首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Existing achievements about Baotou Fault demonstrate it as a buried eastern boundary of the Baiyanhua Basin in Hetao active fault subsidence zone,striking NE.More data is needed to assess its activity.Located in the relay ramp between Wulashan Fault and Daqingshan Fault,Baotou Fault's activity is of great importance to discuss the linkage mode and the response to the earthquake of the adjacent fault.Also it is necessary to the knowledge of the characteristic of the seismic tectonic in local area.Recently it is prevalent to combine shallow seismic profile and composite drilling section to study the activity of the buried fault.Shallow seismic profile indicates that Baotou Fault is a normal fault,inclining to NW.The displacement of the Tg at 75m underground is 25m.Composite drilling section indicates that it is a growth fault,the up-break point of which is 45.6m underground and ends in brownish red clay strata of early Pleistocene.In comparison,the upper Late Pleistocene strata are out of the influences of the tectonic subsidence zone.Baotou Fault's activity is limited to the early Pleistocene.  相似文献   

2.
史载公元849年10月20日,内蒙古河套地区发生大地震.对这次地震的震中位置、震级、烈度的认识目前存在较大分歧.作者在大青山山前断裂带活断层填图和古地震研究过程中,在大青山山前断裂中、西段,发现多处距今1000多年的地震形变遗迹;结合公元849年地震史料的进一步考证,表明大青山山前断裂带为公元849年地震的发震构造.宏观震中位置应在活动断裂变位量最大的包头铝厂至永富一带,地理坐标约为北纬40.4deg;,东经110.2deg;.震中烈度为Ⅹ度,震级为7.7.   相似文献   

3.
Through study on trenches, analysis of recurrence characteristics and recurrence interval cluster/gap of strong earthquakes along the major active faults on the northern border of Ordos block, we found 62 paleoearthquakes that occurred in the late Quaternary, including 33 earthquakes occurring in the Holocene. The recurrence characteristics of the paleoearthquakes are different at three levels, segments, faults, and fault zones. The strong seismic sequence on the independent segments is mostly characterized by long- and short-interval recurrences, while that on the faults and in fault zone is characterized clearly by random and cluster recurrences. Results of the moving window test indicate that the probabilities of "temporal cluster or gap", caused by random coincidence as opposed to intersegment contagion, are 64% and 70% for the Serteng piedmont fault and for the south-border fault of Wula Mountains, respectively, no clear interaction among the segments of each fault; while the probability is 26.8% for the whole fault zone, suggesting a clear interaction among the faults of this fault zone. These recurrence characteristics may imply an effect of the entire block motion on the recurrence of strong earthquakes. Moreover, the elapsed time for the Wujumeng Pass-Dongfeng Village segment of Serteng piedmont fault and the Tuzuo Banner-Wusutu and the Hohhot segments of Daqingshan piedmont fault has exceeded the average recurrence interval, hence these three segments may be the possible places for future strong earthquakes.  相似文献   

4.
Through study on trenches, analysis of recurrence characteristics and recurrence interval cluster/gap of strong earthquakes along the major active faults on the northern border of Ordos block, we found 62 paleoearthquakes that occurred in the late Quaternary, including 33 earthquakes occurring in the Holocene. The recurrence characteristics of the paleoearthquakes are different at three levels, segments, faults, and fault zones. The strong seismic sequence on the independent segments is mostly characterized by long- and short-interval recurrences, while that on the faults and in fault zone is characterized clearly by random and cluster recurrences. Results of the moving window test indicate that the probabilities of “temporal cluster or gap”, caused by random coincidence as opposed to intersegment contagion, are 64% and 70% for the Serteng piedmont fault and for the south-border fault of Wula Mountains, respectively, no clear interaction among the segments of each fault; while the probability is 26.8% for the whole fault zone, suggesting a clear interaction among the faults of this fault zone. These recurrence characteristics may imply an effect of the entire block motion on the recurrence of strong earthquakes. Moreover, the elapsed time for the Wujumeng Pass-Dongfeng Village segment of Serteng piedmont fault and the Tuzuo Banner-Wusutu and the Hohhot segments of Daqingshan piedmont fault has exceeded the average recurrence interval, hence these three segments may be the possible places for future strong earthquakes.  相似文献   

5.
跨呼和浩特-包头盆地(以下简称"呼包盆地")完成的91.8km长的深地震反射剖面,揭示了呼包盆地的岩石圈精细结构和断裂的深、浅构造特征.结果表明,本区地壳和岩石圈具有清晰的层状反射结构特征,其中,地壳厚度约45~48km,岩石圈厚度约82~87km.莫霍面在大青山之下出现约3.5km的抬升,暗示大青山的隆升不是因为地壳物质增厚所致,即大青山可能不存在"山根".呼包盆地为南浅、北深的"箕状"断陷盆地,盆地沉积层最厚处位于大青山山前,其厚度约为7~8km.鄂尔多斯北缘断裂和大青山山前断裂作为呼包盆地的南、北边界断裂,在剖面上均表现为由3~4条断裂组成的"Y"字形断裂构造,它们对呼包盆地的形成、地层沉积、基底变形和地震活动都有重要的控制作用.剖面揭示的岩石圈深断裂位于大青山山前断裂的下方,该断裂向上进入上地壳,向下切割中-下地壳、莫霍面,进入上地幔.深断裂的存在为深部热物质的上涌与能量强烈交换提供了通道,而上涌的软流层物质与岩石圈地幔发生交代和侵蚀作用导致岩石圈减薄.  相似文献   

6.
大青山山前活动断裂带分段与潜在震源区划分   总被引:2,自引:1,他引:1  
潜在震源区的划分主要包括潜在震源区范围的划定以及震级上限的确定,目前遵循地震构造类比和地震活动重复等原则。而活断层的分段特性也是潜在震源区划分时必须考虑的一个重要因素。大青山山前断裂带至今有3种不同的分段方案,文中比较分析了前人对大青山山前断裂带的分段,并在此基础上对大青山及山前盆地的潜在震源区作了新的划分。鄂尔多斯块体周缘被拉张性断陷盆地围绕,这些断裂系地震构造相似,且除呼包盆地外均有历史8级以上地震记录。文中将大青山山前断裂带与鄂尔多斯块体周缘断裂系进行了构造对比,特别是与华山山前断裂进行了断裂活动性定量对比,得出雪海沟到土左旗段的震级上限为8级,断裂两端潜源震级上限均为7.5级  相似文献   

7.
色尔腾山山前断裂得令山以东段属全新世活动断裂。距今约 30ka以来 ,断裂上升盘的平均抬升速率为 :大佘太段 0 19mm/a ,乌兰忽洞段 0 2 0mm/a。探槽揭露 ,大佘太段 ,约 32kaBP以来 ,发生过 4次古地震事件 ,事件发生时间依次为 (316 90± 1770 ) ,(2 30 0 0± 132 0 ) ,(15 42 0± 870 ) ,(74 40± 4 40 )aBP ,相应的位移量分别为 2 6 ,1 6 ,2 2 ,1 4m ;乌兰忽洞段 ,约 2 5kaBP以来 ,也发生过4次古地震事件 ,事件发生时间依次为 (2 5 130± 14 30 ) ,(14 5 70± 82 0 ) ,(116 6 0± 6 5 0 ) ,(72 2 0± 4 0 0 )aBP ,相应的位移量分别为 2 6 ,1 8,1 3,1 2m。根据位移量限定法 ,两个活动段落的古地震活动历史是完整的  相似文献   

8.
内蒙古大青山的新生代剥蚀和隆起   总被引:6,自引:1,他引:5       下载免费PDF全文
内蒙古大青山及其毗邻的呼和浩特断陷盆地是研究剥蚀和地壳均衡隆起的理想地区。本文提供了大青山新生代等高峰顶面和晚第四纪河流阶地拱曲变形的证据 ;依据呼和浩特盆地的地震探测获得的沉积厚度 ,计算出大青山的剥蚀和地壳均衡隆起量 ;提出地壳均衡隆起是大青山晚第三纪以来主要的区域变形机制 ;指出由於地壳均衡隆起 ,剥蚀作用最终只是使大青山高度略微降低 ;同时复原了大青山新生代景观演化历史。本文还讨论了剥蚀和地壳均衡隆起之间的耦合关系以及断裂作用在其中的地位 ,认为大青山新生代景观演化是在剥蚀去荷失去重力平衡和均衡隆起恢复重力平衡的长期自身耦合作用中进行的 ,在此过程中断层的下降盘由主动盘变成被动盘  相似文献   

9.
内蒙大青山山前活动断裂带的地震破裂分段特征   总被引:7,自引:0,他引:7       下载免费PDF全文
沿内蒙大青山山前活动断裂进行野外调查及探槽开挖的研究结果表明 ,该断裂西部地段及东部地段的最新活动时期在全新世中期以后及全新世晚期以前 ;中部地段在全新世晚期强烈活动 ,公元 84 9年包头地震的地表破裂沿该段展布。大青山山前台地与断层陡坎分布、洪积扇类型及河流阶地断错等地貌特征、全新世晚期断裂活动范围、沿断裂带探槽开挖获得的古地震事件对比 ,以及现今中小地震震中分布表明 ,全新世晚期大青山山前断裂的活动以土左旗为界 ,该界以西全新世晚期断裂强烈活动 ,该界以东全新世晚期断裂活动不明显。全新世时期大青山山前断裂的活动显示了由东向西的迁移  相似文献   

10.
Pangusi-Xinxiang Fault is a great-scale, deep-incising buried active fault in the southern margin of the Taihang Mountains. In order to find out the location, characteristics, structure and activities of Pangusi-Xinxiang Fault, shallow reflection profiles with six lines crossing the buried faults were carried out. In this paper, based on the high-resolution seismic data acquisition technology and high-precision processing technology, we obtained clear images of underground structures. The results show that Pangusi-Xinxiang Fault is a near EW-trending Quaternary active fault and its structural features are different in different segment. The middle part of the fault behaves as a south-dipping normal fault and controls the north boundary of Jiyuan sag; The eastern part of the fault is a north-dipping normal fault and a dividing line of Wuzhi uplift and Xiuwu sag. The shallow seismic profiles reveal that the up-breakpoint of the Pangusi-Xinxiang Fault is at depth of 60~70m, which offsets the lower strata of upper Pleistocene. We infer that the activity time of this fault is in the lower strata of late Pleistocene. In this study, not only the location and characteristics of Pangusi-Xinxiang Fault are determined, but also the reliable geological and seismological evidences for the fault activity estimation are provided.  相似文献   

11.
钻探揭示的黄河断裂北段活动性和滑动速率   总被引:5,自引:2,他引:3       下载免费PDF全文
黄河断裂是银川盆地内展布最长、切割最深的一条深大断裂,也是银川盆地的东边界。由于其北段呈隐伏状,因此,该段的活动性和滑动速率长期未知,影响了对盆地演化和地震危险性的认识。文中选择具有石油地震勘探基础的陶乐镇为研究场点,以人工浅层地震勘探结果为依据,在黄河断裂北段布设了一排钻孔联合剖面,并对标志层进行年代测试,获得了断裂的活动时代和滑动速率。结果表明,黄河断裂北段在晚更新世末期或全新世有过活动,在(28.16±0.12)ka BP 以来的累积位移为0.96m,晚第四纪以来的平均滑动速率为0.04mm/a,该值明显低于南段灵武断层(0.24mm/a);尽管向下切割了莫霍面,黄河断裂晚第四纪活动强度和发震能力均要低于切割相对浅的贺兰山东麓断裂;黄河断裂可能在新生代之前已经强烈活动并深切莫霍面,新生代以来,银川盆地的构造活动迁移分解到以贺兰山东麓断裂为主的多条断裂之上,地壳双层伸展模型可解释银川盆地现今深浅部构造活动间的联系。  相似文献   

12.
The Daqingshan Fault located in the northern margin of the Hetao Basin has experienced intensive activity since late Quaternary, which is of great significance to the molding of the present geomorphology. Since basin geomorphological factors can be used to reflect regional geomorphological type and development characteristics, the use of typical geomorphology characteristics indexes may reveal the main factors that control the formation of topography. In recent years, more successful research experience has been accumulated by using hypsometric integral(HI) values and channel steepness index(ksn)to quantitatively obtain geomorphic parameters to reveal regional tectonic uplift information. The rate of bedrock uplifting can be reflected by channel steepness index, the region with steep gradient has high rate of bedrock uplifting, while the region with slower slope has low rate of bedrock uplifting. The tectonic uplift can shape the geomorphic characteristics by changing the elevation fluctuation of mountains in study area, and then affect the hypsometric integral values distribution trend, thus, the HI value can be used to reflect the intensity of regional tectonic activity, with obvious indicating effect. Knick point can be formed by fault activity, and the information of knick point and its continuous migration to upstream can be recorded along the longitudinal profile of stream. Therefore, it is possible and feasible to obtain the information of tectonic activity from the geomorphic characteristics of Daqinshan area. The research on the quantitative analysis of regional large-scale tectonic activities in the Daqingshan area of the Yellow River in the Hetao Basin is still deficient so far. Taking this area as an example, based on the method of hypsometric integral(HI) and channel steepness index(ksn), we use the DEM data with 30m resolution and GIS spatial analysis technology to extract the networks of drainage system and seven sub-basins. Then, we calculate the hypsometric integral(HI) values of each sub-basin and fit its spatial distribution characteristics. Finally, we obtain the values of channel steepness index and its fitting spatial distribution characteristics based on the improved Chi-plot bedrock analysis method. Combining the extraction results of geomorphic parameters with the characteristics of fault activity, we attempt to explore the characteristics of drainage system development and the response of stream profile and geomorphology to tectonic activities in the Daqingshan section of the Yellow River Basin. The results show that the values of the hypsometric integral in the Daqingshan drainage area are medium, between 0.5~0.6, and the Strahler curve of each tributary is S-shaped, suggesting that the geomorphological development of the Daqingshan area is in its prime, and the tectonic activity and erosion is strong. Continuous low HI value is found in the tectonic subsidence area on the hanging wall of the Daqingshan Fault. The distribution characteristics of the HI value reveal that the Daqingshan Fault controls the geomorphic difference between basin and mountain. Longitudinal profiles of the river reveal the existence of many knick points. The steepness index of river distributes in high value along the trend of mountain which lies in the tectonic uplift area on the footwall of the Daqingshan Fault. It reflects that the bedrock uplift rate of Daqingshan area is faster. The distribution characteristics of the channel steepness index show that the uplift amplitude of Daqingshan area is strong and the bedrock is rapidly uplifted, which is significantly different from the subsidence amplitude in the depression basin at the south margin of the fault, indicating that the main power source controlling the basin mountain differential movement comes from Daqingshan Fault. Based on the comparison and analysis on tectonic, lithology and climate, there is no obvious corresponding relationship between the difference of rock erosion resistance and the change of geomorphic parameters, and the precipitation has little effect on the geomorphic transformation of Daqingshan area, and its contribution to the geomorphic development is limited. Thus, we think the lithology and rainfall conditions have limited impact on the hypsometric integral, longitudinal profiles of the river and channel steepness index. Lithology maybe has some influences on the channel knick points, while tectonic activity of piedmont faults is the main controlling factor that causes the unbalanced characteristics of the longitudinal profile of the channel and plays a crucial role in the development of the channel knick points. So, tectonic activity of the Daqingshan Fault is the main factor controlling the uplift and geomorphic evolution of the Daqingshan area.  相似文献   

13.
断裂活动和地震活动具有互为因果的关系,而不同于一般做法,文中用地震的活动性来分析断裂带的活动特征.为了解邯郸市周边存在的断裂带的活动特征,基于邯郸市附近地震台网监测的地震数据,利用地震纵波速度和震源位置联合反演方法,得到了邯郸市周边主要断裂带上地震波速度及震中在空间和时间上的分布特征,确定了地下壳质的纵波速度结构特征.综合分析表明:邯郸市周边小震的活动主要由磁县断裂和林州-武安断裂引起,太行山山前断裂带南端(邯郸-磁县段)几乎没有活动;地震活动集中在6 ~ 10km的范围内;活动时间特征是,从开始的2条断裂带同时活动逐渐演变为以磁县断裂活动为主.  相似文献   

14.
There are 18 gullies displaying sinistral contortions to different degrees along the western terminal segment about 10 km long of the active Daqingshan piedmont fault near the Donghe District, Baotou City. The contortion amount of gullies ranges from 20 m to 300 m. The contortion and length of the gullies are in direct proportion. The relation between piedmont terraces and gullies indicates that the gullies with upper reaches of about 1 ~ 5 km long and those smaller than one kilometer were formed at the end of Late Pleistocene and Holocene.Meanwhile, sandy gravel layer of alluvial-proluvial sediment on the upthrown wall is directly in contact with yellow clayey sand of the downthrown wall. During the Holocene, the sinistral strike-slip rate along the western terminal segment of the active Daqingshan piedmont fault reached 5 mm/a from age data of dislocated sediments. The evolutional mechanism of the active Daqingshan piedmont fault is also discussed in the paper.  相似文献   

15.
On the basis of dividing and comparison of the Neogene strata and their bottoms revealed by 7 drill holes in Taikang area, we completed 101 seismic profiles with a total length of 4991km. Seismic data were compared and interpreted. The results indicate that Xinzheng-Taikang Fault, as a blind fault extending from Xinzheng to Taikang, which was considered as an EW striking fault from Xuchang to Taikang before, is the boundary of Taikang uplift and Zhoukou depression, controlling the sedimentation since Neogene Period. So we named the fault the Xinzheng-Taikang Fault, which is composed of two branches, mainly, the east and west branches. The west branch strikes northwest, dipping northeast with steep angles, and the fault plane extending more than 140km in length. As revealed on the seismic profiles, the eastern segment of the west branch is normal fault, while the west segment of the branch shows characteristics of strike-slip fault. The east branch trends NW-NEE, dipping SW-SSE with the length of about 50km. Two branches form a minus flower structure, indicating the strike slip-extension tectonic background. The bottom of Neogene strata is offset about 120m by the east branch, 20m by the west branch, and the bottom of Quaternary is probably offset too. Meanwhile, latest studies suggest that the composite strip of the two branches of Xinzheng-Taikang Fault, which is a tectonic transfer zone, is the subduction zone between the two strike-slip faults. The tectonic stress tends to be released by the east-west branch fault, and the zone should be the seismogenic structure for the recent seismicity in Taikang area. In 2010, the latest earthquake ofMS4.7 occurred in this area, causing 12 people wounded. The seismogenic structure was considered to be the Xinzheng-Taikang Fault. So locating the fault exactly is of great importance to disaster prevention.  相似文献   

16.
太行山东缘石家庄南部地壳结构及断裂活动性探测   总被引:3,自引:0,他引:3       下载免费PDF全文
采用深、浅地震反射和钻孔地质剖面相结合的方法,对太行山东缘石家庄南部的地壳结构和隐伏断裂的活动性进行了研究.深地震反射探测结果表明,该区地壳厚度33~38km,莫霍面从华北平原向太行山下倾伏.石家庄—晋县凹陷是受拆离断层控制的盆岭构造,太行山山前断裂为凹陷的西边界断裂,表现为上陡下缓的铲形断裂.石家庄—晋县凹陷中还发育北席断裂和栾城断裂,它们与太行山山前断裂一样受拆离断层的控制,未错断早更新世晚期以来沉积的地层不属于活动断裂.深地震反射剖面的中部还揭示了一个近垂直的穹窿状反射异常体,它可能起源于莫霍面,向上,穿过上、下地壳分界面,并延伸至上地壳.穹窿状反射异常体内部反射波视频率随深度增加而降低,在莫霍面附近的壳幔过渡带也出现明显的频率降低、界面扭曲和变形现象,推断它可能是上地幔岩浆上涌到地壳内部的侵入体.结合电磁测深结果可以发现,上地幔热物质的上涌和东、西向拉张可能是形成石家庄—晋县凹陷的动力学机制.探测结果为深入理解石家庄地区的深部地球动力学过程、华北克拉通破坏机制、深浅构造关系和地震构造提供了依据.  相似文献   

17.
Bayan Hara Block is one of the most representative active blocks resulting from the lateral extrusion of Tibet Plateau since the Cenozoic. Its southern and northern boundary faults are characterized by typical strike-slip shear deformation. Its eastern boundary is blocked by the Yangze block and its horizontal movement is transformed into the vertical movement of the Longmen Shan tectonic belt, leading to the uplift of the Longmen Shan Mountains and forming a grand geomorphic barrier on the eastern margin of the Tibet Plateau. A series of large earthquakes occurred along the boundary faults of the Bayan Hara Block in the past twenty years, which have attracted attention of many scholars. At present, the related studies of active tectonics on Bayan Hara Block are mainly concentrated on the boundary faults, such as Yushu-Ganzi-Xianshuihe Fault, East Kunlun Fault and Longmen Shan Fault. However, there are also some large faults inside the block, which not only have late Quaternary activity, but also have tectonic conditions to produce strong earthquake. These faults divide the Bayan Hara Block into some secondary blocks, and may play important roles in the kinematics and dynamics mechanism of the Bayan Hara Block, or even the eastern margin of the Tibet Plateau. The Dari Fault is one of the left-lateral strike-slip faults in the Bayan Hara Block. The Dari Fault starts at the eastern pass of the Kunlun Mountains, extends eastward through the south of Yalazela, Yeniugou and Keshoutan, the fault strike turns to NNE direction at Angcanggou, then turns to NE direction again at Moba town, Qinghai Province, and the fault ends near Nanmuda town, Sichuan Province, with a total length of more than 500km. The fault has been considered to be a late Quaternary active fault and the 1947 M73/4 Dari earthquake was produced by its middle segment. But studies on the late Quaternary activity of the Dari Fault are still weak. The previous research mainly focused on the investigation of the surface rupture and damages of the 1947 M73/4 Dari earthquake. However, there were different opinions about the scale of the M73/4 earthquake surface rupture zone. Dai Hua-guang(1983)thought that the surface rupture of the earthquake was about 150km long, but Qinghai Earthquake Agency(1984)believed that the length of surface rupture zone was only 58km. Based on interpretation of high-resolution images and field investigations, in this paper, we studied the late Quaternary activity of the Dari Fault and the surface rupture zone of the 1947 Dari earthquake. Late Quaternary activity in the central segment of the Dari Fault is particularly significant. A series of linear tectonic landforms, such as fault trough valley, fault scarps, fault springs and gully offsets, etc. are developed along the Dari Fault. And the surface rupture zone of the 1947 Dari earthquake is still relatively well preserved. We conducted a follow-up field investigation for the surface rupture zone of the 1947 Dari earthquake and found that the surface rupture related to the Dari earthquake starts at Longgen village in Moba town, and ends near the northwest of the Yilonggounao in Jianshe town, with a length of about 70km. The surface rupture is primarily characterized by scarps, compressional ridges, pull-apart basins, landslides, cleavage, and the coseismic offset is about 2~4m determined by a series of offset gullies. The surface rupture zone extends to the northwest of Yilonggounao and becomes ambiguous. It is mainly characterized by a series of linear fault springs along the surface rupture zone. Therefore, we suggest that the surface rupture zone of the 1947 Dari earthquake ends at the northwest of Yilonggounao. In summary, the central segment of the Dari Fault can be characterized by strong late Quaternary activity, and the surface rupture zone of the 1947 Dari earthquake is about 70km long.  相似文献   

18.
The Helan Mountains and Yinchuan Basin(HM-YB) are located at the northern end of the North-South tectonic belt,and form an intraplate tectonic deformation zone in the western margin of the North China Craton(NCC).The HM-YB has a complicated history of formation and evolution,and is tectonically active at the present day.It has played a dominant role in the complex geological structure and modern earthquake activities of the region.A 135-km-long deep seismic reflection profile across the HM-YB was acquired in early 2014,which provides detailed information of the lithospheric structure and faulting characteristics from near-surface to various depths in the region.The results show that the Moho gradually deepens from east to west in the depth range of 40-48 km along the profile.Significant differences are present in the crustal structure of different tectonic units,including in the distribution of seismic velocities,depths of intra-crustal discontinuities and undulation pattern of the Moho.The deep seismic reflection profile further reveals distinct structural characteristics on the opposite sides of the Helan Mountains.To the east,The Yellow River fault,the eastern piedmont fault of the Helan Mountains,as well as multiple buried faults within the Yinchuan Basin are all normal faults and still active since the Quaternary.These faults have controlled the Cenozoic sedimentation of the basin,and display a "negative-flower" structure in the profile.To the west,the Bayanhaote fault and the western piedmont fault of the Helan Mountains are east-dipping thrust faults,which caused folding,thrusting,and structural deformation in the Mesozoic stratum of the Helan Mountains uplift zone.A deep-penetrating fault is identified in the western side of the Yinchuan Basin.It has a steep inclination cutting through the middle-lower crust and the Moho,and may be connected to the two groups of faults in the upper crust.This set of deep and shallow fault system consists of both strike-slip,thrust,and normal faults formed over different eras,and provides the key tectonic conditions for the basin-mountains coupling,crustal deformation and crust-mantle interactions in the region.The other important phenomenon revealed from the results of deep seismic reflection profiling is the presence of a strong upper mantle reflection(UMR) at a depth of 82-92 km beneath the HM-YB,indicating the existence of a rapid velocity variation or a velocity discontinuity in that depth range.This is possibly a sign of vertical structural inhomogeneity in the upper mantle of the region.The seismic results presented here provide new clues and observational bases for further study of the deep structure,structural differences among various blocks and the tectonic relationship between deep and shallow processes in the western NCC.  相似文献   

19.
为研究代县盆地及其断裂的空间展布以及深部的延展情况,东南跨过五台山北麓断裂带,西北至恒山山前黄土丘陵区,布置了一条NW向穿过代县盆地的可控音频大地电磁(CSAMT)测深剖面,全长12.55km.共完成可控源音频大地电磁测点246个,观测频率为8533.333 ~1.333333Hz.视电阻率、相位曲线具有明显的分段特征...  相似文献   

20.
The Qujiang Fault is one of the most seismically active faults in western Yunnan, China and is considered to be the seismogenic fault of the 1970 MS7.7 Tonghai earthquake. The Qujiang Fault is located at the southeastern tip of the Sichuan-Yunnan block. In this study, we examine the geometry, kinematics, and geomorphology of this fault through field observations and satellite images. The fault is characterized by dextral strike-slip movements with dip-slip components and can be divided into northwest and southeast segments according to different kinematics. The northwest segment shows right-lateral strike-slip with normal components, whereas it is characterized by dextral movements with the northeast wall thrusting over the opposite in the southeast segment. The offset landforms are well developed along the strike of the fault with displacements ranging from 3.7m to 830m. The Late Quaternary right-lateral slip rate was determined to be 2.3~4.0mm/a through dating and measuring on the offset features. The variation of the slip and uplift rates along the fault strike corresponds well to the fault kinematics segmentation: the slip rate on the northwest segment is above 3mm/a with an uplift rate of 0.6~0.8mm/a; however, influenced by the Xiaojiang Fault, the southeast segment shows apparent thrust components. The slip rate decreases to below 3.0mm/a with an uplift rate of 1.1mm/a, indicating different uplift between the northwest and southeast segments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号