tracers to study the flow behavior over the rudder surface. In addition, pressure measurements are conducted on the rudder surface and inside the gap to find out the flow characteristics around the gap entrance of the rudder. Both the rudders are tested without a propeller wake at the various cavitation numbers and at the rudder deflection angle of −8°θ10°. The strong cavitation patterns around the conventional rudder gap are significantly reduced by adopting a newly developed entrance profile, and a time-resolved velocity field is found to be very effective in catching the vortical cavity flow around the rudder gap. The stagnation point near the gap entrance of the conventional rudder can cause unsteady cavity flow. However, the developed rudder has very stable pressure distribution along the horn surface and decreases the pressure inside the gap because of the modification of the gap entrance. The pressure distribution around the gap of the suction side is closely related to the variation of the rudder deflection angle. The cavitation inception speed is delayed by about 4 knots in the angle range of −5°θ5° by employing the developed profile of the gap entrance.  相似文献   

7.
A prior study attempted to solve the intrinsic problem of a critical collision condition including the slower ship’s dilemma by considering the maneuverability of the own ship and the International Regulations for Preventing Collisions at Sea (COLREGs). The collision ratio proposed in the previous study provided insight into the solution of the intrinsic problem, but it was not suitable as an index to determine the time at which to begin the maneuver to avoid the collision.This paper develops a collision ratio as an index that can be used to determine the time at which to begin the collision avoidance maneuver. The collision ratio is calculated by considering the maneuverability of the own ship, the COLREGs, and three virtual intrusion domains (VIDs). The validity of the inferred collision ratio is then assessed according to the dynamic characteristics of the own ship and the basic knowledge of the collision avoidance algorithm. The results indicate that the proposed collision ratio is suitable for use as a new index to determine the time at which to begin the collision avoidance maneuver.  相似文献   

8.
The use of an unsteady computational fluid dynamic analysis of the manoeuvring performance of a self-propelled ship requires a large computational resource that restricts its use as part of a ship design process. A method is presented that significantly reduces computational cost by coupling a blade element momentum theory (BEMT) propeller model with the solution of the Reynolds averaged Navier Stokes (RANS) equations. The approach allows the determination of manoeuvring coefficients for a self-propelled ship travelling straight ahead, at a drift angle and for differing rudder angles. The swept volume of the propeller is divided into discrete annuli for which the axial and tangential momentum changes of the fluid passing through the propeller are balanced with the blade element performance of each propeller section. Such an approach allows the interaction effects between hull, propeller and rudder to be captured. Results are presented for the fully appended model scale self-propelled KRISO very large crude carrier 2 (KVLCC2) hull form undergoing static rudder and static drift tests at a Reynolds number of 4.6×106 acting at the ship self-propulsion point. All computations were carried out on a typical workstation using a hybrid finite volume mesh size of 2.1×106 elements. The computational uncertainty is typically 2–3% for side force and yaw moment.  相似文献   

9.
The 6 degrees of freedom (DOF) model with a high degree of complexity for capturing ship dynamics is generally able to track the nonlinear and coupling dynamics of ships. However, the 6 DOF model makes challenges in estimating model coefficients and designing the model-based control. Therefore, simplified ship dynamic models within allowed accuracy are essential. This paper simplified the 6 DOF nonlinear dynamic model of ships into two decoupled models including the speed model and the steering model through reasonable assumptions. Those models were tested through maneuvering simulations of a container ship with a 4 DOF dynamic model. Support vector machines (SVM) optimized by the artificial bee colony algorithm (ABC) was used to identify parameters of speed and steering models by analyzing the rudder angle, propeller shaft speed, surge and sway velocities, and yaw rate from simulated data extracted from a series of maneuvers made by the container ship. Comparisons with the first order linear and nonlinear Nomoto models show that the simplified nonlinear steering model can capture more complicated dynamics and performs better. Additionally, comparisons among three different parameter identification methods demonstrate similar identification results but the different performance involving the applicability and effectiveness. SVM optimized by ABC is relatively convenient and effective for parameter identification of ship simplified dynamic models.  相似文献   

10.
The dynamic response of a towed cable system to ship maneuver is parametrically simulated. Three dimensionless parameters influence on towed cable system maneuverability is investigated. They are ratio of total length to turning radius R/L, ratio of cable mass to vehicle mass σ, and ratio of mass unit length to hydrodynamic force w/r. An oscillatory motion of towed vehicle is found in simulation of spiral towed courses. Features of this oscillation in different spiral courses are compared. The sharp turns, gradual turns and their transient states of towed cable dynamics for different course directions are discussed extensively. According to the characters of transient states and horizontal trajectories evolution of maneuvered cable system, the dynamic behaviors can be divided into three situations in Fig. 8 turning maneuvers. The behavior of towed cable system during a zigzag turning course is simulated in the end. Two ingredients of heave motion are found during small ratio of turning radii to length in this course. The primary damp to initial turning becomes weak and the response to alternative turns plays a more and more important role. The damping properties of the transient behavior in different maneuvers show a periodical invariance to σ during some turning maneuvers.  相似文献   

11.
12.
This paper describes how simplified auxiliary models—metamodels—can be used to create benchmarks for validating ship manoeuvring simulation models. A metamodel represents ship performance for a limited range of parameters, such as rudder angles and surge velocity. In contrast to traditional system identification methods, metamodels are identified from multiple trial recordings, each containing data on the ship’s inherent dynamics (similar for all trials) and random disturbances such as environmental effects and slightly different loading conditions. Thus, metamodels can be used to obtain these essential data, where simple averaging is not possible. In addition, metamodels are used to represent a ship’s behaviour and not to obtain physical insights into ship dynamics. The experimental trials used for the identification of metamodels can be found in in-service recorded data. After the metamodel is identified, it is used to simulate trials without substantial deviations from the ship state parameters used for the identification. Subsequently, the predictions of the metamodels are compared with the predictions of a tested manoeuvring simulation model. We present two case studies to demonstrate the application of metamodels for moderate turning motions of two ships.  相似文献   

13.
The lift force and turning moment acting on a model towed obliquely to the direction of motion have been measured. Two models were used; one of them was tested fitted with and without a rudder. These measurements were used to determine the magnitude of the lift coefficient and the point of application of the transverse force acting on the model. The data were then used to determine the lift component of the roll damping moment. It has been found that the equivalent linear damping coefficient due to lift is a nonlinear function of the forward speed of the ship.  相似文献   

14.
The large roll motion of ships sailing in the seaway is undesirable because it may lead to the seasickness of crew and unsafety of vessels and cargoes, thus it needs to be reduced. The aim of this study is to design a rudder roll stabilization system based on Radial Basis Function Neural Network (RBFNN) control algorithm for ship advancing in the seaway only through rudder actions. In the proposed stabilization system, the course keeping controller and the roll damping controller were accomplished by utilizing modified Unscented Kalman Filter (UKF) training algorithm, and implemented in parallel to maintain the orientation and reduce roll motion simultaneously. The nonlinear mathematical model, which includes manoeuvring characteristics and wave disturbances, was adopted to analyse ship’s responses. Various sailing states and the external wave disturbances were considered to validate the performance and robustness of the proposed roll stabilizer. The results indicate that the designed control system performs better than the Back Propagation (BP) neural networks based control system and conventional Proportional-Derivative (PD) based control system in terms of reducing roll motion for ship in waves.  相似文献   

15.
A semi-analytical approach to free dry and wet vibration of a trapezoidal, 2-way tapered, pivoted hollow spade rudder is presented. The rudder is modeled as a hollow Kirchhoff’s plate, with a NACA0018 profile chord section. The rudder pivot is modeled as a combination of a translational spring and a rotational spring. The span-wise and chord-wise non-uniform beam vibration is first analyzed by the Rayleigh-Ritz method, to establish the non-uniform beam modeshapes, which act as admissible functions to the Galerkin’s method for plate vibration. Eigenvalue analysis generates the plate natural frequencies and the plate modeshapes. Alternately, uniform beam modeshapes themselves are used as admissible functions into the Galerkin’s method. Frequencies are analyzed for various pivot positions, taper ratios, and NACA sections. For the wet vibration, constant strength source distribution technique is used to generate the added mass of a 2D aerofoil. Also, 3D panel method is used to generate the modal added masses, and hence the wet natural frequencies. The added mass coefficient is generated for various aerofoil fineness ratios, pivot fixities, taper ratios, aspect ratios.  相似文献   

16.
A ship optimal trajectory planning method based on the dynamic model of the ship is presented. First a mathematical modular model is introduced for describing the non-linear dynamics of the ship. Then the problem of optimal trajectory planning is discussed. The trajectory is obtained through the optimization of a time-energy criterion, taking into account constraints on the steering system, environment, non-linearities, and non-convexity of the state space equations. The discrete augmented Lagrangian approach is used to compute the optimal constrained controller. The method was programmed on a HP700 workstation. This approach was applied to automatic ship berthing maneuver  相似文献   

17.
船舶的微生物腐蚀与防护技术*   总被引:2,自引:0,他引:2  
王毅  张盾 《海洋科学集刊》2016,51(51):58-68
海洋环境中的微生物腐蚀已被公认为是海洋工程金属构筑物的腐蚀破坏的重要形式。航行在海洋中的船舶不仅受到海水腐蚀的影响,各个部件还会受到微生物腐蚀的影响。严重的微生物腐蚀会导致管路阻塞、部件失效和腐蚀穿孔,不仅影响船舶设备正常运行,也严重威胁船舶安全。本文系统分析了船舶微生物腐蚀发生的位点和危害、不同位点的腐蚀微生物群落结构特征、船舶材料的微生物腐蚀以及不同防护技术的适用范围,并在此基础上提出对船舶微生物腐蚀研究工作的建议。  相似文献   

18.
Two computations of the KCS model with motions are presented. Self-propulsion in model scale free to sink and trim are studied with the rotating discretized propeller from the Hamburg Model Basin (HSVA) at Fr = 0.26. This case is particularly complex to simulate due to the close proximity of the propeller to the rudder. The second case involves pitch and heave in regular head waves. Computations were performed with CFDShip-Iowa version 4.5, a RANS/DES CFD code designed for ship hydrodynamics. The self-propulsion computations were carried out following the procedure described in Carrica et al. [1], in which a speed controller is used to find the propeller rotational speed that results in the specified ship velocity. The rate of revolutions n, sinkage, trim, thrust and torque coefficients KT, KQ and resistance coefficient CT(SP) are thus obtained. Comparisons between CFD and EFD show that the rate of revolutions n, thrust and torque coefficients KT and KQ have higher prediction accuracies than sinkage and trim. For the simulation of pitch and heave in head waves, the geometry includes KCS hull and rudder under three conditions with two Froude numbers and three wave length and amplitude combinations. 0th and 1st harmonic amplitudes and 1st harmonic phase are computed for total resistance coefficient CT, heave motion z and pitch angle θ. Comparisons between CFD and EFD show that pitch and heave are much better predicted than the resistance. In both cases comparisons with simulations by other authors presented at the G2010 CFD Workshop [2] using different CFD methodologies are included.  相似文献   

19.
SAR卫星组网观测技术与海洋应用研究进展   总被引:1,自引:0,他引:1  
李凉海  刘善伟  周鹏  万勇 《海洋科学》2021,45(5):145-156
SAR卫星的组网观测,较之于单卫星工作方式,不仅能够提高观测频率,还能挖掘SAR的多模式探测能力。本文介绍了SAR卫星组网的遥感观测技术发展现状,并总结了基于卫星组网的海洋动力环境监测和海上目标监测研究进展。在海洋动力环境遥感监测方面,多SAR卫星联合获得的同步数据能够互为补充,提高海洋动力环境信息的探测精度;在海上目标遥感监测方面,多卫星联合能够实现从传统的单星目标检测到跟踪的跨越,提高海上动态目标的跟踪监测能力。  相似文献   

20.
海底航道安全与海洋环境相关,随着海洋调查观测技术的进步,航道观测信息增多,有些信息往往难以定量,如何利用这些资料评估海底航道安全日益重要。本研究在综合分析连云港海底航道安全海洋环境主要影响因素的基础上,基于航道地形环境、航道地质环境、海洋动力环境、极端事件对航道安全的影响程度,建立了连云港海底航道安全海洋环境模糊综合评价模型,运用模糊综合评价法对航道安全海洋环境进行了定量评估,依据评价结果,连云港海底航道安全海洋环境定量评价为2.63,等级介于比较安全与一般危险之间,对航道海洋环境立体监测与安全评价体系建设具有实践意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号