首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
Permafrost along the Qinghai-Tibet railway is featured by abundant ground ice and high ground temperature. Under the influence of climate warming and engineering activities, the permafrost is under degradation process. The main difficulty in railway roadbed construction is how to prevent thawing settlement caused by degradation of permafrost. Therefore the proactively cooling methods based on controlling solar radiation, heat conductivity and heat convection were adopted instead of the traditional passive methods, which is simply increasing thermal resistance. The cooling methods used in the Qinghai-Tibet railway construction include sunshine-shielding roadbeds, crushed rock based roadbeds, roadbeds with rock revetments, duct-ventilated roadbeds, thermosyphon installed roadbeds and land bridges. The field monitored data show that the cooling methods are effective in protecting the underlying permafrost, the permafrost table was uplifted under the embankments and therefore the roadbed stability was guaranteed.  相似文献   

2.
青藏铁路设计与建设——第六届国际冻土工程会议回顾   总被引:1,自引:1,他引:0  
The 6^th International Symposium on Permafrost Engineering was successfully held in China in September 2004. About 150 scientists and engineers from 7 countries attended the symposium in Lanzhou on 5~7 September, and about 35 people from 6 countries participated in the field trip along the QinghaiTibet Highway/Railway on 8~13 September and the seminar in Lhasa on 14 September 2004. During the Symposium, the latest progress on permafrost engineering and the surveys, design and construction of the Qinghai-Tibet Railway were exchanged and inspected. Fifty-eight technical papers in English from the Symposium were published in the first volume of the Proceedings of the Symposium, as a supplement of the Journal of Glaciology and Geocryology, before the symposium. About 6 papers from the symposium are published in the second volume in the volume 27(1) of the Journal of the Glaciology and Geocryology, after the symposium. The Qinghai-Tibet Railway (QTR) under construction will traverse 632 km of permafrost, and the engineers are facing unprecedented engineering and environmental challenges. With the QTR under construction and to be completed in 2007, permafrost engineering has become the research focus of permafrost scientists and engineers in China. Many encouraging and promising achievements in permafrost engineering have been obtained during the past three years. However, there are still numerous engineering and environmental problems needing to be solved or resolved. In the discussions, some experts pointed out that methods, such as removal of snow cover on the embankments and toe areas, light-color embankments and side slope surfaces, awnings for shading the solar radiation, hairpin or tilted thermosyphons, could be applied to actively cool the roadbed of the QTR. Some new ideas on utilization of the natural cold reserves were proposed to protect the QTR permafrost roadbed from thawing. Many questions and answers on the survey, design, construction, operations, maintenance and environmental protection were exchanged in situ and in the Lhasa seminar with participation by some major railway designers, regulators and administrators.  相似文献   

3.
Ways of strengthening railway embankment basis on ice-rich permafrost are characterized by regulating cooling and warming factors for preservation of the basis in constantly frozen condition (with the help of snow removal, painting, sun-precipitation shed, cross-section cooling pipes, the film cover,and the longitudinal cooling device) or removing icy masses preventively from the basis and filling the cavities simultaneously with not subsiding soils (with use of jet geotechnology). Skilled-experimental development are shined on the basis of new ways of strengthening embankment basis on ice-rich frozen soils.  相似文献   

4.
The distribution of permafrost and taliks is very complex in the Tuotuo River Basin(TRB), which is located in interior of the Qinghai-Tibet Plateau. Characterizing the spatial distribution and the thermal stability of permafrost and taliks is of great significance to community activities and engineering construction in TRB. Based on the zonation of permafrost and talik distribution around TRB conducted in the 1980s, the soil temperature and its variation process of permafrost and taliks in the south and north banks of the Tuotuo River were analyzed by using the observation data of five boreholes(N1~N5)along the Qinghai-Tibet Railway in the north bank and five boreholes(S1~S5)on the first terrace in the south bank. The results showed that, under the climate warming, permafrost and taliks in the north banks experienced significant degradation and warming process. From 2005 to 2020, the permafrost at the N1 borehole has undergone a significant down-draw degradation process, from extremely unstable and high-temperature permafrost to thawed zone. From 2005 to 2013, the annual average ground temperature of the talik at N2 increased at a rate of 0. 3~0. 4 °C·(10a)-1. At Maqutang on the south bank, permafrost prevails from the first-class terrace to the gentle slope of the Kaixinling Mountain, with both through and non-through taliks on the first-class terrace. The spatial distribution and the thermal stability of permafrost and talik in the TRB are further promoted by analyzing the changes in temperatures at boreholes in the basin. However, to meet the requirements of mapping and engineering construction of permafrost and taliks in the TRB, it is still necessary to carry out geological investigation with multiple methods and in-depth research on development mechanism of taliks in the future. © 2022 Nanjing Forestry University. All rights reserved.  相似文献   

5.
李国玉  李宁  全晓娟 《冰川冻土》2004,26(Z1):108-114
Finite Element Method has been used to operate the numerical analysis and comparison between the traditional ventilated embankment and the adjustable ventilated embankment adopted in Qinghai-Tibet Railway construction. The numerical results show that: 1) The adjustable ventilated embankments can prevent the thermal entry from air into ducts during summer from thawing the permafrost beneath the embankments; 2) The cooling effects of the adjustable ventilated embankments on permafrost is much better than the traditional ventilated embankments although two kinds of embankments can generate the thawing bulbs at the beginning of finishing construction; 3) The drop of the mean temperature of permafrost under the adjustable ventilated embankments keeps faster than that of the mean temperature of permafrost under the traditional ventilated embankments. It is clear that the adjustable ventilated embankments can keep the embankment more stable than the traditional ventilated embankments.  相似文献   

6.
青藏铁路冻土路基沉降变形现场试验研究   总被引:3,自引:0,他引:3  
Based on the field data of ground temperature and roadway settlement observed during the construction of the experimental embankments over permafrost along the Qinghai-Tibetan Railway, this paper discusses the differences of frost process on the roadway surface from that on the natural ground surface, the changes of permafrost table under the roadway embankment, and the peculiarities of roadway settlement. Analyses of the test results show : 1) The differences of the freezing indexes between the roadway surfaces and the natural ground surfaces are less than those of the thawing indexes for all the test sections; 2) Since the measures of permafrost protection were taken, the permafrost tables under the embankments have raised after the roadway was constructed. The minimum is about 0.4 m and the maximum is 1.2 m; 3) the settlements of the roadway are mainly from the compression and creep of the icerich frozen soils under the original permafrost tables and the maximum has reached 6 ~ 8 cm during the first year after the embankments were constructed. Moreover, concerning the processes of roadway settlement, the deformation of the embankments has no obvious trend of attenuation at present. Especially,for the roadway with high embankments, the settlement may reach a remarkable value and much consideration must be given for this problem.  相似文献   

7.
Using the long-term ground temperature monitoring data of the permafrost zone along the Qinghai-Tibet Railway from 2006 to 2020,three types of typical roadbed structures were analyzed. Traditional embankment(TE),U-shaped crushed rock embankment(UCRE)and crushed rock revetment embankment(CRRE)were included the three types of typical roadbed,which were selected to the long-term monitoring sections within the warm permafrost zones. The evolution of ground temperature field,mean annual ground temperature (MAGT)and annual maximum ground temperature(AMGT)in the depth range of 20 m under the embankment were analyzed and studied since 15 years of operation. The monitoring and analysis results show that:the growth rate of MAGT under the left and right shoulders of the TE is always higher than that of the same depth in the natural site. The MAGT under the UCRE is always lower than the natural site and always maintains a certain difference,whereas,the difference in ground temperature under the left and right shoulders is also not negligible. The MAGT of the left shoulder in the CRRE is not much different from that of the natural hole,while the MAGT of the right shoulder is always lower than that of the natural hole,and the differ in ground temperature between the left and right shoulders is smaller than that of the UCRE. The artificial permafrost table(APT)under the TE is always lower than that of in the natural site. Both the UCRE and CRRE,the APT in the left and right shoulders of them has been elevated into the embankment,and the differ of APT between the left and right shoulders is about 1. 0~1. 5 m. the differ of APT between the left and right shoulders in the CRRE is slightly lower than that of UCRE. Overall,because of the influence of thermal disturbance about engineering and climate warming,the TE in the warm permafrost zones cannot keep the thermal stability of permafrost under the embankment. Some active-cooling and reinforcement measures need to be taken. Both of the UCRE and CRRE,have a certain active-cooling effect on the permafrost under embankment,but the differ in ground temperature between the left and right shoulders still needs to be taken seriously. © 2022 Science Press (China).  相似文献   

8.
张钊 《冰川冻土》2004,26(Z1):184-188
The effective and assured measures in criteria of formulation, procedures, techniques and methods for geological prospecting of Qinghai-Xizang Railway have been made. The permafrost engineering geological investigation indicate the talik and those sections with annual average ground temperature higher than 1 ℃ takes up 68.8% of total amount; the high ice content permafrost also account for 50% of real permafrost section. The distribution of permafrost characteristics is obviously influenced by altitude and latitude. The prospecting also shows the distribution of permafrost characteristics is rather complicated. Based on two predications of air temperature-rising tendency, by calculating climate model of permafrost thermal status, and comparing and analyzing geological distribution of Qinghai-Xizang Railway, the tendency of permafrost recession range has been predicated.  相似文献   

9.
陈济丁  何子文  房海  李齐军 《冰川冻土》2004,26(Z1):291-295
The results brought out in the trials of slope protection along Qinghai-Tibet Highway are presented in this paper. The trials were carried out simultaneously at 5 sites in Qinghai-Tibet Plateau from 2000 to 2002. Altitudes at the experimental sites range between 4 240 m and 5 040 m. 4 sites are in permafrost area, and 1 site is in seasonally frozen ground. According to the trials of slope protection, vegetation is preferred to protect slopes along Qinghai-Tibet Highway. Road-GoodR, a chemical stabilizer, is proved as a good material for slope protection, and soil engineering system, combined with vegetative component and grade stabilization structures is proved as the best slope protection measure in these are as. The results showed that high-altitude areas at an altitude lower than 5 040 m, annual average temperatures higher than -5.6 ℃ and annual rainfall more than 262.2 mm, slopes can be protected using vegetative components.Trials for plant species selection proved that cold resistant grasses, Elymus nutans and Elymus sibiricus can be used for vegetation recovery along Qinghai-Tibet Highway. The results demonstrated that high-altitude areas at an altitude lower than 5 040 m, annual average temperatures higher than -5.6 ℃ and annual rainfall more than 262.2 mm, could be replanted. Hydroseeding proved to be a good planting technique, and mulch materials benefited vegetation recovery in such area.The experiment also proved that planting could improve slope stability, protect the ecological environment, and improve the roadside landscape.  相似文献   

10.
Abstract: Permafrost (perennially frozen ground) appears widely in the Golmud-Lhasa section of the Qinghai-Tibet railway and is characterized by high ground temperature (≥ ?1°C) and massive ground ice. Under the scenarios of global warming and human activity, the permafrost under the railway will gradually thaw and the massive ground ice will slowly melt, resulting in some thaw settlement hazards, which mainly include longitudinal and lateral cracks, and slope failure. The crushed rock layer has a thermal semiconductor effect under the periodic fluctuation of natural air. It can be used to lower the temperature of the underlying permafrost along the Qinghai-Tibet railway, and mitigate the thaw settlement hazards of the subgrade. In the present paper, the daily and annual changes in the thermal characteristics of the embankment with crushed rock side slope (ECRSS) were quantitatively simulated using the numerical method to study the cooling effect of the crushed rock layer and its mitigative ability. The results showed that the ECRSS absorbed some heat in the daytime in summer, but part of it was released at night, which accounted for approximately 20% of that absorbed. Within a year, it removed more heat from the railway subgrade in winter than that absorbed in summer. It can store approximately 20% of the “cold” energy in subgrade. Therefore, ECRSS is a better measure to mitigate thaw settlement hazards to the railway.  相似文献   

11.
青藏铁路多年冻土区热棒的施工技术   总被引:4,自引:1,他引:3  
孙立平 《冰川冻土》2007,29(1):39-44
青藏铁路要穿越550 km长的多年冻土区,其中年平均地温>-1.0℃的高温多年冻土路段275 km,高含冰量冻土类型路段长221 km.为确保路基工程的整体稳定,部分地段采用了热棒处理措施.热棒路基利用自然能源,在温差作用下驱动内部制冷工质的汽液两相对流循环,通过蒸发段蒸发吸热作用降低周围冻土温度,增加冻土本身的冷储量,提高热稳定性,保护多年冻土.热棒技术是一种有着广阔应用前景的新技术,尤其是在全球气温升高大环境下,其作用更为明显.针对热棒的工作原理和施工技术进行了系统的总结分析,实践证明,热棒能够很好的防止多年冻土的融沉、冻胀病害,已在青藏铁路、公路多年冻土区路基试验段取得重要的阶段成果,以后将会在多年冻土区施工中逐步推广应用.  相似文献   

12.
青藏铁路普通路基下部冻土变化分析   总被引:5,自引:2,他引:3  
吴青柏  刘永智  于晖 《冰川冻土》2007,29(6):960-968
高温高含冰量冻土地区,青藏铁路采取了冷却路基、降低多年冻土温度的工程措施.然而青藏铁路仍有大量路段未采用任何工程措施,因此修筑普通路基后冻土变化也是普遍关心的问题.根据青藏铁路普通路基下部土体温度监测的近期结果,分析了季节冻土区、已退化多年冻土区和多年冻土区路基下部冻土变化特征.结果表明,不同区域修筑普通路基,其下部土体温度、最大季节冻结深度、多年冻土上限等存在较大的差异.在季节冻土和已退化多年冻土区,右路肩下部(阴坡)已形成冻土隔年层;在多年冻土强烈退化区,其路基下部形成融化夹层;在高温多年冻土区,其路基下部上限存在抬升和下降,上限附近土体温度有升高的趋势.在低温多年冻土区,其路基下部上限全部抬升,上限附近土体存在"冷量"积累,有利于路基下部多年冻土热稳定性.因此,低温多年冻土区修筑普通路基后,冻土变化基本是向着有利于路基稳定性的方向发展,在其它地段修筑普通路基,冻土变化是向着不利于路基稳定性的方向发展的.特别是阴阳坡太阳辐射差异,导致了土体热状态和多年冻土上限形态产生较大的差异,这种差异将会对路基稳定性产生一定的影响.  相似文献   

13.
This paper investigates the stability of the earthen roadbed built in the warm and ice-rich permafrost region. The varying thermal regime of the subgrade and the ongoing settlement of the roadbed were observed at field. The temperature data demonstrate that in warm and ice-rich permafrost regions, adoption of earthen roadbed results in warming of the underlying permafrost. It is primarily because the earthen roadbed traps the warm-season absorbed heat in the natural ground. In addition, the carried heat of the earthen roadbed that was constructed in warm season propagates downward to warm the underlying soil. The warming permafrost layer promotes the roadbed settlement, which was mostly linearly developed in the past five service years. A comprehensive analysis for the varying thermal regime and the ongoing settlement shows that the unfrozen water liberated from the warming, undrained layer experiences consolidation. The deformation of the undrained soils is mainly responsible for settlement of the roadbed. In comparison, the temperature variation of this warming permafrost layer is found to be less beneath roadbeds protected by thermosyphons or crushed rock revetments. The installation of thermosyphons into the earthen roadbed is recommended to prevent the further degradation of the underlying permafrost.  相似文献   

14.
青藏铁路沿线多年冻土分布特征及其对环境变化的响应   总被引:1,自引:0,他引:1  
针对青藏高原特殊的自然气候条件,按照地形、地貌把青藏铁路沿线多年冻土分为15个区段,并分别介绍了各个区段多年冻土特征. 结果表明:在外界环境变化,包括全球气候变暖及工程活动的双重效应下,青藏铁路沿线多年冻土及其存在状态发生了极大变化,这些变化主要包括年平均气温升高、多年冻土退化、热融灾害增加、寒区工程病害不断加剧等. 多年冻土及其存在状态发生变化不但导致生态环境恶化,而且对青藏铁路沿寒区工程的安全运营、维护及发展提出新的挑战.  相似文献   

15.
Widespread warm permafrost with a high ice content is a key problem for the roadbed stability of the Qinghai–Tibet Railway. A new approach is proposed to alleviate the effect of global warming and engineering construction on permafrost by cooling the roadbed and positively protecting the permafrost. Measures for cooling the roadbed by adjusting solar radiation, conduction, and convection are studied and applied to prevent ground ice from thawing and to ensure roadbed stability in permafrost regions. The results of monitoring permafrost embankments at Beiluhe and along the Qinghai–Tibet Railway show that the measures adopted for cooling the roadbed are very effective in raising permafrost table and reducing the soil temperature.  相似文献   

16.
青藏铁路路基下高温-高含冰量冻土旁压试验研究   总被引:2,自引:0,他引:2  
为研究青藏铁路路基下高温-高含冰量冻土的力学性质,在青藏铁路北麓河试验段开展一系列旁压强度试验。试验研究表明:路基的增加引起路基下多年冻土温度升高,未冻水含量增加,最终导致冻土旁压临塑压力Pf下降31 %,旁压极限压力Pl下降44 %,旁压剪切模量Gm下降80 %。对于高温冻结黏土,富冰冻土和饱冰冻土Gm对温度变化的敏感性高于含土冰层;饱冰冻土的Pf和Pl对温度变化的敏感性高于富冰冻土和含土冰层。  相似文献   

17.
青藏铁路路桥过渡段沉降变形影响因素分析   总被引:4,自引:0,他引:4  
牛富俊  林战举  鲁嘉濠  刘华 《岩土力学》2011,32(Z2):372-377
青藏铁路于2006年7月1日建成通车,已运行5年。总体上铁路路基是稳定的,但由于铁路建设在以高温高含冰量为特征的多年冻土之上,冻土的微小变化会诱发路基病害的发生,其中路桥过渡段沉降变形是比较典型,也是最为普遍的一类路基病害。通过对青藏铁路西大滩至尺曲谷地164座桥梁路桥过渡段沉降病害调查及相关因素分析。过渡段路基沉降与桥走向的南北端、路基坡向、路基高度、多年冻土类型(含冰量)、地温、路基结构以及地质条件等因素相关。桥北端平均沉降量大于南端,阳坡大于阴坡;沉降量随着路基高度呈对数趋势增加;富冰、饱冰等高含冰量冻土区沉降明显高于多冰、少冰地段,高温多年冻土区沉降量高于低温多年冻土区;路基结构对过渡段沉降也有一定的响应性,表现为特殊结构路基沉降较小;粉土、粉质黏土等细颗粒地层段沉降量比砾石土等其他岩性地段大。通过相关性分析表明,过渡段路基沉降与坡向相关系数最大,为0.234,其次为与路基填土高度,为0.213,与桥南北端、路基结构、冻土含冰量也呈正相关关系;与地温的负相关性比较显著,为-0.210,其次与地质条件呈现出负相关性  相似文献   

18.
青藏高原多年冻土地区公路路基变形   总被引:82,自引:22,他引:60  
通过对现场实体工程的长期监测资料和路基破坏机理分析研究,使我们对沥青路面对多年冻土的严重影响,导致多年冻土的升温与退化,使路基产生较严重的不均匀下沉变形,及其它所引起的一系列路基病害问题的发生发展过程有了较为系统和深刻认识,取得了大量现场实测资料及研究成果.讨论了高温多年冻土地区冻土路基的变形特征,以及冻土路基变形与工程地质条件的关系,给出了路基随地温波动变化而发生的变形过程。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号