首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This paper presents an application of the rock engineering system (RES) in an attempt to assess the proper landslide parameters and estimate the instability index, using two disastrous landslides in Greece which took place in Panagopoula (1971) and Malakasa (1995). RES has been developed by Hudson (Rock engineering systems: theory and practice. Ellis Horwood Limited, 1992) to determine interaction of a number of parameters in rock engineering design and calculate instability index for rock slopes. In this paper, an attempt is made to prove, how RES can be implemented in large-scale instability areas where natural slopes are associated with a variety of geomaterials (soils, rocks, weathering mantle, etc.), by selecting each time the most appropriate parameters that are relevant to the ad hoc potential slope failure and which can be quantified easiest than those of time and money consuming ones. RES approach allows the utilization of those parameters which are particularly active at the site, evaluates the importance of their interactions, taking into account the particular problems at any investigated site. The instability index for both study areas were calculated and found 89.47 for Panagopoula site and 81.59 for Malakasa (out of 100). According to the classification for landslide susceptibility by Brabb et al. (Landslide susceptibility in San Mateo County, California, 1972), both the examined case studies are classified as landslides, approving their existence as two serious slope failures. Thus, RES could be a simple and efficient tool in calculating the instability index and consequently in getting the prognosis of a potential slope failure in landslide susceptible areas, for land use and development planning processes.  相似文献   

2.
The slope instability is connected to a large diversity of causative and triggering factors, ranging from inherent geological structure to the environmental conditions. Thus, assessment and prediction of slope failure hazard is a difficult and complex multi-parametric problem. In contrast to the analytic approaches, the systems approaches are able to consider infinite number of affecting parameters and assess the interactions of each couple of the parameters in the system. This paper presents a complete application of the rock engineering systems approach in prediction of the instability potential of rock slopes in 15 stations along a 20?km section of the Khosh-Yeylagh Main Road, Iran as the case study of the research. In this research, the main objective has been defining the principal causative and triggering factors responsible for the manifestation of slope instability phenomena, quantify their interactions, obtain their weighted coefficients, and calculate the slope instability index, which refers to the inherent potential instability of each slope of the examined region. The final results have been mapped to highlight the rock slopes susceptible to instability. Finally, as a preliminary validation on the utilization of systems approach in the study region, the stability of investigated rock slopes were analyzed using an empirical method and the results were compared. The comparisons showed a rather good coincidence between the given classes of two methods.  相似文献   

3.
2013年1月11日云南省镇雄县发生特大山体滑坡灾害,造成赵家沟村民小组46人遇难和严重经济损失。基于数次滑坡现场调查和勘查所获得的基础数据,本文对滑坡特征及变形失稳机理进行了较系统的研究。(1)滑坡发育在崩坡积体中,坡体自后缘向前缘具有黏粒含量、密实度增加而孔隙度、透水性减小的特点;(2)滑坡后缘为飞仙关组强风化粉砂岩与崩坡积体的接触界面,滑动带为崩坡积体内含砾粉质黏土坡积层;(3)滑坡发生前,坡体后缘已发育张拉裂缝,前缘已发生小型鼓胀破坏,属典型蠕滑-拉裂变形破坏模式;(4)滑坡具有分块先后滑动特点,左、右及后缘边界坡体在主滑体后发生滑动,滑移过程中也存在分区现象;(5)滑带土为低液限含砾黏性土,呈液化流塑状态,抗剪强度低;(6)启程高速是斜坡应变能长期积累、瞬间释放的结果,滑程高速与滑坡体冲击液化有关,部分滑体存在临空飞行现象。建议加强滑源区两侧裂缝的变形监测和乌蒙山区类似坡体的灾害预警。  相似文献   

4.
Shales of the Lower Ecca stage of the Late Palaeozoic Series are actively degrading in the particular topography and climate of Natal. The failure of a large road embankment near Pietermaritzburg and the subsequent failure of the adjacent natural slope were caused by movement along existing shear zones in the underlying colluvium. Other cases of instability in both natural slopes and engineering earthworks are known, in the Pietermaritzburg and Durban areas and elsewhere in Natal. These failures in various types of slope in different parts of Natal suggest an inherent instability in colluvial and residual soil derived from shale of the Lower Ecca stage.  相似文献   

5.
Chong Xu  Xiwei Xu  Guihua Yu 《Landslides》2013,10(4):421-431
On 14 April 2010 at 07:49 (Beijing time), a catastrophic earthquake with Ms 7.1 struck Yushu County, Qinghai Province, China. A total of 2,036 landslides were interpreted from aerial photographs and satellite images, verified by selected field checking. These landslides cover about a total area of 1.194 km2. The characteristics and failure mechanisms of these landslides are presented in this paper. The spatial distribution of the landslides is evidently strongly controlled by the locations of the main co-seismic surface fault ruptures. The landslides commonly occurred close together. Most of the landslides are small; there were only 275 individual landslide (13.5 % of the total number) surface areas larger than 1,000 m2. The landslides are of various types. They are mainly shallow, disrupted landslides, but also include rock falls, deep-seated landslides, liquefaction-induced landslides, and compound landslides. Four types of factors are identified as contributing to failure along with the strong ground shaking: natural excavation of the toes of slopes, which mean erosion of the base of the slope, surface water infiltration into slopes, co-seismic fault slipping at landslide sites, and delayed occurrence of landslides due to snow melt or rainfall infiltration at sites where slopes were weakened by the co-seismic ground shaking. To analyze the spatial distribution of the landslides, the landslide area percentage (LAP) and landslide number density (LND) were compared with peak ground acceleration (PGA), distance from co-seismic main surface fault ruptures, elevation, slope gradient, slope aspect, and lithology. The results show landslide occurrence is strongly controlled by proximity to the main surface fault ruptures, with most landslides occurring within 2.5 km of such ruptures. There is no evident correlation between landslide occurrences and PGA. Both LAP and LND have strongly positive correlations with slope gradient, and additionally, sites at elevations between 3,800 and 4,000 m are relatively susceptible to landslide occurrence; as are slopes with northeast, east, and southeast slope aspects. Q4 al-pl, N, and T3 kn 1 have more concentrated landslide activity than others. This paper provides a detailed inventory map of landslides triggered by the 2010 Yushu earthquake for future seismic landslide hazard analysis and also provides a study case of characteristics, failure mechanisms, and spatial distribution of landslides triggered by slipping-fault generated earthquake on a plateau.  相似文献   

6.
All the conventional techniques for the analysis of slope stability ranging from simple kinematic analysis using stereonets, to the various widely used limit equilibrium methods, to sophisticated numerical methods belong to a category that are generally known as the analytic approaches and thus are only able to consider a limited number of affecting factors and then solve the problem in details. In contrast, the systems approaches not only can examine the problem in its totality with a complete list of the components, but also can take the interactions between the factors into account. This paper presents a complete application of a well-known systems technique named the Interaction Matrix (IM) in ranking the instability potential of rock slopes of the Khosh-Yeylagh Main Road, Iran as the case study of the research. For this purpose, 15 stations have been selected and a relatively comprehensive database containing the fieldwork information has been constructed. Following the IM technique, the most important factors relating to the general environment and to the rock mass characteristics have been considered. Their reciprocal causes and effects have been analyzed in order to weight each parameter according to its degree of interactivity in the system. Then, the slope instability index has been calculated which refers to the inherent potential instability of each slope of the examined region. The final instability ranking has been presented for the investigated slopes in Khosh-Yeylagh Main Road based on a simple classification. The main aim of the study is to extend the use of systems approach and specifically the IM technique in slope stability analysis. Also, this research shows the importance of consideration of an approximately complete set of key parameters affecting the stability of rock slopes.  相似文献   

7.
The rock mass rating (RMR) and slope mass rating (SMR) has been carried out to classify the slope in terms of slope instability. To understand the RMR and SMR various geostructural, geomorphologic and hydrological parameters of the slopes were measured and analyzed. 32 rock slopes/rock cum debris slopes were identified in the study area. The present RMR and SMR study is an outcome of extensive field study along a stretch of about 10 km on road leading from Srinagar to Pauriarea along Alaknanda valley. The technique followed incorporates the relation between discontinuities and slope along with rock mass rating (RMR) and slope mass rating (SMR). The analysis of the 32 studied slopes shows that in the Gangadarshan area out of six rock slope facets, two falls in class II (stable) and four in class IV (unstable). It is significant to note that the slope facets coming under class IV are comprised of active landslide portions. While the slopes under class II show minor failure or old landslide debris.  相似文献   

8.
The stability of both natural and cut slopes in mountainous areas is a great challenge to highway constructions and operations. This paper presents a successful case study of stability analyses and protection treatments for high-steep cut soil slopes in an ancient landslide zone which was located at Km12+700 to Km15+000 along the Tehran?CChalus highway. This report has three parts. First, geotechnical investigations of in situ direct shear test, SPT tests and laboratory tests were implemented to get the subsurface profiles and the mechanical properties of the soil mass. Second, finite difference analysis was carried out to evaluate the stability of both the natural and cut slopes. Minimum safety factors and potential failure modes of cut slopes were obtained under both static and dynamic conditions. These results indicated that the ancient landslide could not be reactivated under the present climatic and morphological conditions, but there were some potential shallow failures in some cut soil slopes (failure actually occurred during excavation). Protection treatments and reinforcements were thus necessary. Third, the stability of the cut slopes was re-assessed by simplified Bishop limit equilibrium analysis (using Slide 5.0). Some potential failure zones were designed to be protected by back-anchored concrete retaining wall at the slope toe, rock bolts and frame beams on the slope face and planting grass on the slope face. Numerical analysis indicated that these protection measures could stabilize this remedial slope. These practical experiences may be of benefit for similar highway construction projects.  相似文献   

9.
Instability of bank slopes and their failures in reservoirs have become an increasing concern in evaluating potential hazards of hydraulic projects in China as larger hydropower engineering projects have been in operation in the past decade. To provide a quantitative evaluation of such hazards, an evaluation framework has been presented to analyze bank slope stability, identify potential slope failure bed surfaces, and evaluate wave impacts of landslide-induced surges in reservoirs. In this joint analysis framework, reservoir bank slope instability and potential failure surfaces are determined with TFINE model, a nonlinear Finite Element Method (FEM) program using Deformation Reinforcement Theory; the motion of slope failures and resulting surge waves in reservoirs and potential flooding are simulated with COMCOT tsunami simulation package. The work flow and feasibility of this analysis framework are demonstrated through a case study of Guopu slope in Laxiwa reservoir in Southwest China. Three potential failures of Guopu slope are identified through stability analysis and the modeling results of indicate that the potential landslide failures would generate waves with maximum amplitude of 20.9 m in the reservoir, but unlikely causing significant damage to the dam.  相似文献   

10.
区域斜坡不稳定空间预测   总被引:3,自引:0,他引:3       下载免费PDF全文
王建锋 《地球科学》1999,24(1):105-110
将场地斜坡稳定随机模拟分析结果与区域斜坡空间不稳定性预测结合起来,基于层次分析建立了区域斜坡空间破坏概率的多层模糊稳定分析方法,实现了场地斜坡稳定非确定性模型评价结果与区域稳定性研究相结合,借助这一关系模型可以实现空间点评价向空间面评价的过渡.以川南经济开发区区域斜坡空间破坏概率预测为例进行了方法验证,结果显示这种方法可以克服区域斜坡不稳定性评价中的定量化困难,物理意义更加明确.  相似文献   

11.
High incidences of slope movement are observed throughout Cuyahoga River watershed in northeast Ohio, USA. The major type of slope failure involves rotational movement in steep stream walls where erosion of the banks creates over-steepened slopes. The occurrence of landslides in the area depends on a complex interaction of natural as well as human induced factors, including: rock and soil strength, slope geometry, permeability, precipitation, presence of old landslides, proximity to streams and flood-prone areas, land use patterns, excavation of lower slopes and/or increasing the load on upper slopes, alteration of surface and subsurface drainage. These factors were used to evaluate the landslide-induced hazard in Cuyahoga River watershed using logistic regression analysis, and a landslide susceptibility map was produced in ArcGIS. The map classified land into four categories of landslide susceptibility: low, moderate, high, and very high. The susceptibility map was validated using known landslide locations within the watershed area. The landslide susceptibility map produced by the logistic regression model can be efficiently used to monitor potential landslide-related problems, and, in turn, can help to reduce hazards associated with landslides.  相似文献   

12.
Rainwater infiltration during typhoons tends to trigger slope instability. This paper presents the results of a study on slope response to rainwater infiltration during heavy rainfall in a mountain area of Taiwan. The Green-Ampt infiltration model is adopted here to study the behavior of rainwater infiltration on slopes. The failure mechanism of infinite slope is chosen to represent the rainfall-induced shallow slope failure. By combining rain infiltration model and infinite slope analysis, the proposed model can estimate the occurrence time of a slope failure. In general, if a slope failure is to happen on a slope covered with low permeability soil, failure tends to happen after the occurrence of the maximum rainfall intensity. In contrast, slope failure tends to occur prior to the occurrence of maximum rainfall intensity if a slope is covered with high-permeability soil. To predict the potential and timing of a landslide, a method is proposed here based on the normalized rainfall intensity (NRI) and normalized accumulated rainfall (NAR). If the actual NAR is higher than the NAR calculated by the proposed method, slope failure is very likely to happen. Otherwise, the slope is unlikely to fail. The applicability of the proposed model to occurrence time and the NAR–NRI relationship is evaluated using landslide cases obtained from the literature. The results of the proposed method are close to that of the selected cases. It verifies the applicability of the proposed method to slopes in different areas of the world. An erratum to this article can be found at  相似文献   

13.
岳西县自然斜坡在地球内、外动力共同作用下,容易变形并遭到破坏,造成人员伤亡和财产损失,严重制约了当地的经济发展。通过系统的工程地质调查和浅表生改造理论分析,查明了岳西县斜坡变形破坏特征及其成因,并探讨了其演化模式。结果表明,岳西县不同岩组的抗风化能力和力学特性存在差异,斜坡发生地质灾害的机理也不相同。根据斜坡结构特征,岳西县滑坡分为全风化层滑坡、强风化层滑坡和顺层岩质滑坡: 全风化层滑坡的滑面位于全风化层中或全风化层与强风化层的分界线处; 强风化层滑坡的滑面主要发育于强风化层与中风化层的分界线处; 顺层岩质滑坡主要发育于片麻岩发育的顺向坡中。根据变形破坏方式,岳西县崩塌可分为滑移式崩塌、倾倒式崩塌和坠落式崩塌: 滑移式崩塌主要由一组缓倾坡外结构面和另一组陡倾(坡外或者坡内)结构面控制; 倾倒式崩塌主要由一组陡倾坡内结构面和另一组近水平发育的结构面控制; 坠落式崩塌主要由一组结构面陡倾或近直立发育的结构面控制。岳西县滑坡多发育于风化壳厚度较大、岩体较松散、结构面强度低的地区; 崩塌多发育于斜坡高陡、岩质风化程度低、结构面发育的地区。研究成果对岳西县乃至整个大别山地区地质灾害的研究及防治工作具有一定的借鉴意义。  相似文献   

14.
In this paper, a multi-method approach for the assessment of the stability of natural slopes and landslide hazard mapping applied to the Dakar coastal region is presented. This approach is based on the effective combination of geotechnical field and laboratory works, of GIS, and of mechanical (deterministic and numerical) stability analysis. By using this approach, valuable results were gained regarding instability factors, landslide kinematics, simulation of slope failure and coastal erosion. This led to a thorough assessment and strong reduction in the subjectivity of the slope stability and hazard assessment and to the development of an objective landslide danger map of the SW coast of Dakar. Analysis of the results shows that the slides were influenced by the geotechnical properties of the soil, the weathering, the hydrogeological situation, and the erosion by waves. The landslide susceptibility assessment based on this methodological approach has allowed for an appropriate and adequate consideration of the multiple factors affecting the stability and the optimization of planning and investment for land development in the city.  相似文献   

15.
斜坡地质灾害的空间预测问题   总被引:5,自引:0,他引:5  
结合典型实例阐明斜坡地质灾害的空间预测是灾害防治工作的前提条件与成败关键。继而讨论了斜坡地质灾害空间预测的内涵与工作程序,以及与斜坡稳定性评价预测相关的斜坡破坏型式,斜坡结构类型,斜坡破坏的环境条件和人类活动的影响等问题。在斜坡地质灾害空间预测的定义中,笔者将预测时段仅限于工程年代之内,且前提是保持现有斜坡结构和环境条件,以及可预料的人类活动影响;预测程序是先进行斜坡稳定性预测,然后再对稳定性差或较差的坡段进行灾害危险性(度)预测。关于斜坡破坏型式的划分,一是从它的影响范围和量与质的关系看都需重视其单次规模;二是要与斜坡的成因结构类型相结合,才能对现场地质调查与研究具有指导意义。为了展示斜坡的成因结构类型对稳定性的控制意义,本文提供了长江三峡工程库区和西部大开发中总结出来的碎屑岩和副变质岩斜坡的新类型系统,并对三类土质斜坡的典型结构特征和稳定性进行了简要比较。关于环境条件对斜坡稳定性影响的量化研究,笔者更看重多个非自体(非本坡段)天然模型观测和滑坡反算的成果。同时建议在全面准确的现场调研的基础上建立确定性地质模型并应用基础学科的相关原理进行单要素的量化分析和单元分析,以便进一步揭示斜坡变形破坏机理。  相似文献   

16.
Occurrences of landslide are most common and critical issue in North-East India. The various types of slope failures have been affected most part of slopes and road section between Malidor to Sonapur area (approx 30 Km) along NH-44 within Jaintia hills district, Meghalaya, India. These slope failures causes considerable loss of life and property along with many inconveniences such as disruption of traffic along highways. The unscientific excavations of rock slopes for road widening or construction purposes may weaken the stability of the slopes. The rocks exposed in the area are highly jointed sandstone and shale of Barail Group of Oligocene age. The Sonapur landslide is most dangerous and destructive rock fall-cum debris flow. The present study includes the kinematic analysis of the slope to assess the potential failure directions as the rocks are highly jointed in some parts of road cut sections. The continuous slope mass rating (CSMR) technique has been applied for slope stability analysis at five vulnerable locations. Kinematic analysis indicates mainly wedge type of failure along with few toppling and planar failures. These failure required immediate treatment to prevent the slide and long term stability of the slope.  相似文献   

17.
溃屈型破坏是一种常见的顺层岩质边坡破坏模式,溃屈变形发展机制及失稳破坏的定量研究对滑坡工程勘查和防治指导十分重要。本文根据边坡的地质环境和力学作用机制,建立了三维受压板简化模型,其能够考虑岩层自身重力、地震力、静水压力的共同作用和岩体材料塑性变形的影响。基于弹塑性受压板稳定理论,利用能量法推导得到了边坡溃屈变形破坏的临界方程。对于溃屈型边坡的结构失稳和滑动失稳分别提出了相应的稳定性判定方法,并针对不同状态的边坡提出了相应的防治措施建议。以四川省甘孜藏族自治州巴塘县下归哇边坡为例,对所提判定方法的正确性进行了验证。计算结果表明,边坡的临界溃屈长度(a1)为483.8 m,说明下归哇边坡能够发生溃屈变形;现场勘查得知边坡实际溃屈长度(a′)为530.0 m,a′>a1,可知边坡是稳定的。这与实际情况相吻合,由此证明本文所提出的判定方法可行。  相似文献   

18.
在西安白鹿塬北缘实测了14个黄土自然边坡断面,建立了地质模型,通过采样测试并收集已有的测试资料,获得了各时代黄土地层的物理力学参数,将Morgenstern—Price法稳定性计算公式作为极限状态方程,分别采用Monte—Carlo法和Duncan法进行了边坡稳定的可靠度分析。结果表明:采用Monte—Carlo法和Duncan法得到的14个边坡稳定系数分别为1.11~1.41和1.09~1.33,显示这些边坡处于基本稳定一稳定状态;采用上述两种方法得到的边坡可靠指标分别为0.56~1.79和0.39~1.60,得到的失效概率分别为3.4%~29.0%和5.5%~34.8%,并且共有75%的边坡失效概率大于10%,失效可能性较大。统计结果表明:白鹿塬区边坡的坡高和坡度存在负相关性。低而陡的边坡潜在最危险滑面剪出口较高,失效概率较小;坡高达到50m及以上时,边坡高而缓,剪出口较低,失效概率较大,其中河流下切深,有N2泥岩出露的极高边坡,稳定性最差。Duncan法求解的稳定系数略小于Monte-Carlo法求得的结果,而前者求解的失效概率略大于后者,两种方法计算结果较为接近。由于Duncan法理论简单,计算量小,更宜于在实际工程中应用。  相似文献   

19.
唐古栋滑坡位于楞古水电站拟选的上、中坝址和下坝址之间,且滑坡规模巨大,对水电站坝址的选择和水工建筑物的布置有决定性的影响,对滑坡成因机制的研究对于分析该河段类似斜坡的变形演化具有非常重要的意义。在对滑坡地质环境条件和滑坡体特征分析的基础上,采用物理模拟中的底摩擦试验方法和离散元数值计算对唐古栋滑坡的成因机制进行分析。研究结果表明,滑坡为沿强风化层内陡倾坡外和缓倾坡外结构面组合阶梯状滑面剪断层面滑动的滑移-拉裂式的巨型岩质滑坡。滑坡失稳过程为前缘坡体首先发生变形失稳破坏,然后中后部边坡不断蠕滑变形,最终前缘抗剪段失效导致中后部整个边坡的失稳破坏。  相似文献   

20.
地震滑坡的致灾范围是判断滑坡能否会对已有建构筑物造成损失、确定预警疏散范围的重要依据,因此对地震土坡破坏后的滑坡体大小和致灾范围进行研究具有重要的意义.本研究基于SPH动力分析方法,结合弹塑性本构模型和固体力学控制方程建立了地震土坡破坏的动力分析模型;通过设置振动边界粒子和自由场边界粒子,实现了地震动加速度的施加以及自...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号