首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zhang  Fengshou  Wang  Tuo  Liu  Fang  Peng  Ming  Bate  Bate  Wang  Pei 《Acta Geotechnica》2022,17(8):3535-3551

Oil or gas production from unconsolidated reservoirs could be hampered by sand migration near the wellbore. This paper presents a numerical investigation of production-induced migration of fine sands towards a wellbore drilled in a gap-graded sediment. The solid–fluid interaction is simulated by coupling the discrete element method and the dynamic fluid mesh. With the merit of DEM and a dynamic mesh, the model is capable of naturally capturing particle movements and spatiotemporal variations of hydraulic properties of the sediment at the pore scale. The results show that fine particles are mobilized by radial flow under an imposed hydraulic gradient, and the increase in the hydraulic gradient causes an increase in the fines production. The microscopic pattern of sand migration is clearly visualized through the simulation. The presence of fine particles affects the process of fines migration through two competing mechanisms. Under a low fine content, fine sands mainly serve as the fines production source, and thus, fines production is enhanced as the fine content increases up to a critical value, beyond which fines production is weakened with a further increase in the fine content since the blocking effect gradually dominates. A barrier layer is likely formed during sand migration due to settling and jamming of fine sands at the throats of pores, as fine sands migrate with the radial flow towards the wellbore. This layer is helpful to slow down sand migration, while it could impede production due to reduced permeability in the affected reservoir.

  相似文献   

2.
Yang  Jie  Yin  Zhen-Yu  Laouafa  Farid  Hicher  Pierre-Yves 《Acta Geotechnica》2019,14(6):1615-1627

One of the major causes of instability in geotechnical structures such as dikes or earth dams is the phenomenon of suffusion including detachment, transport and filtration of fine particles by water flow. Current methods fail to capture all these aspects. This paper suggests a new modeling approach under the framework of the porous continuous medium theory. The detachment and transport of the fine particles are described by a mass exchange model between the solid and the fluid phases. The filtration is incorporated to simulate the filling of the inter-grain voids created by the migration of the fluidized fine particles with the seepage flow, and thus, the self-filtration is coupled with the erosion process. The model is solved numerically using a finite difference method restricted to one-dimensional (1-D) flows normal to the free surface. The applicability of the model to capture the main features of both erosion and filtration during the suffusion process has been validated by simulating 1-D internal erosion tests and by comparing the numerical with the experimental results. Furthermore, the influence of the coupling between erosion and filtration has been highlighted, including the development of material heterogeneity induced by the combination of erosion and filtration.

  相似文献   

3.
大量低产低效井严重阻碍我国煤层气产业发展,其中,煤粉沉降导致的裂缝堵塞、管柱结块是气井稳产时间短、产气量降低甚至不产气的重要因素。系统梳理国内外煤层气井产出煤粉物质组成、生成机理、悬浮运移和产出控制等研究最新进展,总结煤粉凝聚–沉降及分散行为控制机理及关键问题,提出研究展望。煤粉问题伴随煤层气勘探开发全过程,涉及地质选区评价、工程压裂施工和排采管理控制的各个方面。煤粉包括因煤体结构破坏生成的原生煤粉和工程施工形成的次生煤粉,在气井产出中以有机碎屑和黏土矿物组成的混合物为主,部分样品黏土矿物含量高。煤粉悬浮运移受控于储层条件下煤岩结构和表面性质、nm~μm级煤粉颗粒的相互作用、有机质和黏土矿物的作用、通道内的气水流动等因素。煤粉能够适度稳定产出是排采管控的关键,涉及地层水环境对煤粉表面润湿性、表面电性和空间位阻效应的影响及作用机制,以及分散剂离子加入对煤层气的解吸和渗流能力影响等。围绕煤粉“黏附–润湿–凝聚–沉降全过程开展实验模拟”和“煤粉分散稳定性优化及流动实验”研究,以及煤粉理化性质精细表征、凝聚沉降机理分析和分散行为界定,提出适合煤粉稳定运移控制的流速,形成保持煤粉悬浮产出的基础性依据,为保障煤层气–水–煤粉稳定高效产出提供理论和技术支撑。   相似文献   

4.
Facilitation of contaminant transport in porous media due to the effect of indigenous colloidal fine materials has been widely observed in laboratory and field studies. It has been explained by the increase in the apparent solubility of low soluble contaminants as a result of their adsorption on the surface of fine particles. Attachment of colloidal fine particles onto the rock surface could be a promising remedy for this challenge. In this experimental study, the effect of five types of metal oxide nanoparticles, γ-Al2O3, ZnO, CuO, MgO, and SiO2, on suspension transport was investigated. In several core flooding tests, different nanofluids were used to saturate the synthetic porous media. Subsequently, after sufficient soaking time, the suspension was injected into the treated porous media. Analysis of the effluent samples’ concentration by Turbidimeter apparatus demonstrated that the presence of nanoparticles on the rock surface resulted in a significant reduction in fine concentrations in the effluent samples compared with non-treated media; ZnO and γ-Al2O3 demonstrated the best scenarios among the tests performed in this study. In order to characterize the surface properties of the treated porous media, the zeta potential of the surface was measured. Results showed that the treated porous media acts as a strong adsorbent of fine particles, which are the main carrier of contaminants in porous media. These findings were quantitatively confirmed by calculation of the total energy of interaction between the fine particles and rock surface using the Derjaguin–Landau–Verwey–Overbeek theory.  相似文献   

5.
徐俊 《岩土工程技术》2005,19(5):233-236
在土-土工织物组成的反滤系统中,如果被保护土是非稳定土,则在渗流作用下被保护土中会有大量细粒土发生移动,很容易在织物与土层的交界面上形成一层薄滤饼,滤饼的厚度及渗透系数成为影响系统反滤效果的重要因素。根据多孔介质中的渗流与沉积理论,研究了在非稳定土体渗滤过程中,随着细粒土的迁移滤饼的厚度与织物厚度及渗透系数、外部压力等因素之间的关系,并给出了解析表达式。  相似文献   

6.
Rainfall-infiltration-induced fines migration within soil slopes may alter the local porosity and hydraulic properties of soils, and is known to be a possible cause of the failure of slopes. To investigate the intrinsic mechanisms, a mathematical formulation capable of capturing the main features of the coupled unsaturated seepage and fines migration process has been presented. Within the formulation, an unsaturated erodible soil is treated as a three-phase multi-species porous medium based on mixture theory; mass conservation equations with mass exchange terms together with the rate equations controlling fines erosion and deposition processes are formulated as the governing equations and are solved by the FEM method. The influences of both the fines detachment and deposition on the stability of slopes under rainfall infiltration have been investigated numerically. The results show that depending on whether the fines move out or get captured at pore constrictions, both desired and undesired consequences may arise out of the fines migration phenomenon. It is suggested that more attention should be paid to those slopes susceptible to internal erosion whose safety analysis cannot be predicted by traditional methods.  相似文献   

7.
One of the major causes of instability in geotechnical structures such as dikes or earth dams is internal erosion, an insidious process that occurs over a long period of time. Research on this topic is still fairly new and much more needs to be understood in order to solve the problems posed by this phenomenon. This paper proposes a hydromechanical model based on porous continuous medium theory to assess how internal erosion impacts the safety of earthen structures. The saturated soil is considered as a mixture of four interacting constituents: soil skeleton, erodible fines, fluidized fine particles, and fluid. The detachment and transport of the fine particles are described by a mass exchange model between the solid and the fluid phases. An elastoplastic constitutive model for sand-silt mixtures has been developed to monitor the effect of the evolution of both porosity and fines content induced by internal erosion upon the behavior of the soil skeleton. The model has been numerically solved with the finite element method. It has then been applied to the specific case study of a dike foundation subjected to internal erosion induced by the presence of a karstic cavity beneath the alluvium layer. The numerical results show the onset of erosion, the time-space evolution of the eroded zone, and the hydromechanical response of the soil constituting the dike, all of which highlights the effects of the cavity location, the erosion rate, and the fines content.  相似文献   

8.
This paper presents a numerical model for simulating free surface flow in porous media with spatially varying porosity. The governing equations are based on the mixture theory. The resistance forces between solid and fluid is assumed to be nonlinear. A multiphase SPH approach is presented to solve the governing equations. In the multiphase SPH, water is modeled as a weakly compressible fluid, and solid phase is discretized by fixed solid particles carrying information of porosity. The model is validated by several numerical examples including seepage through specimen, fast flow through rockfill dam and wave interaction with porous structure. Good agreements between numerical results and experimental data are obtained in terms of flow rate and evolution of free surface. Parameter study shows that (1) the nonlinear resistance law provides more accurate results; (2) particle size and porosity have significant influence on the porous flow.  相似文献   

9.
A laboratory study was undertaken to determine the transport and deposition rate of suspended particles in columns of saturated porous media (gravel and glass beads), where the porous media were subjected to steady-state flow. Silt particles with a mode of 14 μm diameter (used as the suspended particles) and fluorescein (as the conservative tracer) were injected into the columns in short pulses. The breakthrough curves were competently described with the analytical solution of a convection–dispersion equation with a first-order deposition rate. The experiments were performed using different flow rates. The suspended particle size distribution, the porous media, and the flow rates themselves were the main factors retained in this study to investigate the mechanisms governing the transport and deposition kinetics in detail. The results showed the existence of a flow rate, beyond which suspended particles travel faster than the conservative tracer. A decrease of the deposition rate of suspended particles beyond a critical flow velocity was also observed. Such behaviour led to consideration of the couple hydrodynamic-gravity forces at high flow rates. As the hydrodynamic force increases, particle deposition rates are reduced due to the effect of hydrodynamic forces inhibiting the deposition.  相似文献   

10.
This study experimentally investigates the effect of particle size, particle concentration and flow velocity on the migration of suspended particles of size 1.02–47 μm in porous media. The results show that at the same flow velocity, the peak values of the breakthrough curves decrease and corresponding pore volumes increase slightly with increasing particles size. The migration velocity of smaller suspended particles is even greater than water flow velocity, which is attributed to the size exclusion effect. With increase of the injected particle concentration, the deposition coefficients of small single particles increase at first and then tend to a steady state or even decrease slightly, explained by the maximum retention concentration. The dispersivity of small particles decreases with increasing velocity. However, at a high flow velocity, the hydrodynamic dispersivity becomes increasingly dominant with the increase of particle size. The deposition coefficients for large-sized particles are higher than those for small-sized particles, which is attributed to considerable mass removal due to straining. An analytical solution, considering the release effect of sorbed particles, is developed to account for the one-dimensional flow and dispersive effect using a source function method, and then three transport parameters—dispersivity, deposition coefficient and release coefficient—are fitted using the experimental results. Finally, suspended-particle migration is predicted by the proposed model for short-time constant-concentration injection and repeated three-pulse injection. Overall, particle size has a significant effect on the seepage migration parameters of suspended particles in porous media such as the particle velocity, dispersivity and deposition coefficient.  相似文献   

11.
Retention of surface-modified nanoscale zero-valent iron (NZVI) particles in the porous media near the point of injection has been reported in the recent studies. Retention of excess particles in porous media can alter the media properties. The main objectives of this study are, therefore, to evaluate the effect of particle retention on the porous media properties and its implication on further NZVI particle transport under different flow conditions. To achieve the objectives, a one-dimensional transport model is developed by considering particle deposition, detachment, and straining mechanisms along with the effect of changes in porosity resulting from retention of NZVI particles. Two different flow conditions are considered for simulations. The first is a constant Darcy’s flow rate condition, which assumes a change in porosity, causes a change in pore water velocity and the second, is a constant head condition, which assumes the change in porosity, influence the permeability and hydraulic conductivity (thus Darcy’s flow rate). Overall a rapid decrease in porosity was observed as a result of high particle retention near the injection points resulting in a spatial distribution of deposition rate coefficient. In the case of constant head condition, the spatial distribution of Darcy’s velocities is predicted due to variation in porosity and hydraulic conductivity. The simulation results are compared with the data reported from the field studies; which suggests straining is likely to happen in the real field condition.  相似文献   

12.
戴北冰  杨峻 《岩土力学》2015,36(Z1):619-623
针对含细颗粒砂土的反常剪切行为,开展了双轴剪切试验的数值模拟,从宏细观角度分析了其反常剪切行为发生的内在机制。数值模拟结果表明,增加围压能提高含细颗粒砂土的抗剪切液化能力,该反常行为的根本原因在于围压上升使得粗细颗粒更有效地参与了力链传递,增加了颗粒间的接触,增强了土体的密实度。细颗粒在土骨架中的移动对砂土的液化起着至关重要的作用,而粗颗粒仅起次要作用。研究表明,细颗粒在剪切过程中会持续从有效土骨架中移出成为无效颗粒,而部分粗颗粒也因失去细颗粒的支撑作用会脱离土骨架,直至试样最终液化。细颗粒一般参与土骨架中的弱力链,而粗颗粒则一般参与强力链,导致细颗粒较粗颗粒更容易在土骨架中移动。  相似文献   

13.
为探讨天然黏土矿物及有机质对纳米乳化油在多孔介质中迁移滞留的影响,本文选取高岭石和蒙脱石这两种黏土矿物以及有机质的典型代表腐殖酸,开展了单一矿物、有机质及有机矿质复合物对纳米乳化油的吸持批实验研究,并运用比表面积全分析、扫描电镜(SEM)、傅里叶红外光谱(FTIR)、X射线衍射(XRD)等技术手段探讨了吸持机理。实验结果表明,介质对纳米乳化油的吸持均符合Freundlich模型;单一矿物及腐殖酸对纳米乳化油的吸持能力表现为:蒙脱石>腐殖酸>高岭石,有机矿质复合样品的吸持能力表现为:蒙脱石-腐殖酸>高岭石-腐殖酸,且均大于其对应的单一样品,出现了“1+1>2”的现象,表明介质组成越复杂,对纳米乳化油的吸持滞留程度越大。进一步分析证实,纳米乳化油主要通过氢键和疏水作用吸持在矿物和腐殖酸表面,表面结构性质是高岭石和蒙脱石吸持过程中的主导因素,因此蒙脱石具有更强的吸持能力,而腐殖酸的吸持主要通过颗粒间聚集作用来实现;对于复合样品,吸持主要通过氢键、配体交换和疏水作用结合来实现。腐殖酸与矿物的复合会增加吸持位点并且增强矿物表面疏水性,从而促进吸持。腐殖酸与纳米乳化油的共吸...  相似文献   

14.
Won  Jongmuk  Lee  Junghwoon  Burns  Susan E. 《Acta Geotechnica》2021,16(2):421-432

Understanding particle transport in porous media is critical in the sustainability of many geotechnical and geoenvironmental infrastructure. To date, the determination of the first-order rate coefficients in the advection–dispersion equation for simulating attachment and detachment of particles in saturated porous media typically has been relied on the result of laboratory-scale experiments. However, to determine attachment and detachment coefficients under varied hydraulic and geochemical variables, this method requires a large experimental matrix because each test provides only one set of attachment and detachment coefficients. The work performed in this study developed a framework to upscale the results obtained in pore-scale modeling to the continuum scale through the use of a pore network model. The developed pore network model incorporated variables of mean particle size, the standard deviation of particle size distribution, and interparticle forces between particles and sand grains. The obtained retention profiles using the pore network model were converted into attachment coefficients in the advection–dispersion equation for long-term and large-scale simulation. Additionally, by tracking individual particles during and after the simulation, the pore network model introduced in this study can also be employed for modeling the clogging phenomenon, as well as fundamental investigation of the impact of particle size distribution on particle retention in the sand medium.

  相似文献   

15.
GLADSTONE  PHILLIPS  SPARKS 《Sedimentology》1998,45(5):833-843
Laboratory experiments show that the propagation and sedimentation patterns of particle-laden gravity currents are strongly influenced by the size of suspended particles. The main series of experiments consisted of fixed-volume releases of dilute mixtures containing two sizes of silicon carbide particles (25 μm and 69 μm mean diameter) within a 6-m flume. Polydisperse experiments involved mixtures of five different particle sizes and variation of the amounts of the finest and coarsest particles. All variables apart from the initial relative proportions of particles were identical in the experiments. The effects of mixing different proportions of fine and coarse particles is markedly non-linear. Adding small amounts of fine sediment to a coarse-grained gravity current has a much larger influence on flow velocity, run-out distance and sedimentation patterns than adding a small amount of coarse sediment to a fine-grained gravity current. The experiments show that adding small amounts of fine particles to a coarse-grained current results in enhanced flow velocities because the fine sediment remains suspended and maintains an excess current density for a much longer time. Thus, the distance to which coarse particles are transported increases substantially as the proportion of fines in the flow is increased. Our experiments suggest that sandy turbidity currents containing suspended fines will be much more extensive than turbidity currents composed of clean sand.  相似文献   

16.
张鹏远  白冰  蒋思晨 《岩土力学》2016,37(5):1307-1316
为了研究孔隙结构和水动力对悬浮颗粒在饱和多孔介质中沉积和迁移特性的影响,对天然硅粉(悬浮颗粒)和荧光素钠(示踪剂)在饱和多孔介质中的渗流迁移特性进行土柱试验,分别得到了5种不同渗流速度(0.033、0.066、0.132、0.199、0.265 cm/s)、两种不同多孔介质(石英砂和玻璃球)的悬浮颗粒和示踪剂全组合下的20条穿透曲线。根据试验结果,研究孔隙结构、渗流速度对饱和多孔介质中颗粒迁移和沉积过程中水动力作用机制、弥散效应、加速效应的影响。研究表明,悬浮颗粒的穿透曲线可以用一阶沉积动力学对流弥散方程的解析解来描述。随着渗流速度的增大,水动力学作用对颗粒出流浓度的影响越来越大,而孔隙结构的影响则相对减弱。同时,存在一个临界渗流速度值。当渗流速度超出该值时,悬浮颗粒迁移要快于示踪剂,而且临界渗流速度对于玻璃球和石英砂两种多孔介质是不同的;其次,在两种介质中,随渗流速度增大,弥散度增加,回收率和回收悬浮颗粒粒径增大,沉积系数先增大后减小。此外,在孔隙比相近的情况下,悬浮颗粒在玻璃球介质中的回收率要大于其在石英砂中的。可见,孔隙结构和渗流速度是影响饱和多孔介质中颗粒输运的重要因素,渗流速度越大,孔隙结构的作用越明显。  相似文献   

17.
赵军  刘泉声  张程远 《岩土力学》2013,34(11):3249-3253
以地下水源热泵井回灌中的物理堵塞问题作为研究背景,建立基于质量平衡方程来模拟多孔介质中颗粒的迁移方程和颗粒的沉积造成孔隙损伤的数学模型。该模型充分考虑了颗粒流动速度修正系数、孔隙率修正系数以及颗粒在孔隙里发生捕获率3个因素;模型的建立考虑孔隙率变化的情况,在物质的迁移和堵塞的过程中,孔隙率的变化往往也是个动态的变化过程;与传统的过滤模型相比,考虑了速度折减系数和流量折减系数后新建模型更加系统、全面。该模型为解决回灌井物理堵塞的室内外试验研究提供理论依据。  相似文献   

18.
揭示煤层气排采储层非饱和流阶段煤粉与气体相互作用机理,对制定排采制度和提高产气量具有重要意义。通过气泡–煤粉微观作用实验装置,系统开展了不同直径大小的气泡对不同粒度和密度煤粉的作用实验,分析了气泡对煤粉运移轨迹和速度的影响及捕获煤粉特征。结果表明,气泡产出能够影响煤粉的运移轨迹,甚至能够捕获煤粉;煤粉通过气泡时会产生3种运动类型:沿着气泡表面运移到气泡底部最后被捕获、沿着气泡表面运移到气泡底部最后脱落及接近气泡时被排斥而轨迹发生偏转。煤粉若被气泡捕捉,则运动速度呈现出减小–增大–减小的变化特征;若未被气泡捕获,速度呈现出减小–增大–减小–增大的变化特征。不同条件下气泡对煤粉的捕获效率高达64.38%~86.64%;在气泡表面最高点附近发生碰撞煤粉被捕获的概率最大,并且随着偏离角度的增大,气泡捕获效率均呈现出逐渐减小的趋势;在相同的碰撞位置下,气泡对煤粉的捕获效率随着煤粉密度、煤粉粒径的增大而减小,随着气泡直径的增大而增大。煤层气产气初期应根据储层的实际导流能力合理控制降压速率,若储层导流能力较强,应加大排采速率,增大气体解吸对煤粉的扰动和捕获作用,促使大量煤粉随地下水或气泡产出;若储层...  相似文献   

19.
Currently, numerical studies at the real scale of an entire engineering structure considering internal erosion are still rare. This paper presents a three-dimensional (3D) numerical simulation of the effects of internal erosion within a linear dike located on a foundation. A two-dimensional (2D) finite element code has been extended to 3D in order to analyze the impact of internal erosion under more realistic hydromechanical conditions. The saturated soil has been considered as a mixture of four interacting constituents: soil skeleton, erodible fines, fluidized fine particles, and fluid. The detachment and transport of the fine particles have been modeled with a mass exchange model between the solid and the fluid phases. An elastoplastic constitutive model for sand-silt mixtures has been developed to monitor the effect of the evolution of both the porosity and the fines content induced by internal erosion upon the behavior of the soil skeleton. An unsaturated flow condition has been implemented into this coupled hydromechanical model to describe more accurately the seepage within the dike and the foundation. A stabilized finite element method was used to eliminate spurious numerical oscillations in solving the convection-dominated transport of fluidized particles. This numerical tool was then applied to a specific dike-on-foundation case subjected to internal erosion induced by a leakage located at the bottom of the foundation. Different failure modes were observed and analyzed for different boundary conditions, including the significant influence of the leakage cavity size and the elevation of the water level at the upstream and downstream sides of the dike.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号