首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Samples of synthetic diaplectic anorthite glass (38 GPa shock pressure), thermal glass and synthetic anorthite crystals were investigated using infrared spectral methods at one atmosphere and high pressures (near 4 GPa). Band positions and pressure derivatives for the Si-O asymmetric modes in the region 1,300–900 cm?1 indicate that the diaplectic glass has more structural similarities with the crystalline material than with thermal glass even though the overall infrared spectral characteristics suggest a glassy state.  相似文献   

2.
Raman vibrational spectra and X-ray diffractometer scans were obtained from experimentally shocked samples of oligoclase (An19) and andesine (An49). Some 11 oligoclase and 15 andesine targets were shocked between 24 and 40 GPa to address the transition from crystalline to diaplectic states and to explore differences in the structural state of diaplectic feldspar glasses (maskelynite) as a function of peak shock stress. Thy symmetrical VS (T-O-T) (T=Si or Al) stretch bands are the most persistent. They disappear, however, in the noise of an unusually strong luminescent spectrum at > 32 GPa in the oligoclase and at > 30 GPa in the andesine; i.e., at pressures where transition to diaplectic glass is complete. The Raman investigations yield a maskelynite structure that is probably one of a multitude of very small domains with some order, but with a large range of local properties on the scale of small domains, either in heterogeneous size-distribution of domains or in their detailed order, if not both. This results in a very large number of Raman photon-phonon frequencies unlike glasses derived from quenched melts. Our study corroborates conclusions by others, that diaplectic glasses may be the quench products of very dense, disordered phases that exist during shock compression and that subsequently relax to these unusually dense glasses that are only known from shock processes. An origin by relaxation of highly ordered, genuine high pressure polymorphs possessing the structure of hollandite is unlikely, as no evidence for any six-fold Si-coordination was found. Detailed luminescent emission spectra were taken of the oligoclase samples and they show disappearance of the IR band and a strengthening of the green band (the blue band could not be detected with a primary radiation of wavelength 448 nm). This supports previous views that the disappearance of IR emission is most likely caused by shock-induced changes of the crystal field near Fe3+ sites, rather than due to quenching by Fe2+. The X-ray studies were primarily intended to explore whether differences in structural states of maskelynite occur on sufficiently large scales to be detected by standard diffractometry methods. This is not the case. X-ray diffractometer patterns are grossly similar, if not identical, in samples shocked between 30 and 40 GPa and may not be used to fine-tune the shock histories of naturally produced diaplectic glasses.  相似文献   

3.
Samples of single crystal calcic plagioclase (labradorite, An63, from Chihuahua, Mexico) have been shock-loaded to pressures up to 496 kbar. Optical and electron microscopic studies of the recovered samples show the effects of increasing shock pressures on this mineral. At pressures up to 287 kbar, the recovered specimens are still essentially crystalline, with only a trace amount of optically unresolvable glass present at 287 kbar. Samples recovered after shock-loading to pressures between 300 and 400 kbar are almost 100% diaplectic glasses; that is formed by shock transformation presumably in the solid-state. Above about 400 kbar, glasses with refractive indices similar to thermally fused glass were produced. The general behavior of the index of refraction with shock pressures agrees closely with previous work, however, the absence of planar features is striking. At pressures less than 300 kbar, the most prominent physical feature is the pervasive irregular fracturing caused by the shock crushing, although some (001) and (010) cleavages are observed. No fine-scale shock deformation structures, i.e. planar features, were noted in any of the specimens. We conclude, in contrast to previous studies of shocked rocks that planar features are not necessarily definitive shock indicators, in contrast to diaplectic glass (e.g., maskelynite) and high-pressure phases, but are rather likely indicative of the local heterogeneous dynamic stress experienced by plagioclase grains within shocked rocks.  相似文献   

4.
The central anorthosite peak of the Maniconagan crater displays characteristic shock deformation and transition phenomena in plagioclase feldspars, scapolithe, apatite and other maphitic minerals. The optical orientation of plagioclases is determined. With increasing shock, a trend to a highly disordered structure of the plagioclase lattice can be observed. Rock fracturing occurs at low pressures. At higher pressures different kinds of isotropisation features and planar deformation structures in plagioclase, scapolithe and apatite can be distinguished. These planar elements can be interpreted as glide planes of low crystallographic indices, set in motion during shock compression by plastic deformation. Their optical orientation is measured. At very high pressures a completely isotropic phase, the s. c. diaplectic glass is formed. The physical properties of diaplectic plagioclase crystals and diaplectic glass are determined which are different from those of an unshocked crystal and its molten plagioclase glass of the same chemical composition. The diaplectic plagioclase phases are apparently mixed phases of molten glass and normal crystal. This can be proved by x-ray and infrared absorption studies. These results are correlated to shock recovery experiments and hugoniot states of plagioclase. All shock effects of plagioclases are classified into three groups according to the low pressure regime, mixed phase regime and high pressure regime. The low pressure regime is characterised by strong fracturing, the mixed phase regime by the development of planar elements, which were transformed during shock compression into the high pressure plagioclase phase with hollandite structure. The latter is converted into diaplectic glass after pressure release. The high pressure regime is characterised by complete transformation of plagioclase into the high pressure phase, which is unstable and reverts completely to the amorphous phase (diaplectic glass or maskelynite) at zero pressure density.

Meinem verehrten Lehrer, Herrn Prof. Dr. W. v. Engelhardt, danke ich für die Unterstützung bei der Bearbeitung des Themas. Herrn Dr. D. Stöffler danke ich für klärende Diskussionen und Ratschläge. Dem Ministère des Richesses Naturelles, Québec, Canada, sowie Herrn M.S. J. Murtaugh sei für die großzügige Unterstützung bei den Geländearbeiten im Manicouagan-Krater gedankt. Die Deutsche Forschungsgemeinschaft hat die Arbeit finanziell unterstützt.  相似文献   

5.
The structural state of diaplectic labradorite glass (≈An58) from the Manicouagan impact crater and of its fusion-formed glass analog have been investigated by X-ray diffraction studies. The experimental X-ray intensity distribution patterns indicate that the diaplectic and fusion-formed glasses are structurally rather similar, the former being apparently slightly less disordered. Theoretical X-ray distribution curves have been calculated using the structure of high albite as a quasi-crystalline model of the glass structure. The experimental and theoretical curves show fair similarity when the calculations are based on the complete unit cell. It is inferred therefore, that the structures of both kinds of glasses possess an average short range order comparable to that in high albite and extending to about the dimensions of the unit cell. In addition, the experimental X-ray scattering pattern and X-ray Debye-Scherrer transmission photographs of the diaplectic glass reveal the presence of relics up to about 8 nm in size of the previous crystalline lattice of the primary labradorite. The present results support Grady's shear band model according to which diaplectic glass may represent the quench product of a shock-generated high-density melt frozen in prior to total pressure release.  相似文献   

6.
Physical properties and the crystallization behavior of natural diaplectic labradorite glass of the shocked anorthosite from the Manicouagan impact crater have been studied. Glasses prepared by laboratory fusion of this anorthosite and a synthetic An55 plagioclase composition were used for comparison. The close similarities in the mid-and far-infrared spectra of the diaplectic and fused glasses indicate a comparable degree of short-range order and lack of long-range order in their structures. They also show an identical viscosity-temperature relation, reflecting a similar and probably high degree of coherence of the (Si,Al)O4 tetrahedra in the network. However, striking differences exist in the crystallization characteristics. Diffusion-controlled crystallization takes place in the fused glass between about 900 and 1,400° C and proceeds generally by the advance of dendritic crystal layers from the surface into the interior of the samples. By contrast, diffusion plays a minor, if any, role in the crystallization of the diaplectic glass, which, on annealing between 800 and 1,000° C reverts to the original plagioclase structure and the primary mineral grains are restored. From the present experimental results it is suggested that high shock-induced temperatures cause onset of the melting process in the compressed crystalline labradorite. However, due to the extremely short duration of the transient high-temperature excursions, the crystal-melt transition does not come to completion. Instead, a disordered transitional state of the compressed material is frozen-in which is recovered after pressure release as diaplectic glass. Its structure thus represents a frozen-in disordered state intermediate between the structures of the crystalline labradorite and its melt. It appears that the diaplectic glass structure is rather inhomogeneous, thereby reflecting the heterogeneous deformational and thermal conditions associated with shock compression.  相似文献   

7.
Enthalpies of solution in molten 2PbO·B2O3 at ~988 K have been measured for diaplectic labradorite glass from the Manicouagan impact crater and a fused glass formed from the same material. The enthalpies of solution of the diaplectic and fusion-formed glasses are 4,347 and 2,023 cal mol?1, respectively. The more endothermic enthalpy of solution of the diaplectic glass indicates a greater relative energetic stability of about 2.3 kcal mol?1. The data are consistent with Diemann and Arndt's (1984) structural model that suggests the diaplectic glass is more ordered than fusion-formed glass and with the presence of crystallites. Comparison of data to enthalpies of solution of crystalline labradorite (Carpenter et al. 1985) indicates a maximum percentage of crystalline relics of ~15–18%, also consistent with Diemann and Arndt's (1984) estimate of <17%. Thus the diaplectic glass is intermediate in thermochemical properties between normal glass and crystal (much closer to glass) and does not represent any state more unstable than normal fusion-formed glass.  相似文献   

8.
The textural relationships and structural states of optically isotropic labradorite from the Manicouagan, Quebec, impact structure have been examined by light (optical) and transmission electron (TEM) microscopy. Two distinct diaplectic glasses have been recognized based on their contrasting morphology, timing and the inferred modes of formation. The earliest isotropic bands and grain-scale isotropism (maskelynite) optically exhibit a gradational,in situ transformation from crystalline plagioclase with preservation of relict textures (twins, grain boundaries). The same transformation from crystalline to amorphous structure is observed in TEM to occur heterogeneously at scales on the order of the unit cell. The progressive transformation of optical properties reflects an increase in the volume fraction and eventual coalescence of these amorphous units. This maskelynite-type diaplectic glass is interpreted to form in the solid-state directly from crystalline material during the compressional phase of the shock wave. The other isotropic material occurs in spatially discrete tensiongashes and planar deformation features (PDFs) that overprint the maskelynite-type glass. This second type of diaplectic glass (PDF-type) is developed homogeneously within a given glass band and exhibits sharp crystal-glass boundaries, in contrast to the gradational boundaries of the maskelynite-type glass. PDF-type glass is interpreted to form by melting in tensional release zones during passage of the rarefaction wave. These observations emphasize the ability of naturally shocked rocks to preserve subtle evidence of variations in the shock process from highly transient events.  相似文献   

9.
Shock recovery experiments on melilite samples in the pressure range from 11 to 50.5 GPa have been performed in order to examine the effects of shock waves on this material. The shocked samples were subsequently studied in the transmission electron microscope. All samples displayed the shock-induced amorphous areas, known as diaplectic glass. The amount of diaplectic melilite glass increased from a few percent at 11 GPa to about 85 percent at 50.5 GPa shock pressure. The shock waves also caused deformational effects as planar faults parallel to (001) and dislocations with a density in the order of 1010 cm?2. Regarding the present discussion on the origin and nature of diaplectic glass, diaplectic melilite glass is assumed to be the reversion product of a high-density phase produced in the shock front. Deformed melilites in Ca-Al-rich inclusions from chondritic meteorites studied so far do not contain diaplectic glass. It is assumed that the meteoritic melilites were hot (>1,000° C) and thus plastically deformable by shock waves of rather low amplitudes.  相似文献   

10.
Structural modifications induced by shock-wave compression up to 40 GPa in anorthite glass are investigated by Raman spectroscopy. In the first investigation, densification increases with increasing shock pressure. A maximum densification of 2.2% is obtained for a shock pressure of 24 GPa. This densification is attributed to a decrease of the average ring size, favoring three-membered rings. The densification is much lower than in silica glass subject to shock at similar pressures (11%), because the T-O-T bond angle decrease is impeded in anorthite glass. For higher shock pressures, the decrease of the recovered densification is attributed to partial annealing of the samples due to high after-shock residual temperatures. The study of the annealing process of the most densified glass by in-situ high temperature Raman spectroscopy confirms that relaxation of the three-membered rings occurs above about 900 K. Received: 21 July 1998 / Revised and accepted: 27 January 1999  相似文献   

11.
In situ time-resolved measurements of shock wave profiles for anisotropic fluorite crystals with two different crystal orientations were carried out up to a pressure of 34 GPa that is above the transition pressure for the fluorite to cotunnite phase. They indicate that the Hugoniot elastic limit varies with the crystal orientation and final pressure and that high-pressure phase transition from fluorite to a cotunnite-type structure occurs at 13 GPa in 10–20 ns for CaF2 [100]-oriented crystals and at 17 GPa in more than 50 ns for CaF2 [111]-oriented crystals, respectively. These results are in disagreement with those from static compression. The phase transition at static pressures has been known to be very sluggish, but the present results indicate a large sensitivity of kinetics to the relationship between crystallographic orientation and shock direction, supporting a martensitic mechanism for the fluorite to cotunnite phase transition that is enhanced by the effect of shock-induced shear. It is also helpful to explain the observation that the in situ emission spectra for shocked Eu-doped fluorite became weak and had no shift above ~15 GPa.  相似文献   

12.
The intergrowth of diaplectic glass and primitive anorthite has been observed in fragments shocked to 300 kbar. The textures observed by electron microscopy are similar to those produced in shocked quartz crystals. The diffuseness of reflections, related to antiphase domains, show no noticeable change in comparison with unshocked specimens. These results indicate that no gradual change in original domain size occurs and that the transformation of primitive anorthite to diaplectic glass occurs abruptly.  相似文献   

13.
The paper presents data on lechatelierite form suevites of the Daldyn Formation in the Popigai astrobleme. Some of the lechatelierite samples show a complicated structure and contain block of diaplectic quartz glass and dynamic “intrusions” of glasses of types I, II, and III. The glasses of types I and II abound in fluid inclusions and display evidence of partial homogenization with lechatelierite. The glasses of type III are clearly separated from all other glasses but show evidence of dynamic interaction with them in the molten state. Fluid inclusions in the glasses of types I and II are syngenetic but have notably different densities from those of completely liquid or gaseous inclusions at 20°C. As is indicated by cryometric data, the liquid phase of the inclusions is aqueous solution of low salinity (5–8 wt % NaClequiv). The bulk petrochemistry of the glasses of type I characterizes them as highly silicic (96.04 wt % SiO2 on average), with elevated K and Na concentrations (Na2O + K2O = 0.72 wt % on average), with 0.73 wt % Al2O3 (on average) and analytical totals 1.97 wt % less than 100%. The glasses of type II are also rich in SiO2 (91.51 wt % SiO2 on average) but contain a broader spectrum of concentrations of major oxides (totaling 5.53 wt % on average) and deficient analytical totals (by 2.96 wt % on average). The glasses of type III are completely equal to impactites produced by melting gneisses of the Popigai astrobleme. The glasses of type I are interpreted to be the intrusion products of the “early” highly mobile and H2O-rich fluid+melt mixtures, whose protolithic material was K-Na feldspars of the target rocks. The derivation of these melts was associated with the capturing of much silica and water at a highly mobile behavior of K and Na and an inert behavior of Al. The glasses of type II were produced by the extensive mixing of silica and water at the limited involvement of apogneiss melts, and these glasses are sometimes deficient in Al. The glasses of type III are usual mixed apogneiss melts. Excess silica in the glasses of types I and II and their richness in water and deficiency in Al suggest impact anatexis and the selective separation of components during their derivation; the parental fluid-melt mixtures of these glasses were derived from such “hydrous” varieties of the target gneisses as diaphthorized and fractured rocks. The evolution and partial vitrification of lechatelierite and the glasses of types I and II proceeded under residual shock pressures, as follows from data on the dense (from ∼0.5 to 1 g/cm3) aqueous inclusions in these glasses, which suggest that the inclusions were captured in the glasses under pressures from ∼0.8 to 3.3 GPa. It follows that our lechatelierite samples have a complex multistage genesis, and their quenching facilitated the preservation of “intrusions” of various stages of shock melting, including the products of the “early” impact anatexis of the gneisses with the selective separation of components at the active participation of water.  相似文献   

14.
Antigorite is one kind of hydrous serpentine that is present in meteorites and in the Earth mantle. In order to understand its dynamic behaviors, metastability and decomposition, shock experiments on antigorite have been conducted using a two-stage gas gun, and wave profiles of particle velocities have been measured to obtain the Hugoniot up to ~130 GPa and sound velocity at high pressures. The results show three regions of low-pressure phase below ~43 GPa and its metastable extension above a pressure of ~43 GPa for short durations of shock and high-pressure phase(s) above a pressure of ~43 GPa for long durations of shock. The dynamic behaviors of antigorite depend on not only the pressure but also the compression duration. Metastable extension state indicates that antigorite may survive beyond the stability depending on the shock conditions. Shock temperatures for antigorite are calculated along the Hugoniot. The pressure–density, sound velocity–pressure and shock temperature–pressure plots demonstrate that the decomposition reaction of antigorite into high-pressure phase(s) is accompanied by a volume expansion, sound velocity increase and temperature decrease, relative to the metastable extension phase above ~43 GPa. The decomposition should be sluggish and needs enough reaction time to complete and to overcome the activation energy. As a result of the high metastability of antigorite and possible decomposition assemblages, the hydrous serpentine (antigorite) may play a crucial role for the origin of water during the Earth accretion.  相似文献   

15.
Artificial shock pressures up to 52.5 GPa have no influence on the K-Ar system of plagioclase feldspar. The 40Ar-39Ar analysis of feldspar (labradorite An67 from anorthosite of North-Eastern Minnesota) shocked up to 45 GPa—in vacuo, to prevent massive entrapment of atmospheric argon-shows that the age spectra and the argon diffusion properties remain unaltered. Similar feldspar samples (labradorite An51 from Nain, Labrador), shocked in air up to 52.5 GPa and dated by the conventional K-Ar method, also yield the same age as unshocked samples but with a higher atmospheric argon contribution. The Minnesota anorthosite has an 40Ar-39Ar age of 1075 ± 10 m.y. No information on a possible previous history of the anorthosite became apparent.  相似文献   

16.
17.
Two kinds of glasses are to be found in the breccias of the Ries basin both which have been generated by shock wave action on the rocks of the crystalline basement: a) Normal glasses, containing flow structures and vesicles; they are formed by shock waves of high energy which after unloading, leave behind material, the temperature of which is above the melting point. b) Diaplectic glasses without vesicles and flow structures, preserving the grain boundaries, cleavages and twin lamellae of the primary minerals; they are formed by shock waves of lower energy which destroy the crystal lattice but after unloading, leave behind material, the temperature of which is below the melting point. — Measurements have been taken of the density and index of refraction of diaplectic quartz- and plagioclase-glasses. The values obtained proved to be higher than those of the normal glasses and lower than those of the crystalline phases. Diaplectic glasses are distinguishable from normal glasses by their physical properties. They represent intermediate stages of structural order between the crystalline and normal glass phases.  相似文献   

18.
The Slate Islands archipelago is believed to represent the central uplifted portion of a complex impact structure. Planar microstructures in quartz and feldspars and shock vitrification of rocks are the most common shock metamorphic features encountered. No diaplectic quartz was identified in the exposed rocks, but minor maskelynite is present. Shatter cones occur on all islands of the archipelago suggesting minimum pressures of 4 ± 2 GPa. The relative frequency of low index planar microstructures of specific, optically determined crystallographic orientations in quartz are correlated with results from shock barometric experiments to estimate peak shock pressures experienced by the exposed target rocks. In general, there is a decrease in shock pressure recorded in the target rocks from about 20–25 GPa in east-central Patterson Island to about 5–10 GPa at the western shore of this island and on Mortimer Island. The shock attenuation gradient is ∼4.5 GPa/km across this section of the island group. However, the shock attenuation has a roughly concentric plan only over the western part of the archipelago. There is no distinct shock center and there are other deviations from circularity. This is probably the result of: (1) the shock wave not having expanded from a point or spherical source because of the ∼1. 0 to 1.5 km size of the impactor; (2) differential movement of large target rock blocks during the central uplift and crater modification phases of the impact process. The orientation of planar deformation features in quartz appears to be independent of the shock wave direction suggesting that crystal structure exerts the primary control on microstructure development. Based on the results of XRD analyses, residual, post-impact temperatures were high enough to cause annealing of submicroscopic damage in shocked quartz. Received: 15 July 1997 / Accepted: 6 October 1997  相似文献   

19.
We have carried out a Raman Spectroscopic study of single crystalline quartz samples shocked to peak pressures up to 31.4GPa. Samples shocked to above 22 GPa show shifts in peak positions consistent with the quartz being under tensile stress, and new broad bands associated with the formation of high density SiO2 glass appear in the spectra. These changes are accompanied by an increase in the lattice parameters of the quartz. Formation of the diaplectic glass could be due to a metastable melting event, or spinodal lattice collapse on attainment of a mechanical stability limit of crystalline quartz, as suggested by previous studies of pressure-induced amorphization in static pressurization experiments on SiO2 and GeO2 polymorphs.  相似文献   

20.
Patterns in the shock metamorphic transformations of rock-forming minerals (garnet, biotite, plagioclase, and K-feldspar) in quartz-feldspar-biotite-garnet schist (the Southern Urals) that were subjected to shockwave compression using planar geometry recovery ampoules were investigated. The maximum shock pressures that were attained upon a few wave circulations in a sample (stepwise shock compression) reached 26, 36, and 52 GPa. Comparison of the transformations that occurred due to stepwise shock compression with diaplectic changes of the studied minerals in nature and in the course of experiments with convergent spherical shock waves revealed significant differences in the transformations of melanocratic (garnet and biotite) minerals under different types of loading.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号