首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Major and trace element compositions of fifteen silicate rock reference materials have been determined by a combined XRF and laser ablation ICP‐MS (LA‐ICP‐MS) technique on glasses prepared by fusing the sample with a lithium borate flux (sample:flux = 1:3). Advantages of this technique include the ability to measure major and trace element abundances on a single sample using a quick and simple preparation that attacks resistant phases such as zircon without the need for acid dissolution. The method is suitable for a wide variety of bulk compositions including mafic, intermediate and silicic rocks. Abundance‐normalized mass response patterns (the ratio of signal intensity to element concentration) of the LA‐ICP‐MS analyses vary systematically with major element composition, demonstrating the presence of a matrix effect that cannot be compensated by normalisation to a single internal standard element. Increasing the sampling distance between the ICP‐MS cone and the torch reduces the magnitude of this effect, suggesting that a mechanism related to residence time of ablated particles in the plasma may be at least partially responsible for the observed variations in mass response patterns. When using a matrix‐matched calibration, agreement of the LA‐ICP‐MS results with published reference values or those obtained by solution ICP‐MS is 10% relative. Analytical precision based on replicate analyses is typically 5% RSD. Procedural detection limits that include contributions from gas background and flux are 0.01‐0.1 μg g‐1 for the heavy mass trace elements (Rb‐U). Major element analyses by XRF show excellent agreement with results obtained using a conventional heavy element absorbing flux. High quality major and trace element data for silicate rocks can be achieved by a combined XRF and LA‐ICP‐MS analysis of Li2B4O7/LiBO2 fused glasses provided an appropriate matrix‐matched calibration is adopted.  相似文献   

2.
A comprehensive method for the precise determination of Re, Os, Ir, Ru, Pt and Pd concentrations as well as Os isotopic compositions in geological samples is presented. Samples were digested by the Carius tube method, and the Os was extracted by conventional CCl4 method. The Re, Ir, Ru, Pt and Pd were first subgroup separated from the matrix elements into Re‐Ru, Ir‐Pt and Pd by a 2‐ml anion exchange column. Subsequently, the Re‐Ru was further purified by a secondary 0.25 ml anion exchange column or by microdistillation of Ru using CrO3‐H2SO4 as an oxidant followed by a secondary 0.25 ml anion exchange separation of Re. The Pd and Ir‐Pt were further successively purified by an Eichrom‐LN column to completely remove Zr and Hf, respectively. Rhenium, Ir, Ru, Pt and Pd were individually measured by multi‐collector inductively coupled plasma‐mass spectrometry (MC‐ICP‐MS), except for Ru after microdistillation purification was analysed by negative‐thermal ionisation mass spectrometry (N‐TIMS). The analytical results for peridotite reference material WPR‐1 agree well with the previously published data. Finally, several mafic rock reference materials including TDB‐1, WGB‐1, BHVO‐2, BCR‐2, BIR‐1a and DNC‐1a were analysed for Re‐Os isotopes and platinum‐group element concentrations to test their suitability for certification.  相似文献   

3.
The accurate and precise determination of Li isotopic composition by MC‐ICP‐MS suffers from the poor performance of traditional column chromatography. Previously established chromatographic processes cannot completely remove Na in complex geological samples, which is currently interpreted to be a result of Na breakthrough. In this study, Na breakthrough during single‐column purification was found to differ between simply artificial Na‐containing sample solutions, where a little Na residue was found, and silicate rocks, where a large amount of breakthrough occurred. A revised two‐step column purification for Li using 0.5 and 0.3 mol l?1 HCl as eluents was designed to remove the Na. This modified method achieves high‐efficiency Li purification from Na and consequently avoiding high Na/Li ratio interference for subsequent MC‐ICP‐MS analyses. The proposed method was validated by the analysis of a series of reference materials, including Li2CO3 (IRMM‐016, ‐0.10‰), basalt (BCR‐2: 2.68‰; BHVO‐2: 4.39‰), andesite (AGV‐2: 6.46‰; RGM‐2: 2.59‰), granodiorite (GSP‐2: ?0.87‰) and seawater (CASS‐5, 30.88‰). This work reports early Na appearance prior to the elution curves in chromatography and emphasises its influence for subsequent Li isotope measurement. Based on the findings, the established two‐step method would be more secure than single‐column chemistry for Li purification.  相似文献   

4.
We present an open‐source algorithm in Mathematica application (Wolfram Research) with a transparent data reduction and Monte Carlo simulation of systematic and random uncertainties for U‐Th geochronometry by multi‐collector ICP‐MS. Uranium and thorium were quantitatively separated from matrix elements through a single U/TEVA extraction chromatography step. A rigorous calibrator‐sample bracketing routine was adopted using CRM‐112A and IRMM‐035 standard solutions, doped with an IRMM‐3636a 233U/236U ‘double‐spike’ to account for instrumental mass bias and deviations of measured isotope ratios from certified values. The mean of 234U/238U and 230Th/232Th in the standard solutions varied within 0.42 and 0.25‰ (permil) of certified ratios, respectively, and were consistent with literature values within uncertainties. Based on multiple dissolutions with lithium metaborate flux fusion, U and Th concentrations in USGS BCR‐2 CRM were updated to 1739 ± 2 and 5987 ± 50 ng g?1 (95% CI), respectively. The measurement reproducibility of our analytical technique was evaluated by analysing six aliquots of an in‐house reference material, prepared by homogenising a piece of speleothem (CC3A) from Cathedral Cave, Utah, which returned a mean age of 21483 ± 63 years (95% CI, 2.9‰). Replicate analysis of ten samples from CC3A was consistent with ages previously measured at the University of Minnesota by single‐collector ICP‐MS within uncertainties.  相似文献   

5.
A method for the simultaneous determination of Cd with In, Tl and Bi by isotope dilution‐internal standardisation (ID‐IS) ICP‐QMS using the same aliquot for rare earth element and other trace element determinations was developed. Samples mixed with an enriched 149Sm spike were decomposed using a HF‐HClO4 mixture, which was evaporated and then diluted with HNO3. After determination of Sm by ID‐ICP‐QMS and Cd, In, Tl and Bi concentrations were determined using the 149Sm intensity as an internal standard. The interference of MoO+ on Cd+ was corrected using the MoO+/Mo+ ratio separately measured using a Mo standard solution, and the validity of the externally determined oxide‐forming ratio correction was evaluated. The MoO+/Mo+ ratios measured using the standard solution and samples were ~ 0.0002 and < 0.002, respectively. Detection limits for Cd, In, Tl and Bi in silicate samples were at levels of < 1 ng g?1 with a total uncertainty of < 7%. Cadmium in the carbonaceous chondrites, Orgueil (CI1), Murchison (CM2) and Allende (CV3) as well as Cd, In, Tl and Bi in the reference materials, JB‐2, JB‐3, JA‐1, JA‐2, JA‐3, JP‐1 (GSJ), BHVO‐1, AGV‐1, PCC‐1 and DTS‐1 (USGS) and NIST SRM 610, 612, 614 and 616 were determined to show the applicability of this method.  相似文献   

6.
An in situ, medium‐resolution LA‐ICP‐MS method was developed to measure the abundances of the first‐row transition metals, Ga and Ge in a suite of geological materials, namely the MPI‐DING reference glasses. The analytical protocol established here hinged on maximising the ablation rate of the ultraviolet (UV) laser system and the sensitivity of the ICP‐MS, as well minimising the production of diatomic oxides and argides, which serve as the dominant sources of isobaric interferences. Non‐spectral matrix effects were accounted for by using multiple external calibrators, including NIST SRM 610 and the USGS basaltic glasses BHVO‐2G, BIR‐1G and BCR‐2G, and utilising 43Ca as an internal standard. Analyses of the MPI‐DING reference glasses, which represent geological matrices ranging from basaltic to rhyolitic in composition, included measurements of concentrations as low as < 100 μg g?1 and as high as > 104 μg g?1. The new data reported here were found to statistically correlate with the ‘preferred’ reference values for these materials at the 95% confidence level, though with significantly better precision, typically on the order of ≤ 3% (2sm). This analytical method may be extended to any matrix‐matched geological sample, particularly oceanic basalts, silicate minerals and meteoritic materials.  相似文献   

7.
Compared with solution ICP‐MS, LA‐ICP‐MS studies have thus far reported comparatively few external reference data for accuracy estimates of experiments. This is largely the result of a paucity of available reference materials of natural composition. Here, we report an evaluation of natural glass (obsidian) as an inexpensive and widely available external reference material. The homogeneity of over forty elements in six different obsidian samples was assessed by LA‐ICP‐MS. Accuracy was tested with two obsidian samples that were fully characterised by electron probe microanalysis and solution ICP‐MS. Laser ablation experiments were performed with a variety of ablation parameters (fluence, spot sizes, ablation repetition rates) and calibration approaches (natural vs. synthetic reference materials, and different internal standard elements) to determine the best practice for obsidian analysis. Furthermore, the samples were analysed using two different laser wavelengths (193 nm and 213 nm) to compare the effect of potential ablation‐related phenomena (e.g., fractionation). Our data indicate that ablation with fluences larger than 6 J cm?2 and repetition rates of 5 or 10 Hz resulted in the most accurate results. Furthermore, synthetic NIST SRM 611 and 612 glasses worked better as reference materials compared with lower SiO2 content reference materials (e.g., BHVO‐2G or GOR128‐G). The very similar SiO2 content of the NIST SRM glasses and obsidian (i.e., matrix and compositional match) seems to be the first‐order control on the ablation behaviour and, hence, the accuracy of the data. The use of different internal standard elements for the quantification of the obsidian data showed that Si and Na yielded accurate results for most elements. Nevertheless, for the analysis of samples with high SiO2 concentrations, it is recommended to use Si as the internal standard because it can be more precisely determined by electron probe microanalysis. At the scale of typical LA analyses, the six obsidian samples proved to be surprisingly homogenous. Analyses with a spot size of 80 μm resulted in relative standard deviations (% RSD) better than 8% for all but the most depleted elements (e.g., Sc, V, Ni, Cr, Cu, Cd) in these evolved glasses. The combined characteristics render obsidian a suitable, inexpensive and widely available, external quality‐control material in LA‐ICP‐MS analysis for many applications. Moreover, obsidian glass is suited for tuning purposes, and well‐characterised obsidian could even be used as a matrix‐matched reference material for a considerable number of elements in studies of samples with high SiO2 contents.  相似文献   

8.
In both nature and synthetic experiments, the common iron oxide haematite (α‐Fe2O3) can incorporate significant amounts of U into its crystal structure and retain radiogenic Pb over geological time. Haematite is a ubiquitous component of many ore deposit types and, therefore, represents a valuable hydrothermal mineral geochronometer, allowing direct constraints to be placed on the timing of ore formation and upgrading. However, to date, no suitable natural haematite reference material has been identified. Here, a synthetic haematite U‐Pb reference material (MR‐HFO) is characterised using LA‐ICP‐MS and ID‐TIMS. Centimetre‐scale ‘chips’ of synthesised α‐Fe2O3 were randomly microsampled via laser ablation‐extraction and analysed using ID‐TIMS. Reproducible U/Pb and Pb/Pb measurements were obtained across four separate chips (n = 13). Subsequently, an evaluation of the suitability MR‐HFO in constraining U‐Pb data via LA‐ICP‐MS is presented using a selection of natural samples ranging from Cenozoic to Proterozoic in age. The MR‐HFO normalised U‐Pb ratios are more concordant and ages more accurate versus the same LA‐ICP‐MS spot analyses normalised to zircon reference material, when compared with independently acquired ID‐TIMS data from the same natural haematite grains. Results establish MR‐HFO as a suitable reference material for LA‐ICP‐MS haematite U‐Pb geochronology.  相似文献   

9.
The low‐Sr content (generally < 100 μg g?1) in clinopyroxene from peridotite makes accurate Sr isotopic determination by LA‐MC‐ICP‐MS a challenge. The effects of adding N2 to the sample gas and using a guard electrode (GE) on instrumental sensitivity for Sr isotopic determination by LA‐MC‐ICP‐MS were investigated. Results revealed no significant sensitivity enhancement of Sr by adding N2 to the ICP. Although using a GE led to a two‐fold sensitivity enhancement, it significantly increased the yield of polyatomic ion interferences of Ca‐related ions and TiAr+ on Sr isotopes. Applying the method established in this work, 87Sr/86Sr ratios (Rb/Sr < 0.14) of natural clinopyroxene from mantle and silicate glasses were accurately measured with similar measurement repeatability (0.0009–0.00006, 2SE) to previous studies but using a smaller spot size of 120 μm and low‐to‐moderate Sr content (30–518 μg g?1). The measurement reproducibility was 0.0004 (2s, n = 33) for a sample with 100 μg g?1 Sr. Destruction of the crystal structure by sample fusion showed no effect on Sr isotopic determination. Synthesised glasses with major element compositions similar to natural clinopyroxene have the potential to be adopted as reference materials for Sr isotopic determination by LA‐MC‐ICP‐MS.  相似文献   

10.
Seven ilmenite (FeTiO3) megacrysts derived from alnöite pipes (Island of Malaita, Solomon Islands) were characterised for their major and trace element compositions in relation to their potential use as secondary reference materials for in situ microanalysis. Abundances of thirteen trace elements obtained by laser ablation ICP‐MS analyses (using the NIST SRM 610 glass reference material) were compared with those determined by solution‐mode ICP‐MS measurements, and these indicated good agreement for most elements. The accuracy of the LA‐ICP‐MS protocol employed here was also assessed by repeated analysis of MPI‐DING international glass reference materials ML3B‐G and KL2‐G. Several of the Malaitan ilmenite megacrysts exhibited discrepancies between laser ablation and solution‐mode ICP‐MS analyses, primarily attributed to the presence of a titano‐magnetite exsolution phase (at the grain boundaries), which were incorporated solely in the solution‐mode runs. Element abundances obtained by LA‐ICP‐MS for three of the ilmenite megacrysts (CRN63E, CRN63H and CRN63K) investigated here had RSD (2s) values of < 20% and therefore can be considered as working values for reference purposes during routine LA‐ICP‐MS analyses of ilmenite.  相似文献   

11.
Fused glass prepared without the addition of a flux is generally more homogeneous than a pressed powder pellet and thus ideal for analysis of bulk samples by LA‐ICP‐MS. In this work, a new glass‐making method using a boron nitride crucible was developed to prepare homogenous glass samples from silicate rock powder. The apparatus consisted of a small boron nitride vessel with net volume of about 34 mm3 and two molybdenum strips. Applying the summed metal oxide normalisation technique, both major and trace element contents in the fused glass were measured by LA‐ICP‐MS. Analyses of five geochemical reference materials (spanning the compositional range basalt–andesite–rhyolite) indicated that the measured SiO2, Al2O3 and P2O5 contents matched the preferred values to within 5%, and the other major elements generally matched the preferred values to within 8%. Except for the transition metals, the measured trace element contents generally matched the preferred values to within 10%. Compared with the iridium heater method developed by Stoll et al. (2008), element volatilisation during high‐temperature melting was effectively suppressed in our method, but metal segregation caused by reduction of BN may cause loss of Cr, Ni and Cu. Although analysis with a large spot size has the advantage of improving counting statistics, matrix effects induced by mass loading of the ICP may hamper the accurate determination of some elements.  相似文献   

12.
The United States Geological Survey granitic and granodioritic reference materials G‐2 and GSP‐2 were decomposed in high‐pressure bombs using both HF‐HNO3 and HF‐HNO3‐HClO4 in order to evaluate the feasibility of characterising the entire suite of geologically relevant trace elements through direct analysis with a high‐resolution inductively coupled plasma‐mass spectrometer (HR‐ICP‐MS). The digested samples were diluted to the appropriate levels and analysed at low, medium and high resolution depending on the required sensitivity and potential interferences for each element. Memory effects during analysis of the high field strength elements (HFSE) were negligible when analysed using an all‐Teflon, uncooled sample introduction system and combined with adequate wash times with 4% v/v aqua regia + 0.5% v/v HF between samples. The concentration of the remaining lithophile elements was determined with a conventional, cooled, Scott‐type spray chamber using a wash solution of 1% v/v HNO3. Total procedural blanks contributed between 0.01 to 0.5% to final sample concentrations and blank subtractions were typically unnecessary. Abundances for Li, Hf, Ba, Zr, Ga, Rb, Sr, La, Ce, Th and U were systematically higher, while those for the heavy rare earth elements (HREEs), Cu and Y were systematically lower in this study compared to USGS values for G‐2 and GSP‐2. This is likely to be related to, respectively, higher recoveries from more efficient digestion of refractory phases (i.e., zircon, tourmaline), and better resolution of interferences when using a HR‐ICP‐MS. Sample digestion experiments also showed that perchloric acid digestion in high pressure bombs resulted in superior recoveries and better precision for the bulk of the trace elements analysed. The concentration of the remaining elements overlapped within uncertainty with recommended reference values and with values determined in other studies using isotope‐dilution TIMS, ICP‐MS and XRF. Concentrations for the elements Cd, Sn, Sb, Ta, Bi, Tb, Ni and Mo are also reported for G‐2 and GSP‐2 reference materials. Our study shows therefore that it is feasible to determine thirty‐nine geologically relevant trace elements accurately and directly in granitoid sample digests when using a HR‐ICP‐MS, thereby negating the need for ion exchange or isotopic spiking.  相似文献   

13.
A method for the determination of major, minor and trace elements in silicate samples by ICP‐QMS and ICP‐SFMS applying isotope dilution‐internal standardisation (ID‐IS) and multi‐stage internal standardisation has been developed. Samples with an enriched isotope of 149Sm (spike) were decomposed by a HF/HCIO4 mixture and stepwise drying and finally diluted. In ID‐IS for trace element analyses by Q‐pole type ICP‐MS (ICP‐QMS), the Sm concentration was determined by ID, while other trace elements (Li, Be, Rb, Sr, Y, In, Cs, Ba, La, Ce, Pr, Nd, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Tl, Pb, Bi, Th and U) were determined using the 149Sm intensity as an internal standard. Major and minor elements were determined by multi‐stage internal standardisation, with Na, Mg, Al, P, Ca, V, Mn, Fe and Co measured by sector magnetic field type ICP‐MS (ICP‐SFMS) at middle resolution (MR; M/AM =~ 3000) using Sr determined by ICP‐QMS in the sample as the internal standard. Potassium, Sc, Ni, Cu, Zn and Ga were measured at high resolution (HR; M/ΔM ~ 7500) using the Sr concentration obtained by ICP‐QMS or the Mn concentration obtained by ICP‐SFMS at MR as internal standard. The merit of ID‐IS is that accurate dilution of the sample is not required. Matrix effects on elemental ratios down to a dilution factor (DF) of 600 were not observed in either types of mass spectrometry. Pseudo‐flow injection (FI), where transient signals were integrated, was used in ICP‐QMS, while conventional continuous sample introduction was used in ICP‐SFMS, resulting in total required sample solutions of 0.026 ml and 0.08 ml, respectively. Detection limits were low enough to determine these elements in depleted ultramafic rocks, and typical reproducibilities for basalts were 3% (Li‐Be), 1% (Rb‐U), 5% (In, Tl and Bi), 7% (Sc‐Ga) and 3% (major elements). Carbonaceous chondrites including Orgueil (Cll), Murchison (CM2) and Allende (CV3), as well as reference materials, JB‐1, ‐2, ‐3, JA‐1, ‐2, ‐3 and JP‐1 (GSJ), BHVO‐1, AGV‐1, PCC‐1 and DTS‐1 (USGS), were analysed to show the applicability of this method. Une méthode permettant la détermination des éléments majeurs, mineurs et en trace dans les echantillons silicates par ICP‐QMS et ICP‐SFMS a été développée. Elle combine la standardisation interne par dilution isotopique (ID‐IS) et la standardisation interne en deux étapes. Les échantillons, auxquels est ajouté un spike enrichi en 149 Sm, sont décomposés par une mixture HF/HCIO4′ séchés progressivement puis dilués. Dans la phase de standardisation interne par dilution isotopique avec un ICP‐MS à quadrupôle (ICP‐QMS), la concentration en Sm est déterminée par dilution isotopique tandis que les autres éléments en trace (Li, Be, Rb, Sr, Y, In, Cs, Ba, La, Ce, Pr, Nd, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Tl, Pb, Bi, Th et U) sont déterminés en utilisant le signal de 149 Sm comme standard interne. Les éléments majeurs et mineurs sont déterminés par standardisation interne par étapes, avec Na, Mg, Al, P, Ca, V, Mn, Fe et Co mesurés par ICP‐MS à secteur magnétique (ICP‐SFMS) en résolution intermédiaire (MR; M/ΔM =~ 3000 en utilisant Sr, mesuré par ICP‐QMS comme standard interne. Les éléments K, Sc, Ni, Cu, Zn et Ga sont mesurés en Haute Résolution (M/ΔM ~ 7500) en utilisant comme standard interne, soit la concentration en Sr obtenue par ICP‐QMS soit la concentration en Mn obtenue par ICP‐SFMS en résolution moyenne. La technique de ID‐IS a l'avantage de ne pas nécessiter la connaissance exacte du facteur de dilution de l'Schantillon. Aucun effet de matrice sur la mesure de rapports élémentaires n'a été observé sur l'un ou l'autre des spectromètres de masse, ceci jusqu'à un facteur de dilution (DF) de 600. Les analyses par ICP‐QMS ont été effectuées par pseudo injection de flux (Fl) et intégration d'un signal transitoire tandis que les analyses par ICP‐SFMS l'ont été avec un système conventionnel d'introduction. Le volume total de solution d'échantillon nécessaire etait de 0.026 ml et 0.08 ml respectivement. Les limites de détection étaient suffisamment basses pour permettre la détermination de ces éléments dans des roches ultrabasiques et les reproductibilités pour les basaltes étaient de l'ordre de 3% (Li‐Be), 1 % (Rb‐U), 5% (In, Tl et Bi), 7% (Sc‐Ga) et 3% (tous les éléments majeurs). Des chondrites carbonées dont Orgueil (Cll), Murchison (CM2) et Allende (CV3) ainsi que des matériaux de référence JB‐1, ‐2, ‐3, JA‐1, ‐2, ‐3 et JP‐1 (GSJ), BHVO‐1, AGV‐1, PCC‐1 et DTS (USGS) ont été analysés pour démontrer l'applicabilité de la méthode.  相似文献   

14.
A novel preconcentration method is presented for the determination of Mo isotope ratios by multi‐collector inductively coupled plasma‐mass spectrometry (MC‐ICP‐MS) in geological samples. The method is based on the separation of Mo by extraction chromatography using N‐benzoyl‐N‐phenylhydroxylamine (BPHA) supported on a microporous acrylic ester polymeric resin (Amberlite CG‐71). By optimising the procedure, Mo could be simply and effectively separated from virtually all matrix elements with a single pass through a small volume of BPHA resin (0.5 ml). This technique for separation and enrichment of Mo is characterised by high selectivity, column efficiency and recovery (~ 100%), and low total procedural blank (~ 0.18 ng). A 100Mo‐97Mo double spike was mixed with samples before digestion and column separation, which enabled natural mass‐dependent isotopic fractionation to be determined with a measurement reproducibility of  < 0.09‰ (δ98/95Mo, 2s) by MC‐ICP‐MS. The mean δ98/95MoSRM 3134 (NIST SRM 3134 Mo reference material; Lot No. 891307) composition of the IAPSO seawater reference material measured in this study was 2.00 ± 0.03‰ (2s, n = 3), which is consistent with previously published values. The described procedure facilitated efficient and rapid Mo isotopic determination in various types of geological samples.  相似文献   

15.
The National Centre for Compositional Characterisation of Materials (NCCCM) / Bhabha Atomic Research Centre (BARC) and National Aluminium Company Limited (NALCO), India have produced an Indian origin bauxite certified reference material (CRM), referred to as BARC-B1201, certified for major (Al2O3, Fe2O3, SiO2, TiO2, loss on ignition - LOI) and trace contents (V2O5, MnO, Cr2O3, MgO). Characterisation was undertaken by strict adherence to ISO Guides. A method previously developed and validated in our laboratory, using single step bauxite dissolution and subsequent quantitation (of Al2O3, Fe2O3, SiO2, TiO2, V2O5, MnO, Cr2O3 and MgO) by ICP-AES (SSBD ICP-AES) was used for homogeneity studies and an inter-laboratory comparison exercise (ILCE) of the candidate CRM. LOI was determined by thermo-gravimetric analysis. Property values were assigned after an ILCE with participation from seventeen reputed government and private sector laboratories in India. The CRM was certified for nine property values: Al2O3, Fe2O3, SiO2, TiO2, V2O5, MnO, Cr2O3, MgO and LOI, which are traceable to SI units.  相似文献   

16.
A method for the determination of total sulfur in geological materials by inductively coupled plasma‐optical emission spectrometry (ICP‐OES) is described. We show that good results were obtained using this method even for sample types with very low (< 20 μg g?1) sulfur concentration (e.g., peridotite). Sulfur was determined in fifteen geological reference materials with different sulfur contents. For reference materials with certified sulfur contents, the ICP‐OES method gave results in excellent agreement with certified values, and uncertainties better than 4% RSD. ICP‐OES results for sulfur in other reference materials yielded RSDs better than 10%, where S concentrations were > 100 μg g?1 (except for diabase W‐2a, 16% RSD). Reference materials with lower sulfur contents (< 40 μg g?1) showed much higher RSDs (17–18%). Except for RMs with certified values for sulfur, most data obtained by the combustion infrared detection method generally showed higher concentrations than those measured by ICP‐OES and a better RSD (≤ 8% for all materials except DTS‐2b).  相似文献   

17.
Moss samples (Pleurozium schreberi) exposed to traffic‐related emission of Pd, Pt and Rh were analysed in this study. Successful elimination of interferences was achieved in the determination of Pd, Pt and Rh mass fractions in these samples using inductively coupled plasma‐tandem mass spectrometry (ICP‐MS/MS). Based on the results, a reliable determination of Pd, Pt and Rh mass fractions in microwave‐digested moss samples was obtained using ammonia (10% NH3 in He) in the collision/reaction cell when 103Rh was measured either on‐mass (103→103) or with mass‐shift (103→171) and mass‐shifts for 108Pd (108→159) and 195Pt (195→229) were used. The ICP‐MS/MS procedure was validated using BCR‐723 (road dust) as a reference material. In addition, a good agreement between the ICP‐MS/MS results and the results obtained with cloud point extraction and quadrupole ICP‐MS was observed for the moss samples.  相似文献   

18.
Rare earth elements (REEs) are very important to technological development as well as to geochemical and environmental studies. In this work, hydrofluoric acid (HF) was replaced by condensed phosphoric acid (CPA) in the digestion of geological samples, and the quantification of REEs was performed by inductively coupled plasma‐optical emission spectrometry (ICP‐OES). Six international reference materials (RMs), named DC86318, CGL 111, CGL 124, CGL 126, OKA‐2 and COQ‐1 and three Brazilian ore samples, named Araxá, Catalão and Pitinga were analysed. Only zircon and xenotime, which are potential REE‐bearing minerals, were not completely dissolved. Nevertheless, no REE associated with zircon was detected. The investigated digestion method presented many advantages: It was relatively fast (3 h), avoided fluoride precipitation, it was less hazardous because handling diluted H3PO4 is safer than HF, NH4F or NH4HF2 aqueous solutions, it preserved the quartz fittings of the measurement equipment and the final solution contained lower levels of total dissolved solids than those produced by the fusion method.  相似文献   

19.
Zircon crystals in the age range of ca. 10–300 ka can be dated by 230Th/238U (U‐Th) disequilibrium methods because of the strong fractionation between Th and U during crystallisation of zircon from melts. Laser ablation inductively coupled plasma‐mass spectrometry (LA‐ICP‐MS) analysis of nine commonly used reference zircons (at secular equilibrium) and a synthetic zircon indicates that corrections for abundance sensitivity and dizirconium trioxide molecular ions (Zr2O3+) are critical for reliable determination of 230Th abundances in zircon. When corrected for abundance sensitivity and interferences, mean activity ratios of (230Th)/(238U) for nine reference zircons analysed on five different days averaged 0.995 ± 0.023 (95% confidence weighted by data‐point uncertainty only, MSWD = 1.6; = 9), consistent with their U‐Pb ages > 4 Ma that imply equilibrium for all intermediate daughter isotopes (including 230Th) within the 238U decay chain. U‐Th zircon ages generated by LA‐ICP‐MS without mitigating (e.g., by high mass resolution) or correcting for abundance sensitivity and molecular interferences on 230Th are potentially unreliable. To validate the applicability of LA‐ICP‐MS to this dating method, we acquired data from three late Quaternary volcanic units: the 41 ka Campanian Ignimbrite (plutonic clasts), the 161 ka Kos Plateau Tuff (juvenile clasts) and the 12 ka Puy de Dôme trachyte lava (all eruption ages by Ar/Ar, with zircon U‐Th ages being of equal or slightly older). A comparison of the corrected LA‐ICP‐MS results with previously published secondary ion mass spectrometry (SIMS) data for these rocks shows comparable ages with equivalent precision for LA‐ICP‐MS and SIMS, but much shorter analysis durations (~ 2 min vs. ~ 15 min) per spot with LA‐ICP‐MS and much simpler sample preparation. Previously undated zircons from the Yali eruption (Kos‐Nisyros volcanic centre, Greece) were analysed using this method. This yielded a large age spread (~ 45 to > 300 ka), suggesting significant antecryst recycling. The youngest zircon age (~ 45 ± 10 ka) provides a reasonable maximum estimate for the eruption age, in agreement with the previously published age using oxygen isotope stratigraphy (~ 31 ka).  相似文献   

20.
A simple flux‐free fusion technique was developed to analyse major and trace element compositions of silicate rocks. The sample powders were melted in a molybdenum capsule sealed in a graphite tube to make a homogenous glass in a temperature‐controlled one‐atmosphere furnace. The glass was then measured for both major and trace element concentrations by LA‐ICP‐MS using a calibration strategy of total metal‐oxide normalisation. The optimum conditions (i.e., temperature and duration) to make homogeneous glasses were obtained by performing melting experiments using a series of USGS reference materials including BCR‐2, BIR‐1, BHVO‐2, AGV‐1, AGV‐2, RGM‐1, W‐2 and GSP‐2 with SiO2 contents from 47 to 73% m/m. Analytical results of the USGS reference materials using our method were generally consistent with the recommended values within a discrepancy of 5–10% for most elements. The routine precision of our method was generally better than 5–10% RSD. Compared with previous methods of LA‐ICP‐MS whole‐rock analyses, our flux‐free fusion method is convenient and efficient in making silicate powder into homogeneous glass. Furthermore, it limits contamination and loss of volatile elements during heating. Therefore, our new method has great potential to provide reliable and rapid determinations of major and trace element compositions for silicate rocks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号