首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The protection and preservation of groundwater resources are compulsory, particularly in the arid and semiarid countries where the waters are scarce. The effects of increasing urbanization, economic development, and agricultural activities, along with the erratic and scarce rainfall, contribute to the quantitative and qualitative deterioration of these resources. This paper attempts to produce groundwater vulnerability and risk maps for the Angad transboundary aquifer using DRASTIC model. The data which correspond to the seven parameters of the model were collected and converted to thematic maps in Geographic Information System environment. The modified DRASTIC map, which is the summation of the DRASTIC index and the network fractures maps, shows two degreed of vulnerability: medium and high. This map is then integrated with a land use map to assess the potential risk of groundwater to pollution in the Angad transboundary aquifer. There are three risk zones that are identified: moderate, high, and very high.  相似文献   

2.
A detailed hydrogeological and hydrochemical study was carried out in Yamuna-Krishni sub-basin which is a part of the vast central Ganga plain. Groundwater is the major source of water supply for agricultural, domestic and industrial uses. The excess use of groundwater has resulted in depletion of water levels. The groundwater quality, too, has deteriorated in areas dominated by industrial activity. This has led to the preparation of a groundwater vulnerability map in relation to contamination. Groundwater vulnerability maps are valuable derivative maps that show, quantitatively or qualitatively, certain characteristics of the sub-surface environment that determine vulnerability of groundwater to contamination. The modified DRASTIC method was used to prepare vulnerability map. The parameters like depth to water, net recharge, aquifer media, soil media, impact of vadose zone, hydraulic conductivity and land use pattern, owing to its bearing on groundwater regime, were considered to prepare vulnerability map. The vulnerability index is computed as the sum of the products of weight and rating assigned to each of the input considered as above. The vulnerability index ranges from 140 to 180, and is classified into four classes i.e. 140–150, 150–160, 160–170 and 170–180 corresponding to low, medium, high and very high vulnerability zones respectively. Using this index, a groundwater vulnerability potential map was generated which shows that 7%, 40% and 53% of the study area falls in low, medium and high to very high vulnerability zones respectively. The map, thus generated, can be used as a tool for protection and management of aquifers from contamination.  相似文献   

3.
Vulnerability assessment for the Gaza Strip, Palestine using DRASTIC   总被引:2,自引:0,他引:2  
The main usefulness of groundwater vulnerability assessment maps is their ability to be an effective preliminary tool for planning, policy, and operational levels of decision-making. DRASTIC is one such assessment method. The DRASTIC index is made up of a calculated sum of products rating and weights for seven hydrogeological parameters that contribute to aquifer vulnerability. With the help of GIS, and based on the available data, maps of DRASTIC parameters were prepared for the Gaza Strip area in a case study. Each map was given a proper rate and a special weight factor developed. The final vulnerability map was obtained as a summation of the seven maps after multiplying each one with the appropriate weight. The vulnerability map was checked against the actual pollution potential in the area and nitrate concentration. The obtained vulnerability map is strongly correlated to known pollution values in the area.  相似文献   

4.
The existing different human activities and planned land uses put the groundwater resources in Jordan at considerable risk. There are evidences suggesting that the quality of groundwater supplies in north Jordan is under threat from a wide variety of point and non-point sources including agricultural, domestic, and industrial. Vulnerability maps are designed to show areas of greatest potential for groundwater contamination on the basis of hydrogeological conditions and human impacts. DRASTIC method incorporates the major geological and hydrogeological factors that affect and control groundwater movement: depth to groundwater (D), net recharge (R), lithology of the aquifer (A), soil texture (S), topography (T), lithology of vadose zone (I), and hydraulic conductivity (C). The main goal of this study is to produce vulnerability maps of groundwater resources in the Yarmouk River basin by applying the DRASTIC method to determine areas where groundwater protection or monitoring is critical. ArcGIS 9.2 was used to create the groundwater vulnerability maps by overlaying the available hydrogeological data. The resulting vulnerability maps were then integrated with lineament and land use maps as additional parameters in the DRASTIC model to assess more accurately the potential risk of groundwater to pollution. The general DRASTIC index indicates that the potential for polluting groundwater is low in the whole basin, whereas the resulting pesticide DRASTIC vulnerability map indicates that about 31% of the basin is classified as having moderate vulnerability, which may be attributed to agricultural activities in the area. Although high nitrate concentrations were found in areas of moderate vulnerability, DRASTIC method did not depict accurately the nitrate distribution in the area.  相似文献   

5.
A DRASTIC-model method based on a geographic information system (GIS) was used to study groundwater vulnerability in Egirdir Lake basin (Isparta, Turkey), an alluvial area that has suffered agricultural pollution. ‘Lineament’ and ‘land use’ were added to the DRASTIC parameters, and an analytic hierarchy process (AHP) method determined the rating coefficients of each parameter. The effect of lineament and land-use parameters on the resulting vulnerability maps was determined with a single-parameter sensitivity analysis. Of the DRASTIC parameters, land use affects the aquifer vulnerability map most and lineament affects it least, after topography. A simple linear regression analysis assessed the statistical relation between groundwater nitrate concentration and the aquifer vulnerability areas; the highest R 2 value was obtained with the modified-DRASTIC-AHP method. The DRASTIC vulnerability map shows that only the shoreline of Egirdir Lake and the alluvium units have high contamination potential. In this respect, the modified DRASTIC vulnerability map is quite similar. According to the modified-DRASTIC-AHP method, the lakeshore areas of Senirkent-Uluborlu and Hoyran plains, and all of the Yalvaç-Gelendost plain, have high contamination potential. Analyses confirm that groundwater nitrate content is high in these areas. By comparison, the modified-DRASTIC-AHP method has provided more valid results.  相似文献   

6.
One of the major causes of groundwater pollution in Hamadan–Bahar aquifer in western Iran is a non-point source pollution resulting from agricultural activities. Withdrawal of over 88% of drinking water from groundwater resources, adds urgency to the studies leading to a better management of water supplies in this region. In this study, the DRASTIC model was used to construct groundwater vulnerability maps based on the “intrinsic” (natural conditions) and “specific” (including management) concepts. As DRASTIC has drawbacks to simulate specific contaminants, we conditioned the rates on measured nitrate data and optimized the weights of the specific model to obtain a nitrate vulnerability map for the region. The performance of the conditioned DRASTIC model improved significantly (R 2 = 0.52) over the intrinsic (R 2 = 0.12) and specific (R 2 = 0.19) models in predicting the groundwater nitrate concentration. Our study suggests that a locally conditioned DRASTIC model is an effective tool for predicting the region’s vulnerability to nitrate pollution. In addition, comparison of groundwater tables between two periods 30 years apart indicated a drawdown of around 50 m in the central plain of the Hamadan–Bahar region. Our interpretation of the vulnerability maps for the two periods showed a polluted zone developing in the central valley requiring careful evaluation and monitoring.  相似文献   

7.
The present work attempts to interpret the groundwater vulnerability of the Melaka State in peninsular Malaysia. The state of groundwater pollution in Melaka is a critical issue particularly in respect of the increasing population, and tourism industry as well as the agricultural, industrial and commercial development. Focusing on this issue, the study illustrates the groundwater vulnerability map for the Melaka State using the DRASTIC model together with remote sensing and geographic information system (GIS). The data which correspond to the seven parameters of the model were collected and converted into thematic maps by GIS. Seven thematic maps defining the depth to water level, net recharge, aquifer media, soil media, topography, impact of vadose zone and hydraulic conductivity were generated to develop the DRASTIC map. In addition, this map was integrated with a land use map for generating the risk map to assess the effect of land use activities on the groundwater vulnerability. Three types of vulnerability zones were assigned for both DRASTIC map and risk map, namely, high, moderate and low. The DRASTIC map illustrates that an area of 11.02 % is low vulnerability, 61.53 % moderate vulnerability and 23.45 % high vulnerability, whereas the risk map indicates that 14.40 % of the area is low vulnerability, 47.34 % moderate vulnerability and 38.26 % high vulnerability in the study area. The most vulnerability area exists around Melaka, Jasin and Alor Gajah cities of the Melaka State.  相似文献   

8.
Groundwater aquifer vulnerability has been assessed by incorporating the major geological and hydrogeological factors that affect and control the groundwater contamination using GIS-based DRASTIC model along with solute transport modeling. This work demonstrates the potential of GIS to derive a vulnerability map by overlying various spatially referenced digital data layers (i.e., depth to water, net recharge, aquifer media, soil media, topography, the impact of vadose zone and hydraulic conductivity) that portrays cumulative aquifer sensitivity ratings in Kishangarh, Rajasthan. It provides a relative indication of groundwater aquifer vulnerability to contamination. The soil moisture flow and solute transport regimes of the vadose zone associated with specific hydrogeological conditions play a crucial role in pollution risk assessment of the underlying groundwater resources. An effort has been made to map the vulnerability of shallow groundwater to surface pollutants of thestudy area, using soil moisture flow and contaminant transport modeling. The classical advection-dispersion equation coupled with Richard’s equation is numerically simulated at different point locations for assessing the intrinsic vulnerability of the valley. The role of soil type, slope, and the land-use cover is considered for estimating the transient flux at the top boundary from daily precipitation and evapotranspiration data of the study area. The time required by the solute peak to travel from the surface to the groundwater table at the bottom of the soil profile is considered as an indicator of avulnerability index. Results show a high vulnerability in the southern region, whereas low vulnerability is observed in the northeast and northern parts. The results have recognized four aquifer vulnerability zones based on DRASTIC vulnerability index (DVI), which ranged from 45 to 178. It has been deduced that approximately 18, 25, 34, and 23% of the area lies in negligible, low, medium and high vulnerability zones, respectively. The study may assist in decision making related to theplanning of industrial locations and the sustainable water resources development of the selected semi-arid area.  相似文献   

9.
In this paper, groundwater aquifer vulnerability map has been developed by incorporating the major geological and hydro-geological factors that affect and control the groundwater contamination using GIS based DRASTIC model. This work demonstrates the potential of GIS to derive a map by overlying various spatially referenced digital data layers that portrays cumulative aquifer sensitivity ratings across the Kathmandu Valley, Nepal, providing a relative indication of groundwater vulnerability to contamination. In fact, the groundwater is the major natural resources in Kathmandu for drinking purpose. The decline in groundwater levels due to the over exploitation and thus extracted water from shallow aquifer has been contaminated by the infiltration of pollutants from polluted river and land surface is continuous and serious. As the demand for water for human and industrial use has escalated and at the same time, the engineering and environmental costs are much higher for new water supplies than maintaining the existing sources already in use. Management of groundwater source and protecting its quality is therefore essential to increase efficient use of existing water supplies. Aquifer vulnerability maps developed in this study are valuable tools for environmental planning and predictive groundwater management. Further, a sensitivity analysis has been performed to evaluate the influence of single parameters on aquifer vulnerability assessment such that some subjectivity can be reduced to some extent and then new weights have been computed for each DRASTIC parameters.  相似文献   

10.
The Río Artiguas basin in central Nicaragua shows a distinctive case of environmental deterioration due to anthropogenic activities. Heavy metals used in gold mining and other wastes are continuously released into the rivers, representing a threat to the water quality. This article aims to evaluate the groundwater intrinsic vulnerability in the Río Artiguas basin and to provide information for sustainable use of water resources. The DRASTIC and GOD methods were used to analyse the relative pollution potential within the basin. DRASTIC was modified to include the degree of influence that geological structures have on the vulnerability. Moderate vulnerability areas cover most of the basin along stream valleys and lowlands, increasing downstream in the basin. The resulting vulnerability maps show that the limited groundwater resources are susceptible to surface water pollution as high vulnerability areas converge along the river valleys.  相似文献   

11.
Accurate identification of vulnerability areas is critical for groundwater resources protection and management. The present study employed the modified DRASTIC model to assess the groundwater vulnerability of Jianghan Plain, a major farming area in central China. DRASTICL model was developed by incorporating the land use factor to the original model. The ratings and weightings of the selected parameters were optimized by analytic hierarchy process (AHP) method and genetic algorithms (GAs) method, respectively. A combined AHP–GAs method was proposed to further develop this methodology. The unity-based normalization process was employed to categorize the vulnerability maps into four types, such as very high (>0.75), high (0.5–0.75), low (0.25–0.5), and very low (<0.25). The accuracy of vulnerability mapping was validated by Pearson’s correlation coefficient between vulnerability index and the nitrate concentration in groundwater and analysis of variance F statistic. The results revealed that the modified DRASTIC model had a large improvement over the conventional model. The correlation coefficient increased significantly from 41.07 to 75.31% after modification. Sensitivity analysis indicated that the depth to groundwater with 39.28% of mean effective weight was the most critical factor affecting the groundwater vulnerability. The developed vulnerability model proposed in this study could provide important objective information for groundwater and environmental management at local level and innovation for international researchers.  相似文献   

12.
Groundwater contamination from intensive fertilizer application affects conservation areas in a plain. The DRASTIC model can be applied in the evaluation of groundwater vulnerability to such pollution. The main purpose of using the DRASTIC model is to map groundwater susceptibility to pollution in different areas. However, this method has been used in various areas without modification, thereby disregarding the effects of pollution types and their characteristics. Thus, this technique must be standardized and be approved for applications in aquifers and particular types of pollution. In this study, the potential for the more accurate assessment of vulnerability to pollution is achieved by correcting the rates of the DRASTIC parameters. The new rates were calculated by identifying the relationships among the parameters with respect to the nitrate concentration in groundwater. The methodology was implemented in the Kerman plain in the southeastern region of Iran. The nitrate concentration in water from underground wells was tested and analyzed in 27 different locations. The measured nitrate concentrations were used to associate and correlate the pollution in the aquifer to the DRASTIC index. The Wilcoxon rank-sum nonparametric statistical test was applied to determine the relationship between the index and the measured pollution in Kerman plain. Also, the weights of the DRASTIC parameters were modified through the sensitivity analysis. Subsequently, the rates and weights were computed. The results of the study revealed that the modified DRASTIC model performs more efficiently than the traditional method for nonpoint source pollution, particularly in agricultural areas. The regression coefficients showed that the relationship between the vulnerability index and the nitrate concentration was 82 % after modification and 44 % before modification. This comparison indicated that the results of the modified DRASTIC of this region are better than those of the original method.  相似文献   

13.
Groundwater in karstic aquifers can be dangerously sensitive to contamination. In this paper, DRASTIC assessment was modified and applied, for the first time, to address the intrinsic vulnerability for karst aquifers. The theoretical weights of two of DRASTIC’s parameters (aquifer media and hydraulic conductivity) were modified through sensitivity analysis. Two tests of sensitivity analyses were carried out: the map removal and the single parameter sensitivity analyses. The modified assessment was applied for the karst aquifers underlying Ramallah District (Palestine) as a case study. The aquifer vulnerability map indicated that the case study area is under low, moderate and high vulnerability of groundwater to contamination. The vulnerability index can assist in the implementation of groundwater management strategies to prevent degradation of groundwater quality. The modified DRASTIC assessment has proven to be effective because it is relatively straightforward, use data that are commonly available or estimated and produces an end product that is easily interpreted.  相似文献   

14.
城市地下水脆弱性评价方法及应用   总被引:3,自引:0,他引:3  
刘香  王洁  邵传青  易立新 《地下水》2007,29(5):90-92
地下水脆弱性评价是合理开发利用和保护地下水的基础.以国内外广泛应用的DRASTIC模型为基础,结合我国华北平原沉降带冲洪积含水层水文地质特征,提出了一种适用于层状含水层水文地质条件的城市地下水脆弱性评价模型--DRAMIP模型,并根据廊坊市的实际状况,对廊坊市浅层地下水进行了脆弱性评价,利用GIS技术生成了廊坊市浅层地下水脆弱性分布图.  相似文献   

15.
《地学前缘(英文版)》2020,11(5):1805-1819
In Punjab(Pakistan),the increasing population and expansion of land use for agriculture have severely exploited the regional groundwater resources.Intensive pumping has resulted in a rapid decline in the level of the water table as well as its quality.Better management practices and artificial recharge are needed for the development of sustainable groundwater resources.This study proposes a methodology to delineate favorable groundwater potential recharge zones(FPRI) by integrating maps of groundwater potential recharge index(PRI) with the DRASTIC-based groundwater vulnerability index(VI).In order to evaluate both indexes,different thematic layers corresponding to each index were overlaid in ArcGIS.In the overlay analysis,the weights(for various thematic layers) and rating values(for sub-classes) were allocated based on a review of published literature.Both were then normalized and modified using the analytical hierarchical process(AHP) and a frequency ratio model respectively.After evaluating PRI and FPRI,these maps were validated using the area under the curve(AUC) method.The PRI map indicates that 53% of the area assessed exists in very low to low recharge zones,22% in moderate,and 25% in high to excellent potential recharge zones.The VI map indicates that 38% of the area assessed exists in very low to low vulnerability,33% in moderate,and 29% in high to very high vulnerability zones.The FPRI map shows that the central region of Punjab is moderately-to-highly favorable for recharge due to its low vulnerability and high recharge potential.During the validation process,it was found that the AUC estimated with modified weights and rating values was 79% and 67%,for PRI and VI indexes,respectively.The AUC was less when evaluated using original weights and rating values taken from published literature.Maps of favorable groundwater potential recharge zones are helpful for planning and implementation of wells and hydraulic structures in this region.  相似文献   

16.
As a systematic approach to waste disposal site screening for groundwater pollution protection, the DRASTIC system developed by the US Environmental Protection Agency (USEPA), was introduced at Younggwang County in Korea. Hydrogeological spatial databases for the system include information on depth to water, net recharge, aquifer media, soil media, topographic slope, hydraulic conductivity and lineament. Using the databases, the DRASTIC system and a GIS, the regional groundwater pollution vulnerability of the study area was assessed. The fracture density extracted from lineament maps was added to the DRASTIC system to take into account the preferential migration of contaminants through fractures. From the results of the study, a degree of groundwater pollution vulnerability through the study area was easily interpreted, and waste disposal sites could be screened for groundwater protection.  相似文献   

17.
Groundwater plays a key role in arid regions as the majority of water is supplied by it. Groundwater pollution is a major issue, because it is susceptible to contamination from land use and other anthropogenic impacts. A study was carried out to build a vulnerability map for the Ordos Plateau using the DRASTIC model in a GIS environment. The map was designed to show the areas of the highest potential for groundwater pollution based on hydrogeological conditions. Seven environmental parameters, such as depth to water table, net recharge, aquifer media, soil media, topography, impact of the vadose zone media, and hydraulic conductivity of the aquifer, were incorporated into the DRASTIC model and GIS was used to create a groundwater vulnerability map by overlaying the available data. The results of this study show that 24.8 % of the study area has high pollution potential, 24.2 % has moderate pollution potential, 19.7 % has low pollution potential, and the remaining 31.3 % of the area has no risk of groundwater pollution. The regional distribution of nitrate is well correlated with the DRASTIC vulnerability index. In contrast to this, although the DRASTIC model indicated that the western part had no risk, nitrate concentrations were higher in some of these areas. In particular, higher nitrate concentrations were recorded along river valleys and around lakes, such as the Mulin River valley. This is mainly caused by the intensive agricultural development and favorable conditions for recharge along river valleys.  相似文献   

18.
DRASTIC indexing and integrated electrical conductivity (IEC) modeling are approaches for assessing aquifer vulnerability to surface pollution. DRASTIC indexing is more common, but IEC modeling is faster and more cost-effective because it requires less data and fewer processing steps. This study aimed to compare DRASTIC indexing with IEC modeling to determine whether the latter is sufficient on its own. Both approaches are utilized to determine zones vulnerable to groundwater pollution in the Nile Delta. Hence, assessing the nature and degree of risk are important for realizing effective measures toward damage minimization. For DRASTIC indexing, hydrogeological factors such as depth to aquifer, recharge rate, aquifer media, soil permeability, topography, impact of the vadose zone, and hydraulic conductivity were combined in a geographical information system environment for assessing the aquifer vulnerability. For IEC modeling, DC resistivity data were collected from 36 surface sounding points to cover the entire area and used to estimate the IEC index. Additionally, the vulnerable zones identified by both approaches were tested using a local-scale resistivity survey in the form of 1D and 2D resistivity imaging to determine the permeable pathways in the vadose zone. A correlation of 0.82 was obtained between the DRASTIC indexing and IEC modeling results. For additional benefit, the obtained DRASTIC and IEC models were used together to develop a vulnerability map. This map showed a very high vulnerability zone, a high-vulnerability zone, and moderate- and low-vulnerability zones constituting 19.89, 41, 27, and 12%, respectively, of the study area. Identifying where groundwater is more vulnerable to pollution enables more effective protection and management of groundwater resources in vulnerable areas.  相似文献   

19.
地下水的防污性能评价是地下水环保工作的基础,其结果能为地下水环境保护、饮水安全保障体系建设等提供科学依据。针对传统DRASTIC评价模型存在的不足,结合江苏省浅层孔隙含水层的水文地质条件。提出基于层次分析法(AHP)的DRAVT防污性能评价模型,利用GIS空间分析功能进行地下水防污性能评价.该模型的评价结果客观科学,能有效的为规划部门及地下水资源管理部门服务。  相似文献   

20.
This study developed a new paradigm for groundwater vulnerability assessment by modifying the standard DRASTIC index (DI) model based on catastrophe theory. The developed paradigm was called the catastrophe theory-based DI (CDI) model. The proposed model was applied to assess groundwater vulnerability to pollution index (GVPI) in Perak Province, Malaysia. The area vulnerability index was modeled by considering the DRASTIC multiple vulnerability causative factors (VCFs) obtained from different data sources. The weights and ranking of the VCFs were computed by using the inner fuzzy membership mechanism of the CDI model. The estimated vulnerability index values of the CDI model were processed in a geographic information system (GIS) environment to produce a catastrophe theory–DRASTIC groundwater vulnerability to pollution index (CDGVPI) map, which demarcated the area into five vulnerability zones. The produced CDGVPI map was validated by applying the water quality status–vulnerability zone relationship (WVR) approach and the relative operating characteristic (ROC) curve method. The performance of the developed CDI model was compared with that of the standard DI model. The validation results of the WVR approach exhibits 89.29% prediction accuracy for the CDI model compared with 75% for the DI model. Meanwhile, the ROC validation results for the CDI and DI models are 88.8% and 78%, respectively. The GIS-based CDI model demonstrated better performance than the DI model. The GVPI maps produced in this study can be used for precise decision making process in environmental planning and groundwater management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号