首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
周炼  刘存富  凌文黎  张利 《地球学报》1997,18(Z1):313-315
天然水中的Sr同位素比值是环境地质、水文地质作用重要的示踪剂,本文以冀中坳陷地下水为例,探讨了天然水中87Sr/86Sr的分布特征以及水文地质示踪意义。  相似文献   

2.
河北平原地下水锶同位素特征   总被引:3,自引:1,他引:3  
本文根据28个样品的测试结果,介绍了河北平原地下水的87Sr/86Sr比值。水的87Sr/86Sr比值变化很大。这些Sr同位素组成的差别反映了平原中水流受区域地质条件控制。文中讨论了Sr同位素的6个分布特征。河北平原地下水的87Sr/86Sr比值均大于现代海水的平均值(0.709073)。平原内第四系地下水(Q4-Q1)从补给区到排泄区的87Sr/86Sr比值随着距离(年龄)增大而系统增大。水文学上年轻的水显示非放射性成因的(初始的)87Sr/86Sr比值,而较老的水则具有明显的放射成因,可达0.71527(δ87Sr为8.74‰)这很可能是通过溶解含水层硅酸盐而增加大陆Sr的结果。  相似文献   

3.
河北平原地下水锶同位素形成机理   总被引:5,自引:0,他引:5  
为了研究河北平原地下水锶同位素的来源与形成机理, 对所采水样进行了分析.研究了87Sr/86Sr比值“时间积累效应”: 随着地下水年龄和埋深的增大而增大; 与地下水中过剩4Heexc呈正相关关系, 与δ18O和δD呈负相关关系.探讨了Sr2+与87Sr/86Sr比值的关系, 将地下水分为3类: (1) 中等Sr2+含量与高87Sr/86Sr比值水(Ⅰ类水); (2) 低Sr2+含量与高87Sr/86Sr比值水(Ⅱ类水); (3) 高Sr2+含量与低87Sr/86Sr比值水(Ⅲ类水), 即热水.通过综合分析认为: (1) 河北平原第四系地下水中的放射成因Sr是由富含Na和Rb的硅酸盐矿物风化作用提供的, 主要矿物为斜长石; (2) 黄骅港热水中的放射成因Sr是由碳酸盐溶解形成的, 87Sr/86Sr比值低, Sr/Na比值大; (3) 补给区地下水是由流经火成岩和变质岩区地下水的侧向补给的, 87Sr/86Sr比值中等.第三系地下水放射成因Sr的来源及形成机理尚须进一步研究.   相似文献   

4.
桂林地区岩溶水87Sr/86Sr特征   总被引:2,自引:0,他引:2  
王涛  王增银 《地球学报》2005,26(Z1):299-302
锶是岩石圈上部含量最大的微量元素,其元素及其同位素化学性质都比较稳定。不同水岩作用条件下,锶元素含量及其同位素值都不一样。本文通过对桂林地区的两个典型岩溶地下河系统不同类型地下水样87Sr/86Sr值和Sr含量的分析,得出;流经不同岩层的地下水其87Sr/86Sr值和Sr含量不同,同一地下河系统中不同类型地下水的87Sr/86Sr值Sr含量不同,其值的差异由岩性和水岩作用决定。说明87Sr/86Sr值能反映地下水的形成、径流和混合作用,是较理想的示踪剂,在岩溶水研究中具有很广阔的应用前景。  相似文献   

5.
鄂尔多斯白垩系自流水盆地北部为沙漠高原区,南部为黄土高原区。区内经济以农业和畜牧业为主,地下水的污染较弱。地下水中Sr来源于含Sr矿物的溶解。因此,可以利用Sr及^87Sr/^86Sr比值来研究水岩作用和地下水的演化。采自盆地20个Sr及其同位素样品的分析结果表明:在区域上^87Sr/^86Sr比值是不均匀的,西南部^87Sr/^86Sr比值较大(0.711002-0.711570),其他地区。^87Sr/^86Sr比值较小(0.710378-0.710646);在局域地下水系统中,埋深小于100m的浅层地下水,Sr含量较低,^87Sr/^86Sr比值较大,而埋深大于100m的深层地下水,Sr含量较高,^87Sr/^86Sr比值较小,并且沿地下水径流方向,sr的浓度越来越高。苏贝淖湖是自流水盆地北部局域地下水系统的一个排泻区,湖水Sr含量较低,而^87Sr/^86Sr比值较大,其Sr同位素组成特征与浅层地下水一致,表明湖水来源于浅层地下水。  相似文献   

6.
锰矿床的物质来源是锰矿床研究的难点问题之一.辨别黔东松桃地区南华系大塘坡组锰矿沉积的物质来源有助于加深对锰矿成矿过程的理解.对黔东松桃地区南华系大塘坡组锰矿沉积的Sr同位素研究显示,15个锰矿石、锰质页岩及炭质页岩样品87Sr/86Sr同位素比值变化范围为0.705 727~0.732 536,其中炭质页岩样品具有最高的Sr同位素比值0.732 536,含锰岩系样品87Sr/86Sr同位素比值平均值为0.711 128.样品中87Sr/86Sr比值随着Al含量的上升,分别出现87Sr/86Sr比值上升与下降的两个分异趋势.87Sr/86Sr比值随Mn含量的上升总体呈现下降的趋势,但该趋势无显著相关性,残差分析显示这主要是由于样品中87Sr/86Sr比值随着Mn含量上升出现收敛性波动造成.上述现象是由于陆源碎屑成分和海底热液成分混合输入造成.通过与大塘坡组同时代(约660 Ma)古海水Sr同位素组成,世界范围内不同时代锰矿沉积以及现代红海沉积物的Sr同位素结果对比,发现黔东松桃地区南华系锰矿层中Sr同位素比值分布范围较宽,部分锰矿样品87Sr/86Sr比值低于古海水87Sr/86Sr比值,与典型大洋成因的锰矿层或铁锰结核具有不同的Sr同位素特征.联系黔东南华系大塘坡组锰矿层形成时期的特殊地质背景,认为锰质积累过程与沉淀过程为不同阶段产物——锰质的积累过程在Sturtian冰期盆地缺氧水体中完成,可能主要以海底热液喷溢系统完成;而锰矿的沉淀过程则是在间冰期伊始古海洋化学条件动荡的水体中完成.   相似文献   

7.
滇西南思茅盆地是中国西部重要的中—新生代含钾盐盆地,但其成盐物质来源一直存在争议。文章测定了滇西南思茅 盆地磨黑地区钻孔中盐岩样品的87Sr/86Sr同位素比值,同时结合区域其他含盐带已发表的Sr同位素数据,讨论成盐物质来源。 磨黑地区盐岩的87Sr/86Sr比值介于0.708598~0.709333之间,与思茅盆地其他含盐带盐岩的87Sr/86Sr比值(0.707504~0.711069)一 致,较接近于中新生代海水的87Sr/86Sr比值(0.7068~0.7092),但87Sr/86Sr比值略高于海水,显示有陆源水混合现象。结合Sr同位 素证据与盆地演化史,一些地球化学和矿物特征,作者推测思茅盆地盐岩成盐物质来源主要是海水,存在少量陆源水的混入。  相似文献   

8.
滇西南思茅盆地是中国西部重要的中—新生代含钾盐盆地,但其成盐物质来源一直存在争议。文章测定了滇西南思茅 盆地磨黑地区钻孔中盐岩样品的87Sr/86Sr同位素比值,同时结合区域其他含盐带已发表的Sr同位素数据,讨论成盐物质来源。 磨黑地区盐岩的87Sr/86Sr比值介于0.708598~0.709333之间,与思茅盆地其他含盐带盐岩的87Sr/86Sr比值(0.707504~0.711069)一 致,较接近于中新生代海水的87Sr/86Sr比值(0.7068~0.7092),但87Sr/86Sr比值略高于海水,显示有陆源水混合现象。结合Sr同位 素证据与盆地演化史,一些地球化学和矿物特征,作者推测思茅盆地盐岩成盐物质来源主要是海水,存在少量陆源水的混入。  相似文献   

9.
塔中地区寒武系-奥陶系碳酸盐岩Sr元素和Sr同位素特征   总被引:5,自引:3,他引:2  
使用VG354固体同位素质谱仪对中1、中4井的25个碳酸盐岩样品做了Sr同位素测试, 并利用电感耦合等离子质谱仪(ICP-MS) 对塔中地区4口井共109个碳酸盐岩样品测试了Sr、Mn元素的含量.通过对Sr、Mn元素含量分析, 及中1、中4井碳酸盐岩的Sr同位素组成分析, 对比全球奥陶系海相碳酸盐的Sr同位素分析结果及演化趋势, 得出了如下认识: (1) 塔中地区奥陶纪87Sr/86Sr比值与全球海水Sr同位素演化趋势基本一致, 具有随时间下降的总体趋势, 这与广阔陆表海和有关的沉积物对放射性成因锶的封存作用有关, 说明海平面变化和白云岩化作用仍然是该区海相碳酸盐岩锶同位素组成与演化的主要控制因素; (2) 塔中地区早奥陶世的87Sr/86Sr比值与全球海水Sr同位素比值相当, 说明该区早奥陶世碳酸盐岩成岩环境为正常海水, 且早奥陶世87Sr/86Sr比值有单调降低的规律, 说明与海平面变化有关; (3) 塔中地区晚奥陶世87Sr/86Sr比值比全球海水高, 其原因是白云岩化作用和晚奥陶世盆地抬升近地表水带来高87Sr/86Sr比值, 且晚奥陶世87Sr/86Sr比值为整体升高的趋势; (4) 塔中地区奥陶纪碳酸盐岩中Mn元素含量变化不大, 反映了塔中地区奥陶纪成岩环境主要为浅水相, 但也有深水相, 白云岩化对其影响不大; (5) 塔中地区奥陶纪碳酸盐岩中Sr元素含量变化较大, 反映该时期该区碳酸盐岩成岩流体主要为海水, 但也有混合水, 白云岩主要为Ⅲ类白云岩和Ⅰ类白云岩.   相似文献   

10.
(LP)MCICPMS方法精确测定液体和固体样品的Sr同位素组成   总被引:52,自引:9,他引:52  
MCICPMS是近年发展起来的高精度固体同位素分析仪器,利用MCICPMS可以精确测定Sr同位素组成,与TIMS相比,分析效率明显提高;对于含有Rb的实际样品,在Rb/Sr比值较小时(Rb/Sr<0.001),可以通过Rb扣除获得准确的87Sr/86Sr比值,而当Rb含量较高时,可以通过建立Rb/Sr与87Sr/86Sr偏差值的线性关系进行再一次校正,同样也可以获得准确的87Sr/86Sr比值.通过这种校正关系,可以直接分析固体微区的Sr同位素组成.  相似文献   

11.
Sr同位素比值(87Sr/86Sr)测试技术作为一项成熟方法和常规示踪技术手段被广泛应用于地球科学、环境科学、考古学等研究中,但该测试技术至今并未开展相应的计量比对工作。为评价各实验室Sr同位素比值检测水平和能力,本文组织开展了地质样品Sr同位素比值测定专项计量比对活动。通过对参加实验室检测结果进行统计分析,评价各实验室的检测能力。结果表明:参比实验室检测结果的满意率为85.7%,仅一个实验室的检测结果为不满意,参比实验室整体检测能力和技术水平良好,但仍然需要重视高Rb/Sr比值样品分离有效性的问题。  相似文献   

12.
黄河和长江流域泛滥平原细粒沉积物的Sr同位素组成存在较大差异.前者的87Sr/86Sr变化范围较小,为0.712868~0.718860,平均值为0.715474;后者变化范围较大,为0.71305~0.736502,平均值为0.721438.黄河流域中、上游细粒沉积物的87Sr/86Sr低于下游;而长江流域细粒沉积物的87Sr/86Sr中游高于上、下游,且南侧高于北侧.由Nw向SE,SE,87Sr/86Sr逐渐增加.87Sr/86Sr这种空间变化规律明显受各汇水盆地内地壳岩石平均组成、年龄和化学风化作用强度的制约:岩石的Rb/Sr比值越大、年代越老、化学风化作用越强,87Sr/86Sr比值就越大.87Sr/86Sr比值是识别中国边缘海黄河、长江输运物质的有效参数,其端员值分别为0.719269和0.724312.  相似文献   

13.
海洋Sr同位素的变化主要是由陆地河流注入的Sr同位素的变化所引起。在全球河流中,流经喜马拉雅山地河流(恒河—布拉马普特拉河)表现出与世界上其它河流明显不同的特点,具有高87Sr/86Sr、高\[Sr\]的特征。恒河—布拉马普特拉河是世界上第四大河流,是当今世界海洋Sr的重要来源。国际上,目前人们对造成喜马拉雅河流Sr异常的原因(来源)的认识,仍存较大分歧。归纳起来,主要有3种认识:一是认为来源于硅酸盐岩;二是认为来源于碳酸盐岩的风化;三是认为来源于碳酸盐岩和硅酸盐岩的风化。近年来,作者对高喜马拉雅中央结晶岩系河流Sr同位素异常及其源岩进行的研究表明,高喜马拉雅河流Sr同位素受流域地质作用的强烈影响,呈现出高87Sr/86Sr、低\[Sr\]的特点。对岩石和单矿物的研究表明,中央结晶岩系变质岩(片岩、片麻岩)和花岗岩黑云母中的87Sr/86Sr与\[Rb\]成正比并具有高87Sr/86Sr、低\[Sr\]的特征。黑云母矿物具有的易风化性,为高喜马拉雅河流放射性87Sr提供了主要来源。恒河—布拉马普特拉河的Sr异常(高87Sr/86Sr和高\[Sr\])则可能是反映了流经整个喜马拉雅造山带河流Sr混合平衡后的特征。  相似文献   

14.
石灰岩化学风化显著控制着其所在流域盆地的河水Sr同位素组成,进而制约全球Sr循环。然而,石灰岩化学风化过程中Sr同位素组成的变化特征及其控制机制的研究报道依旧很少。本文通过报道粤北地区一个典型石灰岩风化剖面的Sr同位素组成变化特征,试图探讨石灰岩化学风化过程中Sr同位素变化的控制机制。结果显示:该剖面上,~(87)Sr/~(86)Sr比值介于0.70979~0.72216之间;自剖面底部到顶部,~(87)Sr/~(86)Sr比值呈现出逐渐增大的趋势;Nd同位素组成比较均一(εNd(t)=–15.0±0.5)。研究区的潜在源区(如大气降水、地表水),其~(87)Sr/~(86)Sr比值明显低于该剖面上部的最大值,加之,该剖面的风化产物与典型的中国黄土剖面具有截然不同的Sr-Nd同位素组成,暗示了这些潜在源区的输入不大可能造成该剖面上Sr同位素组成发生显著的变化。该剖面上~(87)Sr/~(86)Sr比值与Sr含量之间呈现显著的负相关性(r=–0.95),暗示粤北石灰岩化学风化过程中Sr同位素的演化受控于碳酸盐矿物与硅酸盐矿物在抗风化强度以及Sr同位素组成方面的显著差异:相对硅酸盐矿物,碳酸盐矿物(如方解石)抗风化强度较弱,于是随着风化作用的进行,原岩中具有较低~(87)Sr/~(86)Sr比值的方解石中的Sr大量迁出剖面,而具有较高~(87)Sr/~(86)Sr比值的硅酸盐矿物中的Sr残留在风化产物中,因此,随着风化强度的增加,风化产物中的~(87)Sr/~(86)Sr比值呈现出逐渐增大的趋势。  相似文献   

15.
湖南芙蓉锡矿床中萤石的Sr-Nd同位素研究   总被引:2,自引:0,他引:2  
芙蓉锡矿床是一个新探明的超大型锡矿床,产于湘南的骑田岭花岗岩体中。本次研究测试了该矿床中与锡石硫化物共生的萤石的Sr和Nd同位素组成。各矿脉中萤石的87Sr/86Sr比值并不相同,变化从0.70770~0.71484,反映了成矿流体的初始87Sr/86Sr比值并不均一。萤石的Sm-Nd同位素组成并没有构成很好的等时线,计算的ENd(t)值变化在-6.6~-9.8之间。萤石的Sr-Nd同位素组成并不同于花岗岩,成矿流体中的Sr和Nd有很大一部分来自围岩的碳酸盐岩地层。  相似文献   

16.
确定化学风化剖面的风化组分来源是一个重要而又困难的问题,通过对贵州省平坝白云岩风化剖面中Sr同位素组成的研究,揭示了典型就位白云岩风化剖面的Sr同位素特征,验证87Sr/86Sr与Nb/Sr比率的图解模式对碳酸盐岩风化剖面的适用性,提出了87Sr/86Sr与Nd/Sr比率的图解新模式.研究认为,该模式不仅对白云岩的化学风化具有明显的指示意义,也更好地补充和限定了87Sr/86Sr与Nb/Sr比率的图解所反映出的矿物组分和风化过程.这一研究结果将为风化剖面中Sr同位素的定量研究提供重要的区分指标.  相似文献   

17.
郑荣才  文华国  郑超  罗平  李国军  陈守春 《岩石学报》2009,25(10):2459-2468
研究了川东北普光气田下三叠统飞仙关组白云岩储层的岩石结构Sr的含量和Sr同位素组成,讨论了它的成因,飞仙关组优质储层为成岩期埋藏交代白云化作用的产物,来自岩石结构和Sr同位素和Sr含量的证据包括如下几个方面:(1)与准同生白云岩比较,埋藏白云岩的岩石结构和Sr同位素和Sr含量地球化学特征与前者有显著差别;(2)飞仙关组所有各类碳酸盐岩(或矿物)具有早三叠世海水Sr同位素组成特征,~(87)Sr/~(86)Sr比值变化范围为0.706588~0.708187,覆盖了全球早三叠世海水Sr同位素的变化范围(0.7076~0.7078),平均值0.707656与全球早三叠世平均值(0.707743)基本一致;(3)埋藏白云岩~(87)Sr/86Sr比值变化范围为0.707122~0.707419,平均值0.707421,都略低于全球早三叠世海水Sr同位素变化范围和平均值,但与已报道的川东北早三叠世飞仙关期海水Sr同位素变化范围(0.707330~0.707383)和平均值(0.707350)都非常接近,说明白云石化流体具有强烈的川东北地区早三叠世飞仙关期海水Sr同位素组成特征;(4)综合岩石结构、Sr同位素和Sr含量地球化学特征,证明飞仙关组白云岩储层为成岩期埋藏交代作用产物,白云石化流体来自地层中高Sr和高盐度的海源地层水.  相似文献   

18.
桂和荣  陈松 《地学前缘》2016,23(3):133-139
煤矿区地下水既是重要的地下水资源,又影响煤矿安全生产。为了解宿南矿区地下水同位素化学特征,采集了宿南矿区松散层水、砂岩水和灰岩水样品进行T、D、18O、87Sr/86Sr和溶解碳酸盐岩中13C、18O等同位素测试分析,并利用传统图示等方法探讨了地下水演化年龄、同位素特征及影响因素。结果表明:矿区3个含水层地下水中T含量较低,整体反映了矿区地下水多位时间久远的亚现代水补给;地下水中D、18O受到明显围岩的影响,其组成为-68.5‰~-44.3‰和-8.78‰~-6.29‰,平均值分别为-61.15‰和-8.16‰;围岩中碳酸盐岩含量决定了13CDIC与 18ODIC的变化关系;87Sr/86Sr值为0.710 6~0.712 3,平均为0.711 2,87Sr/86Sr比值主要受到了水岩作用的影响,可以有效地识别3个不同含水层水源。  相似文献   

19.
济阳拗陷第三纪玄武岩的Nd—Sr同位素研究   总被引:9,自引:2,他引:9  
本文报道了济阳拗陷29个第三纪玄武岩的Nd,Sr同位素组成。结果表明,该区早、晚第三纪玄武岩的Nd-Sr同位素组成变化且具有一定的区别:早经三纪玄武岩的εNd值为0.70481-0.70830;晚第三纪玄武央的εNd值为0.1-2.3,^87Sr/^86Sr比值为0.70421-0.70530。鉴于εNd与1/Nd有^87Sr/^86Sr与1/Sr之间不存在相关特征,Nb正异常以及SiO2与MgO,Fe2O3 FeO,P2O5呈负相关,与Al2O3呈正相关,但与K2I为不存在相关特征,因此,地壳混染作用并不是第三纪玄武岩同位素组成变化的主要原因。玄武岩^87Sr/^86Sr比值的升高是由热液蚀变造成的,而εNd值的变化而归因于源区混合。如果热液蚀变作用没有发生,这些玄武岩的所有数据点在Nd-Sr相关图上将可能位于地幔系列内部。这表明第三纪玄武岩主要是由DMM和EMI两个端员组分不同程度混合形成,EMII的贡献是次要的。  相似文献   

20.
云南老王寨金矿区煌斑岩的Sr、Nd同位素研究   总被引:2,自引:0,他引:2  
广泛分布于云南老王寨金矿区、与金矿化时空密切共生煌斑岩,与原始地幔现代值相比具有相对高87Sr/86Sr比值(0.70644-0.70895)和低143Nd/144Nd比值(0.512436-0.512524)。对比分析及有关模拟计算结果表明,本区煌斑岩具有上述Sr、Nd同位素组成特征可能不是“基性岩浆陆壳混染”的产物,而是交代异常地幔部分熔融的结果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号