首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Seasonal and vertical changes in abundances of bacteria and heterotrophic nanoflagellates (HNF), and HNF grazing on bacteria were investigated in a small eutrophic inlet of Uranouchi-Wan throughout the years. Bacterial densities in the surface water ranged from 1.2 to 11 (average 4.3)×106 cells ml–1 with a couple of maxima following the algal blooming. Densities of HNF ranged from 0.54 to 73 (average 16.4)×103 cells ml–1 in the surface, and showed almost similar fluctuation pattern to that of bacteria with a time lag of about 1 to 2 weeks. Grazing rates of HNF on bacteria obtained by FLB method were 4.78 to 16.9 (average 10.3±SD 4.8) cells HNF–1h–1 in the surface layer in summer, and consequent total bacterial consumption rates by HNF fluctuated from 4 to 99×104 cells ml–1h–1. In deeper layers, however, as HNF densities and grazing rates on bacteria were low, the grazing pressure of HNF on bacteria was small. Turnover times of bacteria by HNF grazing in the surface layer were calculated as relatively constant values of 40 to 60 h, however, it decreased to as low as 6 to 7 h when the HNF activity was highest. These results indicate that bacteria grew so actively by consuming organic matter in seawater as to compensate high HNF grazing pressure, and that bacteria and HNF in the microbial loop play important roles on the turnover of substrates in coastal ecosystems.  相似文献   

2.
3.
A study was carried out to investigate the grazing pressure of heterotrophic nanoflagellates(HNF) on bacteria assemblages in the Yellow Sea Cold Water Mass(YSCWM) area in October, 2006. The results show that the HNF abundance ranges from 303 to 1 388 mL-1, with a mean of 884 mL-1. The HNF biomass is equivalent to 10.6%–115.6% of that of the bacteria. The maximum abundance of the HNF generally occurred in the upper 30 m water layer, with a vertical distribution pattern of surface layer abundance greater than middle layer abundance, then bottom layer abundance. The hydrological data show that the YSCWM is located in the northeastern part of the study area, typically 40 m beneath the surface. A weak correlation is found between the abundances of HNF and bacteria in both the YSCWM and its above water layer. One-way ANOVA analysis reveals that the abundance of HNF and bacteria differs between inside the YSCWM and in the above water mass. The ingestion rates of the HNF on bacteria was 8.02±3.43 h-1 in average. The grazing rate only represented 22.75%±6.91% of bacterial biomass or 6.55%+4.24% of bacterial production, implying that the HNF grazing was not the major factor contributing to the bacterial loss in the YSCWM areas.  相似文献   

4.
Seasonal changes in nano/micro-zooplankton grazing on pico-, nano- and micro-size phytoplankton and heterotrophic nano-flagellates (HNF) feeding on heterotrophic bacteria were quantified by the dilution technique in the surface layer off Cape Esan, southwestern Hokkaido, Japan. Pico- and nano-size phytoplankton were major components throughout the year except in spring when a diatom bloom was observed. Although there was little seasonal variation in bacteria and HNF biomass throughout the year, the micro-zooplankton biomass varied appreciably with a peak in spring. Nano/micro-zooplankton grazing or feeding on pico-size chl-a and bacteria were well balanced throughout the year. However, nano-size and micro-size chl-a growth were much greater than grazing in summer. Nano/micro-zooplankton ingestion of phytoplankton was greater than their ingestion of bacteria almost throughout the year, which suggests phytoplankton are more important as food sources of nano/micro-zooplankton in microbial food webs off Cape Esan than bacteria off Cape Esan. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
本文讨论了2013年5月南海东沙天然气水合物区浮游植物生物量和生产力粒级结构特征及其环境影响因素。结果表明,研究海域表现出典型的低营养盐、低叶绿素a、低生产力特征,浮游植物叶绿素a和初级生产力具有明显的次表层最大值现象。东沙海域生物量和初级生产力粒级结构差异性显著,从生物量和生产力贡献度来看,表现为微微型浮游植物> 微型浮游植物> 小型浮游植物。生物量的垂直分布结果表明,春季不同粒级类群浮游植物在真光层内的分布存在明显不同,比如小型浮游植物在真光层内分布较均匀;微型浮游植物则主要分布于近表层或真光层中部,而微微型浮游植物则主要分布于真光层中部和底部。微微型浮游植物在纬度较低的热带贫营养海区之所以能够占主导优势,最主要的原因是其极小的细胞体积和较大的表面积使其有利于营养竞争。相关性分析表明,南海东沙浮游植物各粒级生物量与温度、pH显著正相关,与硅酸盐、磷酸盐显著负相关;浮游植物各粒级生产力与温度显著正相关,与盐度、磷酸盐显著负相关。磷酸盐含量是影响东沙海域浮游植物粒级结构差异的重要因素之一,同时,光辐照度和水体的真光层深度对东沙天然气水合物区不同粒径浮游植物的垂直分布起着更为重要的调控作用。  相似文献   

6.
A marine survey was conducted from 18 May to 13 June 2014 in the East China Sea (ECS) and its adjacent Kuroshio Current to examine the spatial distribution and biogeochemical characteristics of dissolved oxygen (DO) in spring. Waters were sampled at 10?25 m intervals within 100 m depth, and at 25?500 m beyond 100 m. The depth, temperature, salinity, and density (sigma- t ) were measured in situ with a conductivity-temperature-depth (CTD) sensor. DO concentrations were determined on board using traditional Winkler titration method. The results show that in the Kuroshio Current, DO content was the highest in the euphotic layer, then decreased sharply with depth to about 1 000 m, and increased with depth gradually thereafter. While in the ECS continental shelf area, DO content had high values in the coastal surface water and low values in the near-bottom water. In addition, a low-DO zone off the Changjiang (Yangtze) River estuary was found in spring 2014, and it was formed under the combined influence of many factors, including water stratification, high primary productivity in the euphotic layers, high accumulation/ sedimentation of organic matter below the euphotic layers, and mixing/transport of oceanic current waters on the shelf. Most notable among these is the Kuroshio intruded water, an oceanic current water which carried rich dissolved oxygen onto the continental shelf and alleviated the oxygen deficit phenomenon in the ECS, could impact the position, range, and intensity, thus the formation/destruction of the ECS Hypoxia Zone.  相似文献   

7.
2006年10月在黄海冷水团海域的三个站点开展了微型异养鞭毛虫、异养细菌和蓝细菌的密度和生物量调查,进行了微型异养鞭毛虫的现场摄食实验,通过荧光标记细菌法和消化系数法获得该海区微型异养鞭毛虫对异养细菌和蓝细菌的摄食率,并估算了微型异养鞭毛虫对异养细菌和蓝细菌现存量及生产力的摄食压。结果显示,微型异养鞭毛虫、异养细菌和蓝细菌的密度分别为0.36×103~1.13×103,0.39×106~1.13×106和0.04×104~3.74×104cells/cm3,温跃层以上明显高于底层。微型异养鞭毛虫对异养细菌的摄食率为5.33~14.89个/(HF·h),对蓝细菌的摄食率为0.26×102~23.10×10-2cells/(HF·h),摄食率随深度而下降。微型异养鞭毛虫每天能消耗9.27%~33.08%的异养细菌现存量和8.12%~16.09%的蓝细菌现存量。同时,微型异养鞭毛虫对异养细菌和蓝细菌的日摄食量各占它们生产力的2.66%~13.10%和8.12%~16.09%。研究表明微型异养鞭毛虫的摄食可能不是秋季黄海冷水团海域浮游细菌及其生产力的主归宿。  相似文献   

8.
In this paper, we present multi-parameter data on phytoplankton community composition, and its response to storm events in the Sargasso Sea in late February and early March of 2 years (2004 and 2005). Observed physical conditions spanned a continuum from pulsed destratification/stratification to continuous mixing, with a corresponding range of phytoplankton growth responses. The pulsed destratification/stratification condition resulted in a rapid (1–2 d) doubling of euphotic zone chlorophyll (Chl-a) along with a rapid succession, days timescale, from diatoms to haptophytes and then to cyanobacteria. Deep (>300 m) continuous mixing led to a slow (8–9 d) doubling of autotrophic biomass with no observed succession in the phytoplankton community. These different temporal responses appear to be due to differences between nutrient-limited and light-limited phytoplankton growth, although differences in grazing rates or selective grazing cannot be ruled out. Unexpectedly, we found that flow cytometrically enumerated picoeukaryotes were not accounted for in HPLC-pigment derived phytoplankton classifications and did not covary with any of the pigments quantified. Yet, the picoeukaryotes were positively related to increases in total Chl-a and increased carbon export, suggesting an important but as yet unknown role in the Sargasso Sea carbon cycle.  相似文献   

9.
Hydrographic data collected in cyclonic eddies in the Mozambique Channel and Basin revealed notable differences in temperature and salinity at a depth of 100 m, the upper mixed layer, the nitracline depths, and vertical distribution of chlorophyll-a (Chl-a). Differences in temperature and salinity did not show any consistent patterns. In contrast, the differences in the upper mixed layer, nitracline depths and the vertical Chl-a profile appeared to be driven by combined effects of eddy dynamics (i.e. shoaling of isopleths) and the seasonal variation in light availability and mixing conditions in the upper layers. Cyclonic eddies studied during austral spring and summer in the Mozambique Channel exhibited shallower upper mixed layers and nitracline depths, and deeper euphotic zones. Distinct subsurface Chl-a maxima (SCM) were associated with the stratified conditions in the upper layers of these eddies. In contrast, a cyclonic eddy studied during mid-austral winter in the Mozambique Basin had a shallower euphotic zone, deeper upper mixed layer and uniform Chl-a profiles. Another eddy sampled in the Mozambique Basin toward the end of winter showed a less pronounced SCM and roughly equal euphotic zone and upper mixed layer depths, suggestive of a transition from a well-mixed upper layer during winter to stratified conditions in summer.  相似文献   

10.
In order to examine the applicability of remotely-sensed ocean color for the estimation of phytoplankton biomass and primary production in the Oyashio region, the western subarctic Pacific, vertical distributions of chlorophylla concentration and primary production were observed in April and May 1997. Spring bloom was observed in both April and May, and the surface concentration of chlorophylla exceeded 40 mg m−3. The relationship between the standing stocks of chlorophylla within the layer from the sea surface to one optical depth (0–1/k layer) and the surface chlorophylla concentration is expressed as a Michaelis-Menten equation. The mean ratio of the standing stock of chlorophylla in the euphotic layer to that in the 0–1/k layer was 4.41, this ratio did not significantly differ from 4.61 which was obtained at homogeneous distribution of chlorophylla within the euphotic layer. These facts suggest that the distribution of chlorophylla could be assumed to be homogeneous in the euphotic layer during the spring bloom. Results of primary production measurements by simulatedin situ method were compared with those by an algorithm with two variables; chlorphylla and non-spectral PAR. Daily primary production in the euphotic layer estimated by the algorithm varied in a range of 38–274% of that estimated by incubation, although the primary productions by the algorithm agreed with those by the incubation at a half of stations. Primary production within the euphotic layer calculated using simply the surface data was the same as that estimated using vertical distribution of chlorophylla. These results show that the primary production in the euphotic layer may be estimated from the remote sensed measurements during the spring bloom in the Oyashio region.  相似文献   

11.
Observations during a spring phytoplankton bloom in the northeast Atlantic between March and May 1992 in the Biotrans region at 47°N, 20°W, are presented. During most of the observation period there was a positive heat flux into the ocean, winds were weak, and the mixed layer depth was shallow (<40 m). Phytoplankton growth conditions were favourable during this time. Phytoplankton biomass roughly doubled within the euphotic zone over the course of about 7 days during mid-April, and rapidly increased towards the end of the study until silicate was depleted. However, the stratification of the water column was transient, and the spring bloom development was repeatedly interrupted by gales. During two storms, in late March and late April, the mixed-layer depth increased to 250 and 175 m, respectively. After the storm events significant amounts of chlorophyll-a, particulate organic carbon and biogenic silica were found well below the euphotic zone. It is estimated that between 56% and 65% of the seasonal new production between winter and early May was exported from the euphotic zone by convective mixing, in particular, during the two storm events. Data from the NABE 47°N study during spring 1989 are re-evaluated. It is found that convective particle export was of importance during the early part of that bloom too, but negligible during the height of the bloom in May 1989. The overall impact of convective particle export during spring 1989 was equivalent to about 36% of new production. In view of these and previously published findings it is concluded that convective transport during spring is a significant process for the export of particulate matter from the euphotic zone in the temperate North Atlantic.  相似文献   

12.
黄海冷水域生源要素的变化特征及相互关系   总被引:41,自引:8,他引:33  
王保栋 《海洋学报》2000,22(6):47-54
根据“中韩黄海水循环及物质通量合作研究”项目的现场调查资料,对黄海冷水域生源要素的分布变化特征及其相互关系进行了探讨。结果表明,黄海冷水团存在期间,上层水体中的营养盐由于浮游植物的摄取而几乎被耗尽,但在密度跃层以下因有机物分解使营养盐再生而逐步累积。溶解氧、pH和叶绿素a的层化现象亦十分明显,并在中层(20~30m)形成最大值层。生源要素断面分布中等值线的起伏趋势或马鞍形形态表明,黄海冷水团中的垂直环流存在将底层冷水向上扩散的趋势。此外,对影响生源要素的含量、分布及其季节变化的因素,以及生源要素之间的相互关系进行了分析探讨。  相似文献   

13.
Month-to-month fluctuations in the abundance of bacteria and heterotrophic nanoflagellates (HNF) and bacterial production, as well as various chemical (nutrients, oxygen) and physical (salinity, temperature) parameters were analysed at a station located in the open middle Adriatic Sea during one decade (1997-2006). Being influenced by both coastal waters and open Adriatic circulation in the surface layer, and by the deep Adriatic water masses in the deep layers (100 m), this station is quite suitable for detecting the environmental changes occurring in the open Adriatic Sea with respect to the circulation of its water masses and their long-term changes and anomalies. Multivariate methods were used to identify seasonal and inter-annual changes of the investigated parameters, associating observed changes to the changes in Adriatic water masses and circulation regimes. The analyses showed that bacterial abundance and production were controlled by different water mass dynamics during 1997-2001 compared to 2002-2006 period, particularly noticeable in different seasonal patterns of biological parameters. The interplay between North Adriatic Dense Water (NAdDW) and Levantine Intermediate Water (LIW) resulted in a change in the available nutrients (NAdDW is poor in orthophosphates), and as a consequence different bacterial abundance and production. A few periods were examined in detail, such as 2004, when LIW inflow was particularly strong and was accompanied by an increase of bacterial and HNF abundances, as well as of bacterial production.  相似文献   

14.
Phytoplankton cultures occurring in disphotic zone water were conducted to examine dissolved organic carbon (DOC) for possible controlling agent of the initial lag period and growth rate. Culture media of various concentrations of DOC were prepared by mixing low DOC disphotic zone water with high DOC surface water. Natural phytoplankton populations showed strong correlations in their lag period with DOC concentrations in the range from 0.75 mgC·I–1 to 1.2 mgC·I–1 in the water (r=–0.833,n=8) and in their population growth rate () (r=0.899,n=8). Similar tendencies were confirmed with a marine diatom (Skeletonema costatum) dominating in the present disphotic zone water by culture experiments. By reducing DOC concentrations in seawater samples by pretreatments of ultraviolet radiation, charcoal adsorption and Amberlite XAD-2 resin adsorption, lag periods ofS. costatum increased in every case, but their population growth rates were almost identical. These results obviously show that prolonged lag period at least occurs in low DOC water, which can explain the observations by Barber and Ryther (1969) that low photosynthetic carbon uptake rate occurs in newly upwelled low DOC water. It is found that the essential substance to shorten lag periods of phytoplankton cultured in disphotic zone water is a portion of dissolved organic matter, which is poor in disphotic zone water and rich in surface water, and the effect of the substance analogous to Na2EDTA strongly suggests that the substances are organic ligands.  相似文献   

15.
Pollution history has often been proposed to explain site-dependent bioremediation efficiencies, but this hypothesis has been poorly explored. Here, bacteria and their heterotrophic nanoflagellates (HNF) predators originating from pristine and chronically oil-polluted coastal sites were subjected to crude oil ± nutrients or emulsifier amendments. The addition of crude oil had a more visible effect on bacteria originating from the pristine site with a higher increase in the activity of given OTU and inactivation of other petroleum-sensitive bacteria, as revealed by DNA and RNA-based comparison. Such changes resulted in a delay in microbial growth and in a lower bacterial degradation of the more complex hydrocarbons. Biostimulation provoked a selection of different bacterial community assemblages and stirred metabolically active bacteria. This resulted in a clear increase of the peak of bacteria and their HNF predators and higher oil degradation, irrespective of the pollution history of the site.  相似文献   

16.
The Changjiang River Estuary(CRE) in the East China Sea suffers from seasonal hypoxia in summer. The vertical distributions and seasonal changes of microbial communities in the CRE were well documented. However, little is known about the diurnal changes of bacterial communities in the hypoxic zone of the CRE. Here, 16 S rRNA gene analysis was used to explore the changes of bacterial communities in the oxic surface and hypoxic middle seawater layers during 24 h in the CRE. Significant differences between the hypoxic and oxic layers were observed:the phyla Cyanobacteria, Bacteroidetes and Acidimicrobiia were enriched in the oxic layer, whereas the phylum SAR406 and the class Deltaproteobacteria were more abundant in the hypoxic layer. In addition, some subtle diurnal variations of the bacterial relative abundance were found in both two layers. The relative abundance of Synechococcus increased at night, and this change was more obvious in the hypoxic layer. The similar trend was also found in some phototrophic and several heterotrophic bacteria, such as Rhodobacteraceae, OM60 and Flavobacteriaceae. Their relative abundances peaked at 16:00 in the oxic layer, while the relative abundances peaked at around 7:00 and decreased until 13:00 in the hypoxic layer. Together, the results of the present study suggest that some photosynthetic bacteria and several heterotrophic bacteria have similar diurnal variations implying the light and physicochemical heterogeneity in the course of a day are important for bacterial diurnal changes in the CRE.  相似文献   

17.
The number and lipolytic activity of neustonic and planktonic bacteria inhabiting estuarine Lake Gardno were determined. Lipolytic bacteria were very numerous in investigated layers of water, accounting for 10–88% of the total number of culturable heterotrophic bacteria. Significant differences were found in the decomposition of individual lipid substrates by bacteria. The highest percentage of neustonic and planktonic strains were able to hydrolyse tributyrin and Tween 85. The least numerous bacteria group was microflora hydrolysing Tween 20 and Tween 40. The activity of lipases synthesized by bacteria from the subsurface layer was higher than that of lipases produced by bacteria isolated from the surface layers. A significant effect of salinity on the activity of lipases has been shown.  相似文献   

18.
The vertical distribution and biomass of phytoplankton and phototrophic bacteria in the permanently anoxic fjord, Framvaren in southern Norway, are described. The distribution of algal and bacterial pigments was studied at different seasons in the period from May 1980 to February 1985. The standing crop of phytoplankton was low in the upper part of the euphotic zone, but increased near the O2/H2S interface. An algal plate and a dense plate of phototrophic bacteria, measured as chlorophyll fluorescence and scattering, were detected near the interface. These plates of phototrophic micro-organisms were found to be photosynthetically active. Sharp concentration peaks near the interface were also found for the active biomass measured as adenosine triphosphate (ATP).  相似文献   

19.
Seasonal changes in oceanographic conditions related to primary productivity was investigated in the southwestern Okhotsk Sea during non-iced seasons, using the observation data conducted in 2000∼2006. Based on hydrographic characteristics, the studied area could be classified into two regions, the Coastal Region which is influenced under the Soya Warm Current and the Forerunner Water of the Soya Warm Current, and the Offshore Region where the Intermediate Cold Water was located in the subsurface layer. This study is the first report on seasonal change of nutrient and chlorophyll a concentrations in the offshore region of the southwestern Okhotsk Sea. Variability of concentrations of chlorophyll a and nutrients is temporally and regionally high in the Coastal Region. The maximum chlorophyll a concentration in April was observed at the surface layer of both regions. The most remarkable feature on the vertical structure in the Offshore Region was the consistent existence of the Intermediate Cold Water and the development of seasonal thermocline in the subsurface layer during summer and autumn. The stratification formed within the euphotic zone in the Offshore Region resulted in the formation of the subsurface chlorophyll a maximum (SCM) from May to October. Throughout the research period, although less amplitude of nutrients at the surface was observed in the Coastal Region than that in the Offshore Region, comparable amplitude of chlorophyll a concentration was observed between regions. These results suggested differences of environmental conditions for primary production between the two regions. Depending on the presence of SCM, relationships between chlorophyll a concentration at the sea surface and chlorophyll a standing stock within the euphotic layer were different. At most stations with SCM, the surface chlorophyll a concentration was lower than 0.6 mg m-3. This suggests that the presence of SCM and the chlorophyll a standing stock within the euphotic layer may be estimated using the surface chlorophyll a concentration from spring to autumn in the studied area.  相似文献   

20.
文章分析了2013年南海南部4个季节航次的叶绿素a (Chl a)调查数据, 结果显示: 150m以浅水柱Chl a质量浓度均值分别为早春0.14mg•m-3、初夏0.12mg•m-3、初秋0.18mg•m-3、初冬0.16mg•m-3。早春和初夏偏低的原因与早春风速小, 初夏水温高, 不利于水体的垂直混合, 限制了深层海水中丰富的营养盐向上层水体补充有关。4个季节中海水次表层Chl a质量浓度最大值层(SCML)均出现在50m和75m, 这两个水层的Chl a质量浓度差异小, 季节变化不大, 平均值变化范围分别为0.24~0.26mg•m-3和0.22~0.26mg•m-3。受混合层深度和温跃层上界深度的共同影响, 50m水层Chl a质量浓度主要受制于深层富营养盐海水的向上补充, 75m水层Chl a质量浓度受水温的影响明显。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号