首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rock mass failure is a particularly complex process that involves the opening and sliding of existing discontinuities and the fracturing of the intact rock. This paper adopts an advanced discretisation approach to simulate rock failure problems within the discontinuous deformation analysis (DDA) framework. The accuracy of this approach in continuum analysis is verified first. Then, the advanced discretisation approach for fracturing modelling is presented, and the discretisation strategy is discussed. Sample rock static failures are simulated and the results are compared with experimental results. Thereafter, with a generalised definition of the artificial joints, this approach is further extended and applied in the simulation of blast-induced rock mass failures in which the instant explosion gas pressure obtained by the detonation pressure equation of state is loaded on the main blast chamber walls and the induced surrounding connected fracture surfaces. In the simulation instance of rock mass cast blasting, the whole process, including the blast chamber expansion, explosion gas penetration, rock mass failure and cast, and the formation of the final blasting pile, is wholly reproduced.  相似文献   

2.
严成增  孙冠华  郑宏  葛修润 《岩土力学》2015,36(8):2419-2425
在原有有限元/离散元(FEM/DEM)耦合分析方法中,实现了一种新的爆破计算模型。该模型考虑了在爆生气体的作用下,随着裂隙的扩展,气体占据的体积不断增大,气体压力逐渐减小这一问题。同时考虑了气体嵌入与爆腔联通的裂隙对裂隙的作用力。克服了原有FEM/DEM方法中的爆破模型仅仅将压力施加于爆腔四周的岩壁上,无法考虑爆生气体嵌入生成的裂隙对裂隙的作用。提出了一种新颖的贯通裂隙网络形成的递归搜索算法,只需通过编写一个简单的递归函数,即可实现复杂裂隙网络的搜索,采用一种简洁的方法完成了对复杂问题的处理。最后通过一个爆破算例,结果表明FEM/DEM方法可以对爆炸过程中应力波的传播及岩体中裂纹的萌生、扩展进行全程捕捉,展现了该方法用于爆破模拟的潜力。  相似文献   

3.
节理岩体爆破的DDA方法模拟   总被引:2,自引:0,他引:2  
甯尤军  杨军  陈鹏万 《岩土力学》2010,31(7):2259-2263
在非连续变形分析(DDA)方法中,通过跟踪炮孔扩张和炮孔周边裂隙的发展贯通求得爆腔的即时体积,进而根据爆生压力状态方程计算爆腔即时压力,并将爆生压力载荷作用到主炮孔内壁和贯通裂隙面上,实现了爆生产物作用下节理岩体爆破的DDA方法模拟。采用DDA方法模拟了节理岩体中的水平柱状炮孔抛掷爆破问题,得到了爆腔的体积扩张和压力衰减时间曲线,模拟很好的再现了岩石爆破过程中的炮孔扩张、岩体破坏、块体抛掷和爆堆形成过程。  相似文献   

4.
Explosion gas plays an important role in rock mass fragmentation and cast in rock blasting. In this technical note, the discontinuous deformation analysis method is extended for bench rock blasting by coupling the rock mass failure process and the penetration effect of the explosion gas based on a generalized artificial joint concept to model rock mass fracturing. By tracking the blast chamber evolution dynamically, instant explosion gas pressure is derived from the blast chamber volume using a simple polytropic gas pressure equation of state and loaded on the blast chamber wall. A bench blasting example is carried out. The blast chamber volume and pressure time histories are obtained. The rock failure and movement process in bench rock blasting is reproduced and analysed.  相似文献   

5.
Airdecking is used in mining for two quite different applications. One is to enhance the fragmentation by amplifying the induced fracturing and the second is for pre-split blasting in which the borehole fracturing is reduced. This paper deals with the first of these effects. A forth coming paper will describe pre-splitting by airdecking. The use of air decks to enhance rock fragmentation and so to reduce explosive costs has been the practice for quite long time. Although a number of studies has been conducted to verify the advantages of blasting with air decks and to investigate the mechanisms involved, the proposed mechanisms still cannot explain clearly the phenomena observed in practice and the design approach adopted for this kind of blasting is still primary based on rules-of-thumb. In this paper, the theory of shock tubes is adopted to (a) investigate the processes of the expanding detonation products, (b) study the interactions between the explosion products and the stemming or bottom of blasthole, and (c) to decide the distribution of the changing pressure of explosion products along blasthole. Numerical simulation and theoretical analyses are then performed to study the physical process of blasting with air decks. Finally, a reasonable value for the airdecking ratio is decided theoretically. It is shown that the pressure-unloading process caused by the propagation of the rarefaction wave and the reflected rarefaction waves in the detonation products plays an important role in the enhanced fragmentation of rock when blasting with air decks. The unloading process can induce tensile stresses of rather high magnitude in the rock mass surrounding blasthole. This favors fracturing of the rock. The reflected shock wave with a magnitude of gas pressure higher than that of the average detonation pressure in a fully charged blasthole acts as the main energy source to break the rock in the air deck and stemming portions. The second and succeeding strain waves induced by the unloading or reloading of the pressurewithin the blasthole also contribute to form the initial fracture network in the rock around the blasthole. It is also revealed that there exists a reasonable range of values for the airdecking ratio. For ANFO, this value varies from 0.13-0.40.  相似文献   

6.
Blast Design Using Measurement While Drilling Parameters   总被引:1,自引:0,他引:1  
Measurement while drilling (MWD) techniques can provide a useful tool to aid drill and blast engineers in open cut mining. By avoiding time consuming tasks such as scan-lines and rock sample collection for laboratory tests, MWD techniques can not only save time but also improve the reliability of the blast design by providing the drill and blast engineer with the information specially tailored for use. While most mines use a standard blast pattern and charge per blasthole, based on a single rock factor for the entire bench or blast region, information derived from the MWD parameters can improve the blast design by providing more accurate rock properties for each individual blasthole. From this, decisions can be made on the most appropriate type and amount of explosive charge to place in a per blasthole or to optimise the inter-hole timing detonation time of different decks and blastholes. Where real-time calculations are feasible, the system could extend the present blast design even be used to determine the placement of subsequent holes towards a more appropriate blasthole pattern design like asymmetrical blasting.  相似文献   

7.
Theoretical Concept to Understand Plan and Design Smooth Blasting Pattern   总被引:1,自引:0,他引:1  
Considering different mechanical cutting tools for excavation of rock, drilling and blasting is said to be inexpensive and at the same time most acceptable and compatible to any geo-excavation condition. Depending upon strength properties of in-situ rock mass, characteristics of joint pattern and required quality of blasting, control blasting techniques viz., pre-split and smooth blasting are commonly implemented to achieve an undamaged periphery rock-wall. To minimize magnitude of damage or overbreak, the paper emphasized that in-situ stresses and re-distribution of stresses during the process of excavation should be considered prior to selection of explosive parameters and implementation of any suitable blast pattern. Rock structure being not massive in nature, the paper firstly explains the influence of discontinuities and design parameters on smooth-wall blasting. Considering the empirical equations for estimation of stress wave’s magnitude and its attenuation characteristics through transmitting medium, the paper has put forward a mathematical model for smooth blasting pattern. The model firstly illustrates that rock burden for each hole should be sub-divided into thin micro strips/slabs to understand the characteristics of wave transmission through the medium and lastly with the help of beam theory of structural dynamics have put forward a mathematical model to analyze and design an effective smooth blasting pattern to achieve an undamaged periphery rock-wall.  相似文献   

8.
This paper is an application of artificial neural networks (ANNs) in the prediction of the geometry of surface blast patterns in limestone quarries. The built model uses 11 input parameters which affect the design of the pattern. These parameters are: formation dip, blasthole diameter, blasthole inclination, bench height, initiation system, specific gravity of the rock, compressive and tensile strength, Young's modulus, specific energy of the explosive and the average resulting fragmentation size. Detailed data from a previous investigation were used to train and verify the network and predict burden and spacing of a blast. The built model was used to conduct parametric studies to show the effect of blasthole diameter and bench height on pattern geometry.  相似文献   

9.
Rockfall is the most frequent major hazard in mountainous areas. For hazard assessment and further countermeasure design, realistic and accurate prediction of rockfall trajectory is an important requirement. Thus, a modeling method to represent both geometrical parameters of slope and falling rock mass is required. This study, suggests taking the advantages of discontinues deformation analysis (DDA) and geographical information system (GIS). In this study, after developing a three dimensional (3D) DDA program, firstly a special element named contact face element (CFE) was introduced into 3D DDA; secondly, effectively modeling tools with GIS support were developed. The implementation of CFE also improves the efficiency of both the contact searching and solution process. Then a simple impact model was devised to compare the 3D DDA implemented directly with a sliding model with theoretical analysis to verify the reliability of the modified 3D DDA program and investigate the parameter settings. Finally, simulations concerning rock shapes and multi-rocks were carried out to show the applicable functions and advantages of the newly developed rockfall analysis code. It has been shown that the newly developed 3D DDA program with GIS support is applicable and effective.  相似文献   

10.
节理对爆炸波传播影响的数值研究   总被引:2,自引:0,他引:2  
采用加入无反射边界条件的DDA程序,研究了节理面对应力波传播的影响。结果表明,节理面能阻碍波的传播,有利于波的衰减,节理面越多,波的反射越强,而波的透射越弱。模拟了一个现场爆炸试验,研究爆炸产生的应力波在节理岩体中传播、衰减的规律,模拟结果与现场试验结果比较吻合。研究表明,DDA方法可以模拟节理面对应力波传播的阻碍作用,用它来模拟爆炸波在节理岩体中的传播是适用的。  相似文献   

11.
Drilling and blasting is a major technology in mining since it is necessary for the initial breakage of rock masses in mining. Only a fraction of the explosive energy is efficiently consumed in the actual breakage and displacement of the rock mass, and the rest of the energy is spent in undesirable effects, such as ground vibrations. The prediction of induced ground vibrations across a fractured rock mass is of great concern to rock engineers in assessing the stability of rock slopes in open pit mines. The waveform superposition method was used in the Gol-E-Gohar iron mine to simulate the production blast seismograms based upon the single-hole shot vibration measurements carried out at a distance of 39 m from the blast. The simulated production blast seismograms were then used as input to predict particle velocity time histories of blast vibrations in the mine wall using the universal distinct element code (UDEC). Simulated time histories of particle velocity showed a good agreement with the measured production blast time histories. Displacements and peak particle velocities were determined at various points of the engineered slope. The maximum displacement at the crest of the nearest bench in the X and Y directions was 26 mm, which is acceptable in regard to open pit slope stability.  相似文献   

12.
The mechanism by which the explosive energy is transferred to the surrounding rock mass is changed in air-deck blasting. It allows the explosive energy to act repeatedly in pulses on the surrounding rock mass rather than instantly as in the case of concentrated charge blasting. The air-deck acts as a regulator, which first stores energy and then releases it in separate pulses. The release of explosion products in the air gap causes a decrease in the initial bore hole pressure and allows oscillations of shock waves in the air gap. The performance of an air-deck blast is basically derived from the expansion of gaseous products and subsequent multiple interactions between shock waves within an air column, shock waves and stemming base and shock waves and hole bottom. This phenomenon causes repeated loading on the surrounding rock mass by secondary shock fronts for a prolonged period. The length of air column and the rock mass structure are critical to the ultimate results. Several attempts have been made in the past to study the mechanism of air-deck blasting and to investigate its effects on blast performance but a clear understanding of the underlying mechanism and the physical processes to explain its actual effects is yet to emerge. In the absence of any theoretical basis, the air-deck blast designs are invariably carried out by the rules of thumb. The field trials of this technique in different blast environments have demonstrated its effectiveness in routine production blasting, pre-splitting and controlling over break and ground vibrations etc. The air-deck length appropriate to the different rock masses and applications need to be defined more explicitly. It generally ranges between 0.10 and 0.30 times the original charge length. Mid column air-deck is preferred over the top and bottom air-decks. Top air-deck is used especially in situations, which require adequate breakage in the stemming region. The influence of air-deck location within the hole on blast performance also requires further studies. This paper reviews the status of knowledge on the theory and practice of air-deck blasting in mines and surface excavations and brings out the areas for further investigation in this technique of blasting.  相似文献   

13.
坚硬顶煤弱化爆破的宏观损伤破坏程度研究   总被引:4,自引:0,他引:4  
索永录 《岩土力学》2005,26(6):893-895
根据综放开采坚硬顶煤预先弱化爆破作用的目的和特点,认为在爆炸载荷作用下坚硬煤体的动态断裂破坏也是一个连续损伤演化积累过程。通过大煤样爆破超动态应变测试,提出坚硬顶煤预先弱化爆破的爆破中区应变波峰值体积应变符合幂函数衰减规律,并在此基础上,结合Tarlor、Drady等岩石爆破损伤演化模型,建立了坚硬顶煤预先弱化爆破宏观损伤破坏程度的分布函数,给出了相应的计算参数和系数,为分析和确定顶煤弱化爆破合理参数提供了基础。  相似文献   

14.
Blast design is a critical factor dominating fragmentation and cost of actual bench blasts. However, due to the varying nature of rock properties and geology as well as free surface conditions, reliable theoretic formulae are still unavailable at present and in most cases blast design is carried out by personal experience. As an effort to find a more scientific and reliable tool for blast design, a computer-aided bench blast design and simulation system, the BLAST-CODE model, is developed for Shuichang surface mine, Mining Industry Company of the Capital Iron and Steel Corporation Beijing. The BLAST-CODE model consists of a database representing geological and topographical conditions of the mine and the modules Frag + and Disp + for blast design and prediction of resultant fragmentation and displacement of rock mass. The two modules are established in accordance with cratering theory qualitatively and modified quantitatively by regression of the data collected from 85 bench blasting practices conducted in 3 mines of the Shuichang surface mine. Blasting parameters are selected based upon quantitative and comprehensive evaluation on the effect of the factors such as rock properties, geology, free surface conditions and detonation characteristics of the explosive products in use. In order to ensure practicality and reliability of the system, the BLAST-CODE model allows automatic adjustment to the selected parameters such as burden B and spacing S as well as explosive charge amount Q of any blasthole under irregular topographic and/or varying blastability conditions of the rock mass to be blasted. Simulation of the BLAST-CODE model includes prediction of fragmentation and displacement that are demonstrated in terms of swell factor, characteristic rock size x c and size distribution coefficient n by Rossin-Ramler's equation, and 3-dimentional muck pile profile. The BLAST-CODE model also permits interactive parameter selection based on comparison of the predicted fragmentation and displacement as well as the cost for drilling, explosives, and accessories until the most effective option can be selected.  相似文献   

15.
等离子爆破技术是一种新型爆破技术,其爆破孔的设计对整个爆破效果及爆破效率起着决定性的作用。本文基于ANSYS/LS-DYNA建立了爆破孔的有限元模型,并对爆炸荷载作用下掏槽孔孔壁压力及其破碎区进行了数值模拟。研究结果表明,爆破时畸变能的变化自始至终都基本呈椭圆形,孔径越小,积累的能量越大,对岩体破坏越大;孔深长度越短,能量积聚空间越小,爆破对岩体造成的破坏越大;孔深长度的改变对下部岩体影响较小,对中部岩体影响较大。此外由于爆炸实验多为破坏性实验,很难进行原型试验,因此使用数值模拟方法研究爆破孔的结构是可行的,可以作为实际工程的参考。  相似文献   

16.
损伤条件下深部岩体巷道光面爆破参数研究   总被引:3,自引:0,他引:3  
付玉华  李夕兵  董陇军 《岩土力学》2010,31(5):1420-1426
岩体条件复杂多变,为了提高光面爆破的适应性、改善光面爆破效果,对损伤条件下深部岩体巷道光面爆破参数进行研究。通过对深部岩体巷道光爆层原岩应力场、光面爆破机制和振动损伤特征进行分析,基于爆炸应力波和爆生气体综合作用理论,考虑高原岩应力和岩石损伤影响,提出了损伤条件下深部岩体巷道光面爆破参数确定的计算方法。研究表明, (1)高原岩应力相当于提高了岩石的抗拉强度,不利于炮孔初始裂纹的形成及贯通,宜减小周边眼间距;(2)岩石损伤后,其他条件不变,光面爆破的炮孔间距和抵抗线值可适当加大;(3)高原岩应力和损伤条件下,光面爆破的炮孔间距较小时,容易造成爆后围岩损伤,降低围岩的稳定性能,因此,提高爆破效果的同时应及时加强支护,以确保施工安全和围岩稳定;(4)本文提出的光面爆破参数计算公式,经现场爆破验证效果良好,适用于复杂多变的岩体环境。  相似文献   

17.
Most blasting operations are associated with various forms of energy loss, emerging as environmental side effects of rock blasting, such as flyrock, vibration, airblast, and backbreak. Backbreak is an adverse phenomenon in rock blasting operations, which imposes risk and increases operation expenses because of safety reduction due to the instability of walls, poor fragmentation, and uneven burden in subsequent blasts. In this paper, based on the basic concepts of a rock engineering systems (RES) approach, a new model for the prediction of backbreak and the risk associated with a blast is presented. The newly suggested model involves 16 effective parameters on backbreak due to blasting, while retaining simplicity as well. The data for 30 blasts, carried out at Sungun copper mine, western Iran, were used to predict backbreak and the level of risk corresponding to each blast by the RES-based model. The results obtained were compared with the backbreak measured for each blast, which showed that the level of risk achieved is in consistence with the backbreak measured. The maximum level of risk [vulnerability index (VI) = 60] was associated with blast No. 2, for which the corresponding average backbreak was the highest achieved (9.25 m). Also, for blasts with levels of risk under 40, the minimum average backbreaks (<4 m) were observed. Furthermore, to evaluate the model performance for backbreak prediction, the coefficient of correlation (R 2) and root mean square error (RMSE) of the model were calculated (R 2 = 0.8; RMSE = 1.07), indicating the good performance of the model.  相似文献   

18.
Summary A variety of overbreak control techniques are used during excavation with the drill and blast system. Tracer blasting is used in Canadian underground mines to minimize blast damage and involves placing a low-strength detonating cord along the length of a blast hole prior to charging with ammonium nitrate-fuel oil (ANFO). The results of tracer blasting are not always consistent and its mechanism is only hazily comprehended. In the absence of a clearly defined mechanism, it is difficult to analyse the results of tracer blasting and to identify the factors responsible for the inconsistency of results.A series of bench blasts and pipe tests were carried out to investigate the mechanism of tracer blasting. The evidence indicated partial deflagration and desensitization of ANFO, thus reducing the total available explosive energy. The rock mass surrounding the traced blasthole experienced a low level of ground vibrations. As a result of the continuous side initiation of ANFO, energy partitioning was more in favour of gas energy. A mechanism of tracer blasting has been proposed and the factors responsible for the inconsistency of the results have been identified in this paper.  相似文献   

19.
金旭浩  卢文波  田勇  严鹏  陈明 《岩土力学》2011,32(Z2):228-232
全面总结、分析了岩石爆破过程S波的产生机制,表明短柱状药包、炮孔周围岩体的开裂与破碎以及装药偏离球形或柱形空腔中心,均可诱发S波,并且诱发S波的幅值可超过P波;P波传播过程与岩体界面的相互作用,可产生次生的S波(透、反射SV波)。在此基础上,就爆破振动场模拟方法与计算模型选择中如何体现S波的产生机制方面提出了建议  相似文献   

20.
单自由面爆破条件下作用在岩体上的最有效破坏力小,而阻碍岩体破坏的作用力很大,使炮孔堵塞长度对爆破振动有较大影响。因此,研究单自由面爆破振动特征的炮孔堵塞长度效应有重要意义。进行了小规模的不同堵塞长度的单自由面爆破试验,并模拟了其爆破过程。研究表明,近距范围内爆破振动速度迅速衰减,中远距离爆破振动速度衰减趋缓;随着堵塞长度的增加,场地系数K不断增加,衰减指数? 总体呈上升趋势;数值模拟振动速度值与实测值误差在15%以内;爆破后不同堵塞长度模型的堵塞物底部空腔半径基本相等,约为装药半径的3倍;试验最优堵塞长度为15~20 cm,相同条件下无堵塞爆破对孔口有效应力场影响较大、对孔底有效应力场影响较小  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号