首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Coseismic changes in groundwater levels have been investigated throughout the world, but most studies have focused on the effects of one large earthquake. The aim of this study was to elucidate the spatial patterns of level changes in response to several earthquakes, and the relationship of the patterns to shallow and deep groundwater in the same area. We selected the Kumamoto City area in southwest Japan, a region with one of the richest groundwater resources in Japan, as our study site. Data from hourly measurements of groundwater levels in 54 wells were used to characterize the coseismic responses to four earthquakes that occurred in 2000, 2001, 2005, and 2008. Although the distance to the hypocenter (12–2573 km), and seismic energy (Mw = 5.0–8.0) of these earthquakes varied, systematic groundwater level changes were observed in the range of 0.01–0.67 m. Spatial patters of the level changes were clarified by interpolating the point data by a spline method. The zones where coseismic rises were observed were generally wider for deep groundwater than for shallow groundwater, probably as a result of an increase in compressive stress. General trends in the changes in groundwater levels, and calculated pressure changes, were clarified to be consistent in the deep groundwater, but the coseismic increases or decreases in compressive stress in the shallow groundwater were variable, depending on the distance to the earthquake epicenter. We developed a conceptual model of the mechanism underlying this phenomenon by assuming permeability enhancement induced by elastic strain and pore-pressure change over the depth range. In addition, the importance of local geology was identified, because levels in the area of Togawa lava (a porous andesite) tended to change more in magnitude, and more quickly, with a shorter recovery time, than levels measured in the area outside the lava.  相似文献   

2.
《Applied Geochemistry》2005,20(1):55-68
In 49 samples of groundwater, sampled in Muzaffargarh District of south-western Punjab, central Pakistan, concentrations of As exceeded the World Health Organisation provisional guideline value, and United States Environmental Protection Agency (USEPA) Maximum Contaminant Level (MCL), of 10 μg L−1 in 58% of samples and reached up to 906 μg L−1. In this semi-arid region canal irrigation has lead to widespread water-logging, and evaporative concentration of salts has the potential to raise As concentrations in shallow groundwater well above 10 μg L−1. In fact, in rural areas, concentrations stay below 25 μg L−1 because As in the oxic shallow groundwater, and in recharging water, is sorbed to aquifer sediments. In some urban areas, however, shallow groundwater is found to contain elevated levels of As. The spatial distribution of As-rich shallow groundwater indicates either direct contamination with industrial or agricultural chemicals, or some other anthropogenic influence. Geochemical evidence suggests that pollutant organics from unconfined sewage and other sources drives reduction of hydrous ferric oxide (HFO) releasing sorbed As to shallow groundwater. The situation is slightly less clear for seven wells sampled which tap deeper groundwater, all of which were found with >50 μg L−1 As. Here As concentrations seem to increase with depth and differing geochemical signatures are seen, suggesting that As concentrations in older groundwater may be governed by different processes. Other data on parameters of potential concern in drinking water are discussed briefly at the end of the paper.  相似文献   

3.
New deep reflection seismic, bathymetry, gravity and magnetic data have been acquired in a marine geophysical survey of the southern South China Sea, including the Dangerous Grounds, Northwest Borneo Trough and the Central Luconia Platform. The seismic and bathymetry data map the topography of shallow density interfaces, allowing the application of gravity modeling to delineate the thickness and composition of the deeper crustal layers. Many of the strongest gravity anomalies across the area are accounted for by the basement topography mapped in the seismic data, with substantial basement relief associated with major rift development. The total crustal thickness is however quite constant, with variations only between 25 and 30 km across the Central Luconia Platform and Dangerous Grounds. The Northwest Borneo Trough is underlain by thinned crust (25–20 km total crustal thickness) consistent with the substantial water depths. There is no evidence of any crustal suture associated with the trough, nor any evidence of relict oceanic crust beneath the trough. The crustal thinning also does not extend along the complete length of the trough, with crustal thicknesses of 25 km and more modeled on the most easterly lines to cross the trough. Modeled magnetic field variations are also consistent with the study area being underlain by continental crust, with the magnetic field variations well explained by irregular magnetisations consistent with inhomogeneous continental crust, terminating at the basement unconformity as mapped from the seismic data.  相似文献   

4.
《Applied Geochemistry》2006,21(10):1799-1817
Release of acid drainage from mine-waste disposal areas is a problem of international scale. Contaminated surface water, derived from mine wastes, orginates both as direct surface runoff and, indirectly, as subsurface groundwater flow. At Camp Lake, a small Canadian Shield lake that is in northern Manitoba and is ice-covered 6 months of the year, direct and indirect release of drainage from an adjacent sulfide-rich tailings impoundment has severely affected the quality of the lake water. Concentrations of the products from sulfide oxidation are extremely high in the pore waters of the tailings impoundment. Groundwater and surface water derived from the impoundment discharge into a semi-isolated shallow bay in Camp Lake. The incorporation of this aqueous effluent has altered the composition of the lake water, which in turn has modified the physical limnology of the lake. Geochemical profiles of the water column indicate that, despite its shallow depth (6 m), the bay is stratified throughout the year. The greatest accumulation of dissolved metals and SO4 is in the lower portion of the water column, with concentrations up to 8500 mg L−1 Fe, 20,000 mg L−1 SO4, 30 mg L−1 Zn, 100 mg L−1 Al, and elevated concentrations of Cu, Cd, Pb and Ni. Meromictic conditions and very high solute concentrations are limited to the bay. Outside the bay, solute concentrations are lower and some stratification of the water column exists. Identification of locations and composition of groundwater discharge relative to lake bathymetry is a fundamental aspect of understanding chemical evolution and physical stability of mine-impacted lakes.  相似文献   

5.
Exploration of unconventional natural gas reservoirs such as impermeable shale basins through the use of horizontal drilling and hydraulic fracturing has changed the energy landscape in the USA providing a vast new energy source. The accelerated production of natural gas has triggered a debate concerning the safety and possible environmental impacts of these operations. This study investigates one of the critical aspects of the environmental effects; the possible degradation of water quality in shallow aquifers overlying producing shale formations. The geochemistry of domestic groundwater wells was investigated in aquifers overlying the Fayetteville Shale in north-central Arkansas, where approximately 4000 wells have been drilled since 2004 to extract unconventional natural gas. Monitoring was performed on 127 drinking water wells and the geochemistry of major ions, trace metals, CH4 gas content and its C isotopes (δ13CCH4), and select isotope tracers (δ11B, 87Sr/86Sr, δ2H, δ18O, δ13CDIC) compared to the composition of flowback-water samples directly from Fayetteville Shale gas wells. Dissolved CH4 was detected in 63% of the drinking-water wells (32 of 51 samples), but only six wells exceeded concentrations of 0.5 mg CH4/L. The δ13CCH4 of dissolved CH4 ranged from −42.3‰ to −74.7‰, with the most negative values characteristic of a biogenic source also associated with the highest observed CH4 concentrations, with a possible minor contribution of trace amounts of thermogenic CH4. The majority of these values are distinct from the reported thermogenic composition of the Fayetteville Shale gas (δ13CCH4 = −35.4‰ to −41.9‰). Based on major element chemistry, four shallow groundwater types were identified: (1) low (<100 mg/L) total dissolved solids (TDS), (2) TDS > 100 mg/L and Ca–HCO3 dominated, (3) TDS > 100 mg/L and Na–HCO3 dominated, and (4) slightly saline groundwater with TDS > 100 mg/L and Cl > 20 mg/L with elevated Br/Cl ratios (>0.001). The Sr (87Sr/86Sr = 0.7097–0.7166), C (δ13CDIC = −21.3‰ to −4.7‰), and B (δ11B = 3.9–32.9‰) isotopes clearly reflect water–rock interactions within the aquifer rocks, while the stable O and H isotopic composition mimics the local meteoric water composition. Overall, there was a geochemical gradient from low-mineralized recharge water to more evolved Ca–HCO3, and higher-mineralized Na–HCO3 composition generated by a combination of carbonate dissolution, silicate weathering, and reverse base-exchange reactions. The chemical and isotopic compositions of the bulk shallow groundwater samples were distinct from the Na–Cl type Fayetteville flowback/produced waters (TDS ∼10,000–20,000 mg/L). Yet, the high Br/Cl variations in a small subset of saline shallow groundwater suggest that they were derived from dilution of saline water similar to the brine in the Fayetteville Shale. Nonetheless, no spatial relationship was found between CH4 and salinity occurrences in shallow drinking water wells with proximity to shale-gas drilling sites. The integration of multiple geochemical and isotopic proxies shows no direct evidence of contamination in shallow drinking-water aquifers associated with natural gas extraction from the Fayetteville Shale.  相似文献   

6.
Rise of groundwater level becomes an emerging concern at Wonji irrigation field, Main Ethiopian Rift. An integrated study based on geophysical resistivity methods is conducted at Wonji wetland to understand the link between irrigation water and the shallow aquifer system as well as to confirm the current concern of groundwater rise. The study was also intended to improve the uncertainty of understanding the hydrogeology of Wonji wetland including the extent and direction of groundwater–surface water interaction. The vertical and horizontal contacts between the different geological series of the Wonji area are resolved with 2D high-resolution geophysical imaging. Results from both VES and 2D tomography show low resistivity layers under Wonji irrigation field with narrow ranges in resistivity variation which corresponds to a homogeneous saturated layer. The geoelectric sections reveal two fault systems running NW–SE and N–S directions which impede lateral groundwater flow. Furthermore, groundwater is converged towards the Wonji irrigation site strained by these fault systems. The geophysical results show strong link between irrigation water and the shallow unconfined aquifer as well as among the local and regional flow systems.  相似文献   

7.
A conceptual groundwater flow model was developed for the crystalline aquifers in southeastern part of the Eastern region, Ghana. The objective was to determine approximate levels of groundwater recharge, estimate aquifer hydraulic parameters, and then test various scenarios of groundwater extraction under the current conditions of recharge. A steady state groundwater flow model has been calibrated against measured water levels of 19 wells in the area. The resulting recharge is estimated to range from 8.97 × 10?5 m/d to 7.14 × 10?4 m/d resulting in a basin wide average recharge of about 9.6% of total annual precipitation, which results in a basin wide quantitative recharge of about 2.4 million m3/d in the area. This compares to recharge estimated from the chloride mass balance of 7.6% of precipitation determined in this study. The general groundwater flow in the area has also been determined to conform to the general northeast–southwest structural grain of the country. The implication is that the general hydrogeology is controlled by post genetic structural entities imposed on the rocks to create ingresses for sufficient groundwater storage and transport. Calibrated aquifer hydraulic conductivities range between 0.99 m/d and over 19.4 m/d. There is a significant contribution of groundwater discharge to stream flow in the study area. Increasing groundwater extraction will have an effect on stream flow. This study finds that the current groundwater extraction levels represent only 0.17% of the annual recharge from precipitation, and that groundwater can sustain future increased groundwater demands from population growth and industrialization.  相似文献   

8.
Unplugged abandoned oil and gas wells in the Appalachian region can serve as conduits for the movement of waters impacted by fossil fuel extraction. Strontium isotope and geochemical analysis indicate that artesian discharges of water with high total dissolved solids (TDS) from a series of gas wells in western Pennsylvania result from the infiltration of acidic, low Fe (Fe < 10 mg/L) coal mine drainage (AMD) into shallow, siderite (iron carbonate)-cemented sandstone aquifers. The acidity from the AMD promotes dissolution of the carbonate, and metal- and sulfate-contaminated waters rise to the surface through compromised abandoned gas well casings. Strontium isotope mixing models suggest that neither upward migration of oil and gas brines from Devonian reservoirs associated with the wells nor dissolution of abundant nodular siderite present in the mine spoil through which recharge water percolates contribute significantly to the artesian gas well discharges. Natural Sr isotope composition can be a sensitive tool in the characterization of complex groundwater interactions and can be used to distinguish between inputs from deep and shallow contamination sources, as well as between groundwater and mineralogically similar but stratigraphically distinct rock units. This is of particular relevance to regions such as the Appalachian Basin, where a legacy of coal, oil and gas exploration is coupled with ongoing and future natural gas drilling into deep reservoirs.  相似文献   

9.
Lake Van is the fourth largest terminal lake in the world (volume 607 km3, area 3570 km2, maximum depth 460 m), extending for 130 km WSW–ENE on the Eastern Anatolian High Plateau, Turkey. The sedimentary record of Lake Van, partly laminated, has the potential to obtain a long and continuous continental sequence that covers several glacial–interglacial cycles (ca 500 kyr). Therefore, Lake Van is a key site within the International Continental Scientific Drilling Program (ICDP) for the investigation of the Quaternary climate evolution in the Near East (‘PALEOVAN’). As preparation for an ICDP drilling campaign, a site survey was carried out during the past years. We collected 50 seismic profiles with a total length of ~850 km to identify continuous undisturbed sedimentary sequences for potential ICDP locations. Based on the seismic results, we cored 10 different locations to water depths of up to 420 m. Multidisciplinary scientific work at positions of a proposed ICDP drill site included measurements of magnetic susceptibility, physical properties, stable isotopes, XRF scans, and pollen and spores. This core extends back to the Last Glacial Maximum (LGM), a more extended record than all the other Lake Van cores obtained to date. Both coring and seismic data do not show any indication that the deepest part of the lake (Tatvan Basin, Ahlat Ridge) was dry or almost dry during past times. These results show potential for obtaining a continuous undisturbed, long continental palaeoclimate record. In addition, this paper discusses the potential of ‘PALEOVAN’ to establish new results on the dynamics of lake level fluctuations, noble gas concentration in pore water of the lake sediment, history of volcanism and volcanic activities based on tephrostratigraphy, and paleoseismic and earthquake activities.  相似文献   

10.
Documenting whether surface water catchments are in net chemical mass balance is important to understanding hydrological systems. Catchments that export significantly greater volumes of solutes than are delivered via rainfall are not in hydrologic equilibrium and indicate a changing hydrological system. Here an assessment is made of whether a saline catchment in southeast Australia is in chemical mass balance based on Cl. The upper reaches of the Barwon River, southeast Australia, has total dissolved solids, TDS, concentrations of up to 5860 mg/L and Cl concentrations of up to 3370 mg/L. The high river TDS concentrations are due to the influxes of groundwater with TDS concentrations of up to 68,000 mg/L. Between 1989 and 2011, the median annual Cl flux from the upper Barwon catchment was 17.8 × 106 kg (∼140 kg/a/ha). This represents 340–2230% of the annual Cl input by rainfall to the catchment. Major ion and stable isotope geochemistry indicate that the dominant source of solutes in the catchment is evapotranspiration of rainfall, precluding mineral dissolution as a source of excess Cl. The upper Barwon catchment is not in chemical mass balance and is a net exporter of solutes. The chemical imbalance may reflect the transition within the last 100 ka from an endorheic lake system where solutes were recycled producing shallow groundwater with high TDS concentrations to a better drained catchment. Alternatively, a rise in the regional water table following land clearing may have increased the input of groundwater with high TDS concentrations to the river system.  相似文献   

11.
《Applied Geochemistry》2006,21(1):83-97
Groundwater in the Gwelup groundwater management area in Perth, Western Australia has been enriched in As due to the exposure of pyritic sediments caused by reduced rainfall, increased groundwater abstraction for irrigation and water supply, and prolonged dewatering carried out during urban construction activities. Groundwater near the watertable in a 25–60 m thick unconfined sandy aquifer has become acidic and has affected shallow wells used for garden irrigation. Arsenic concentrations up to 7000 μg/L were measured in shallow groundwater, triggering concerns about possible health effects if residents were to use water from household wells as a drinking water source. Deep production wells used for public water supply are not affected by acidity, but trends of progressively increasing concentrations of Fe, SO4 and Ca over a 30-a period indicate that pyrite oxidation products extend to the base of the unconfined aquifer. Falling Eh values are triggering the release of As from the reduction of Fe(III) oxyhydroxide minerals near the base of the unconfined aquifer, increasing the risk that groundwater used as a drinking water source will also become contaminated with high concentrations of As.  相似文献   

12.
The lithospheric structure of ancient cratons provides important constraints on models relating to tectonic evolution and mantle dynamics. Here we present the 3D lithospheric structure of the North China Craton (NCC) from a joint inversion of gravity, geoid and topography data. The NCC records a prolonged history of Archean and Paleoproterozoic accretion of crustal blocks through subduction and collision building the cratonic architecture, which was subsequently differentially destroyed during Mesozoic through extensive magmatism. The thermal structure obtained in our study is considered to define the lithosphere-asthenosphere boundary (LAB) of the NCC, and reflects the density variations within the mantle lithosphere. Employing the Moho depths from deep seismic sounding profiles for the inversion, and based on repeated computations using different parameters, we estimate the Moho depth, LAB depth and average crustal density of the craton. The Moho depth varies from 28 to 50 km and the LAB depth varies from 105 to 205 km. The LAB and Moho show concordant thinning from West to East of the NCC. The average crustal density is 2870 kg m 3 in the western part of the NCC, higher than that in the eastern part (2750 kg m 3). The results of joint inversion in our study yielded LAB depth and lithospheric thinning features similar to those estimated from thermal and seismic studies, although our results show different depth and variations in the thickness. The lithosphere gently thins from 145 to 105 km in the eastern NCC, where as the thinning is much less pronounced in the western NCC with average depth of about 175 km. The joint inversion results in this study provide another perspective on the lithospheric structure from the density properties and corresponding geophysical responses in an ancient craton.  相似文献   

13.
New isotopic and chemical data on the sodium bicarbonate water and associated gases from the Razdolnoe Spa located in the coastal zone of Primorsky Kray of the Russian Far East, together with previous stable isotope data (δ18O, δD, δ13C), allow elucidation of the origin and evolution of the groundwater and gases from the spa. The water is characterized by low temperature (12 °C), TDS – 2.5–6.0 g/L, high contents of B (∼5 mg/L) and F (4.5 mg/L) and low contents of Cl and SO4. Water isotopic composition indicates its essentially meteoric origin which may comply with an older groundwater that was recharged under different (colder) climatic conditions. Major components of bubbling gases are CH4 (68 vol%), N2 (28%) and CO2 (4%). The obtained values δ13C and δD for CO2 and CH4 definitely indicate the marine microbial origin of methane. Thus the high methane content in the waters relates to the biochemical processes and presence of a dispersed organic matter in the host rocks. Based on the regional hydrogeology and the geological structure of the Razdolnoe Spa, Mesozoic fractured rocks containing Na–HCO3 mineral water and gases are reservoir rocks, a chemical composition of water and gases originates in different environmental conditions.  相似文献   

14.
《Applied Geochemistry》2006,21(7):1184-1203
This paper examines the seasonal cycling of temperature and salinity in Dexter pit lake in arid northern Nevada, and describes an approach for modeling the physical processes that operate in such systems. The pit lake contains about 596,200 m3 of dilute, near neutral (pHs 6.7–9) water. Profiles of temperature, conductivity, and selected element concentrations were measured almost monthly during 1999 and 2000. In winter (January–March), the pit lake was covered with ice and bottom water was warmer (5.3 °C) with higher total dissolved solids (0.298 g/L) than overlying water (3.96 °C and 0.241 g/L), suggesting inflow of warm (11.7 °C) groundwater with a higher conductivity than the lake (657 versus 126–383 μS/cm). Seasonal surface inflow due to spring snowmelt resulted in lower conductivity in the surface water (232–247 μS/cm) relative to deeper water (315–318 μS/cm). The pit lake was thermally stratified from late spring through early fall, and the water column turned over in late November (2000) or early December (1999). The pit lake is a mixture of inflowing surface water and groundwater that has subsequently been evapoconcentrated in the arid environment. Linear relationships between conductivity and major and some minor (B, Li, Sr, and U) ions indicate conservative mixing for these elements.Similar changes in the elevations of the pit lake surface and nearby groundwater wells during the year suggest that the pit lake is a flow-through system. This observation and geochemical information were used to configure an one-dimensional hydrodynamics model (Dynamic Reservoir Simulation Model or DYRESM) that predicts seasonal changes in temperature and salinity based on the interplay of physical processes, including heating and cooling (solar insolation, long and short wave radiation, latent, and sensible heat), hydrologic flow (inflow and outflow by surface and ground water, pumping, evaporation, and precipitation), and transfers of momentum (wind stirring, convective overturn, shear, and eddy diffusion). Inputs to the model include the size and shape of the lake, daily meteorological data (short wave radiation, long wave radiation or cloud cover, air temperature, vapor pressure, wind speed, and rainfall), rates for water inputs and outputs, the composition of inflowing water, and initial profiles of temperature and salinity. Predicted temperature profiles, which are influenced by seasonal changes in the magnitude of solar radiation, are in good agreement with observations and show the development of a strong thermocline in the summer, erosion of the thermocline during early fall, and turnover in late fall. Predicted salinity profiles are in reasonable agreement with observations and are affected by the hydrologic balance, particularly inflow of surface and groundwater and, to a lesser degree, evaporation. Defining the hydrodynamics model for Dexter pit lake is the first step in using a coupled physical – biogeochemical model (Dynamic Reservoir Simulation Model-Computational Aquatic Ecosystem Dynamics Model or DYRESM-CAEDYM) to predict the behavior of non-conservative elements (e.g., dissolved O2, Mn, and Fe) and their effect on water quality in this system.  相似文献   

15.
This study investigates the hydraulic conductivity field and the groundwater flow pattern as predicted by a calibrated steady state groundwater flow model for the Keta Strip, southeastern Ghana. The hydraulic conductivity field is an important parameter in evaluating aquifer properties in space, and in general basin-wide groundwater resources evaluation and management. This study finds that the general hydraulic conductivity of the unconsolidated unconfined aquifer system of the Keta Strip ranges between 2 m/d and 20 m/d, with an average of 15 m/d. The spatial variation in horizontal hydraulic conductivity appears to take the trend in the variations in the nature of the material in space. Calibrated groundwater recharge suggests that 6.9–34% of annual precipitation recharges the shallow aquifer system. This amount of recharge is significant and suggests high fortunes in terms of groundwater resources development for agriculture and industrial activities in the area. A spatial distribution of groundwater recharge from precipitation is presented in this study. The spatial pattern appears to take the form of the distribution in horizontal hydraulic conductivity, and suggests that the vertical hydraulic conductivity takes the same pattern of spatial variation as the horizontal hydraulic conductivity. This is consistent with observations in other areas. The resulting groundwater flow is dominated by local flow systems as the unconfined system is quite shallow. A general northeast – southwest flow pattern has been observed in the study area.  相似文献   

16.
Artificial water reservoir triggered earthquakes are now known to have occurred at over 120 sites globally. The part played by the reservoirs in triggering is not exactly known due to lack of near field observations of triggered earthquakes. Koyna, located near the west coast of India, where triggered earthquakes have been occurring since 1962 provides an excellent site for near field observations of the target M  2 earthquakes. A 6 borehole seismic network has been deployed recently in the Koyna region at depths of 981–1522 m to improve the hypocenter locations. During May–December 2015, a total of 1039 earthquakes of ML  0.5 were located using the borehole seismic network. The region is also monitored through a dense network of 23 surface broad-band stations. Our analysis indicates a significant improvement in the estimation of absolute locations of earthquakes with errors of the order of ± 300 m, combining both the networks. Based on seismicity, and logistics, a block of 2 × 2 km2 area has been chosen for drilling the first pilot borehole of ~ 3 km depth, where M  2 earthquakes have been occurring frequently since 2005.  相似文献   

17.
The Niayes of Senegal are sahelian interdunal fens, that hosted an azonal subguinean vegetation during the Holocene thanks to the availability of fresh groundwater despite contrasted climatic conditions. Exploratory scenario-based modeling of the zonal hydrogeology has been conducted for different periods with the Cast3M code. The results show that the delay in the onset of humid vegetation ca. 10 ky cal. BP could be ecosystemic and denote a start of the African Humid Period (AHP) ca. 11.5 ky cal. BP. Alternatively, the AHP could have started earlier while its beneficial effects would have been canceled by low sea levels. Vegetation degradation around 7.5 ky cal. BP is shown to have resulted from a climate minoration, that possibly alleviated until 4 ky cal. BP. The rising watertable allowed the degraded forest to persist during that period however. The forest expansion that followed ca. 3.5 ky cal. BP had then clearly a climatic origin. The interpretation of pollens for climate research requires a careful filtering-out of local groundwater availability.  相似文献   

18.
19.
《Applied Geochemistry》2005,20(2):295-316
A confined aquifer system has developed in argillaceous marine and freshwater sediments of Pliocene–Holocene age in the northeastern Osaka Basin (NEOB) in central Japan. The shallow groundwater (<100 m) in the system is recharged in a northern hilly to mountainous area with dominantly Ca-HCO3 type water, which changes as it flows toward the SW to Mg-HCO3 type and then to Na-HCO3 type water. Comparison of the chemical and Sr isotopic compositions of the groundwater with those of the bulk and exchangeable components of the underground sediments indicates that elements leached from the sediments contribute negligibly to the NEOB aquifer system. Moreover, model calculations show that contributions of paleo-seawater in the deep horizon and of river water at the surface are not major factors of chemical change of the groundwater. Instead, the zonal pattern of the HCO3-dominant groundwater is caused by the loss of Ca2+ from the water as it is exchanged for Mg2+ in clays, followed by loss of Mg + Ca as they are exchanged for Na + K in clays between the Ca-HCO3 type recharge water and the exchangeable cations in the clay layers, which were initially enriched in Na+. Part of this process was reproduced in a chromatographic experiment in which Na type water with high 87Sr/86Sr was obtained from Mg type water with low 87Sr/86Sr by passing it through marine clay packed in a column. The flux of recharge water into the confined aquifer system according to this chromatographic model is estimated to be 0.99 mm/day, which is compatible with the average recharge flux to unconfined groundwater in Japan (1 mm/day).  相似文献   

20.
《Applied Geochemistry》2006,21(11):1868-1879
Ultra-clean sampling methods and approaches typically used in pristine environments were applied to quantify concentrations of Hg species in water and microbial biomass from hot springs of Yellowstone National Park, features that are geologically enriched with Hg. Microbial populations of chemically-diverse hot springs were also characterized using modern methods in molecular biology as the initial step toward ongoing work linking Hg speciation with microbial processes. Molecular methods (amplification of environmental DNA using 16S rDNA primers, cloning, denatured gradient gel electrophoresis (DGGE) screening of clone libraries, and sequencing of representative clones) were used to examine the dominant members of microbial communities in hot springs. Total Hg (THg), monomethylated Hg (MeHg), pH, temperature, and other parameters influential to Hg speciation and microbial ecology are reported for hot springs water and associated microbial mats.Several hot springs indicate the presence of MeHg in microbial mats with concentrations ranging from 1 to 10 ng g−1 (dry weight). Concentrations of THg in mats ranged from 4.9 to 120,000 ng g−1 (dry weight). Combined data from surveys of geothermal water, lakes, and streams show that aqueous THg concentrations range from l to 600 ng L−1. Species and concentrations of THg in mats and water vary significantly between hot springs, as do the microorganisms found at each site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号