首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
This paper describes analysis of steady motions for underwater gliders, a type of highly efficient underwater vehicle which uses gravity for propulsion. Underwater gliders are winged underwater vehicles which locomote by modulating their buoyancy and their attitude. Several underwater gliders have been developed and have proven their worth as efficient long-distance, long-duration ocean sampling platforms. Underwater gliders are so efficient because they spend much of their flight time in stable, steady motion. Wings-level gliding flight for underwater gliders has been well studied, but analysis of steady turning flight is more subtle. This paper presents an approximate analytical expression for steady turning motion for a realistic underwater glider model. The problem is formulated in terms of regular perturbation theory, with the vehicle turn rate as the perturbation parameter. The resulting solution exhibits a special structure that suggests an efficient approach to motion control as well as a planning strategy for energy efficient paths.   相似文献   

2.
水下滑翔机器人运动分析与载体设计   总被引:4,自引:0,他引:4  
水下滑翔机器人是一种新型水下机器人,具有噪声低、航行距离远、续航时间长、成本低等特点。分析了水下滑翔机器人的驱动机理和运动实现,给出了水下滑翔机器人典型运动的仿真结果,并以正在设计的一水下滑翔机试验样机为研究对象,描述了样机的整体结构布局,详细研究了浮力调节机构、俯仰调节机构和横滚调节机构的实现方法,并就样机中各执行机构的设计实现进行了论述。  相似文献   

3.
波浪滑翔机直接利用波浪能实现大范围长距离的机动运动观测,在海洋环境观测中可以发挥重要的作用。本文对波浪滑翔机推进装置在启动阶段的翼片的水动力学行为进行了研究。以波浪滑翔机水下推进装置的翼片为研究对象,运用雷诺平均Navier-Stokes方程(RANS),对给定垂荡和摆动运动的翼片水动力学进行了水动力分析和仿真,模拟了单个翼片、纵向阵列多翼片的运动状况,得到推进装置翼片附近的压力分布和整体推进动力,分析翼片间距变化在启动阶段对推进力的影响作用。通过该研究工作为深入理解波浪滑翔机推进装置工作状态提供了理论依据。  相似文献   

4.
A hybrid underwater glider Petrel-II has been developed and field tested. It is equipped with an active buoyancy unit and a compact propeller unit. Its working modes have been expanded to buoyancy driven gliding and propeller driven level-flight, which can make the glider work in strong currents, as well as many other complicated ocean environments. Its maximal gliding speed reaches 1 knot and the propelling speed is up to 3 knots. In this paper, a 3D dynamic model of Petrel-II is derived using linear momentum and angular momentum equations. According to the dynamic model, the spiral motion in the underwater space is simulated for the gliding mode. Similarly the cycle motion on water surface and the depth-keeping motion underwater are simulated for the level-flight mode. These simulations are important to the performance analysis and parameter optimization for the Petrel-II underwater glider. The simulation results show a good agreement with field trials.  相似文献   

5.
A hybrid underwater glider Petrel-II has been developed and field tested. It is equipped with an active buoyancy unit and a compact propeller unit. Its working modes have been expanded to buoyancy driven gliding and propeller driven level-flight, which can make the glider work in strong currents, as well as many other complicated ocean environments. Its maximal gliding speed reaches 1 knot and the propelling speed is up to 3 knots. In this paper, a 3D dynamic model of Petrel-II is derived using linear momentum and angular momentum equations. According to the dynamic model, the spiral motion in the underwater space is simulated for the gliding mode. Similarly the cycle motion on water surface and the depth-keeping motion underwater are simulated for the level-flight mode. These simulations are important to the performance analysis and parameter optimization for the Petrel-II underwater glider.The simulation results show a good agreement with field trials.  相似文献   

6.
PETREL,a winged hybrid-driven underwater glider is a novel and practical marine survey platform which combines the features of legacy underwater glider and conventional AUV (autonomous underwater vehicle).It can be treated as a multi-rigid-body system with a floating base and a particular hydrodynamic profile.In this paper,theorems on linear and angular momentum are used to establish the dynamic equations of motion of each rigid body and the effect of translational and rotational motion of internal masses on the attitude control are taken into consideration.In addition,due to the unique external shape with fixed wings and deflectable rudders and the dual-drive operation in thrust and glide modes,the approaches of building dynamic model of conventional AUV and hydrodynamic model of submarine are introduced,and the tailored dynamic equations of the hybrid glider are formulated.Moreover,the behaviors of motion in glide and thrust operation are analyzed based on the simulation and the feasibility of the dynamic model is validated by data from lake field trials.  相似文献   

7.
Underwater glider is an autonomous underwater vehicle that glides by controlling their buoyancy and attitude using internal actuators. By changing the vehicle's buoyancy intermittently, vertical motion can be achieved. Characteristics of glider motion include upward and downward movement in a saw tooth pattern, turning and gliding in a vertical spiral motion and gliding without using thrusters or propellers. This paper presents the modelling and identification on net buoyancy, depth and pitching angle of an underwater glider system. A ballast tank subsystem is considered appropriate for the identification process since it is the main parameter for the motion control. By selecting the ballast rate as the input, three aspects of the dynamics of a glider can be observed: buoyancy, depth of the glider and pitching angle. The MATLAB System Identification ToolboxTM is used to obtain a mathematical model of the glider ballast-buoyancy, ballast-depth and ballast-pitching angle conditioning system. The best three parametric estimation models are chosen, and the results of the comparison between simulated and estimated outputs are presented. The information obtained from the modelling and identification approaches are used for USM's Underwater Glider Prototype controller design. The information observed during this procedure are utilised for optimisation, stability, reliability and robustness analysis of the underwater glider.  相似文献   

8.
The dynamic response of a towed cable system to ship maneuver is parametrically simulated. Three dimensionless parameters influence on towed cable system maneuverability is investigated. They are ratio of total length to turning radius R/L, ratio of cable mass to vehicle mass σ, and ratio of mass unit length to hydrodynamic force w/r. An oscillatory motion of towed vehicle is found in simulation of spiral towed courses. Features of this oscillation in different spiral courses are compared. The sharp turns, gradual turns and their transient states of towed cable dynamics for different course directions are discussed extensively. According to the characters of transient states and horizontal trajectories evolution of maneuvered cable system, the dynamic behaviors can be divided into three situations in Fig. 8 turning maneuvers. The behavior of towed cable system during a zigzag turning course is simulated in the end. Two ingredients of heave motion are found during small ratio of turning radii to length in this course. The primary damp to initial turning becomes weak and the response to alternative turns plays a more and more important role. The damping properties of the transient behavior in different maneuvers show a periodical invariance to σ during some turning maneuvers.  相似文献   

9.
水下滑翔机器人系统研究   总被引:10,自引:2,他引:10  
水下滑翔机器人是一种新型的水下机器人,可以作为水下监测平台用于大范围、长时间的大尺度海洋环境监测作业。文中调查了水下滑翔机器人的国内外发展现状,分析了其可能的应用领域。详细介绍了中国科学院沈阳自动化研究所开发的水下滑翔机器人系统,包括载体外形优化设计、载体结构设计和控制系统设计。分析了水下滑翔机器人定常滑翔运动和空间螺旋会转运动的运动性能。  相似文献   

10.
A Variable Buoyancy Control System for a Large AUV   总被引:1,自引:0,他引:1  
A large autonomous undersea vehicle (AUV), the Seahorse, has been designed, constructed, and tested by the Applied Research Laboratory at Pennsylvania State University (ARL/PSU, University Park, PA) for the U.S. Naval Oceanographic Office (NAVOCEANO, Stennis Space Center, MS). The vehicle is required to launch in shallow water (<10 m) and to hover without propulsion. Additionally, due to the very large size of the vehicle, low operating speeds and very long missions, small changes in vehicle trim resulting from battery replacement, sensor exchanges, and water temperature variations can result in significant drag-induced energy penalties over the duration of a mission. It is, therefore, important to continually maintain the AUV in fore-aft trim over the course of the mission. The vehicle is equipped with a two tank variable buoyancy system (VBS) to meet these requirements. The resulting control problem is one where the control variable, pump rate, is proportional to the third derivative of the sensed variable, depth; there are significant delays, and forces are nonlinear (including discontinuous) and highly uncertain. This paper describes the design of the VBS and the control software operating in two modes: depth control mode and trim control mode. In-water test data and simulation results are presented to illustrate the performance of the VBS controller. The benefits of the presented approach lie in the intuitiveness and simplicity of the design and the robustness as evidenced by the performance in both fresh and salt water. This paper provides practical insight into the operation of a VBS with an AUV and discusses actual operational experience. To our knowledge, no previous work considers the significance of an observed surface capture phenomenon to the design of a VBS control system, especially in very shallow water.  相似文献   

11.
水下滑翔机器人运动机理仿真与实验   总被引:1,自引:0,他引:1  
对水下滑翔机器人SEA-WING的定常滑翔运动和空间定常螺旋回转运动进行机理分析,针对其特定水动力系数进行仿真,得出其运动机理特性.在此基础上,通过湖试实验数据对仿真结果进行验证,认为对于定常滑翔运动,以约36°航迹角滑行可得到最大水平速度;在相同航迹角航行情况下,水平方向速度随净浮力的增大而增大.对于定常回转运动,回转半径由载体的质量、俯仰角、水动力参数、横滚角确定.在质量和俯仰角保持不变条件下,横滚角对回转半径的影响较明显,系统的回转半径可以通过控制横滚角来实现的.  相似文献   

12.
混合驱动自主潜航器融合了自主潜航器机动灵活和水下滑翔机续航能力强的优点,针对自身携带能源有限的问题,对在两种工作模式下如何实现最大航行距离进行了研究.从航行过程中的能源消耗入手,得出航行距离与速度、电子设备功率等的关系,通过理论分析和仿真手段得出最大续航能力的实现方法.在螺旋桨驱动模式下,当以经济航速航行时,可以达到最大航行距离;在浮力驱动模式下,当以最大滑翔效率航行时,水平方向上的滑翔距离最大,并且水平方向上的滑翔距离随着剖面深度的增大而增大,当剖面深度大到一定程度之后,最大滑翔距离趋于恒定.该研究方法可为类似水下航行器电源管理系统的能源分配提供参考,也可为航行器外形的设计和传感器的选型提供理论指导.  相似文献   

13.
In order to study the propulsion mechanism of the bionic flapping hydrofoil (BFH), a 2-DoF (heave and pitch) motion model is formulated. The hydrodynamic performance of BFH with a series of kinematical parameters is explored via numerical simulation based on FLUENT. The calculated result is compared with the experimental value of MIT and that by the panel method. Moreover, the effect of inlet velocity, the angle of attack, the heave amplitude, the pitch amplitude , the phase difference, the heave biased angle, the pitch biased angle and the oscillating frequency are investigated. The study is useful for guiding the design of bionic underwater vehicle based on flapping propulsion. It is indicated that the optimal parameters combination is v=0.5m/s, θ0=40°.θ0=30°,Ψ=90°,Фbias=0°,θbias=0°and f=0.5Hz .  相似文献   

14.
Mark A. Grosenbaugh   《Ocean Engineering》2007,34(11-12):1532-1542
The dynamic behavior of a towed cable system that results from the tow ship changing course from a straight-tow trajectory to one involving steady circular turning at a constant radius is examined. For large-radius ship turns, the vehicle trajectory and vehicle depth assumed, monotonically and exponentially, the large-radius steady-state turning solution of Chapman [Chapman, D.A., 1984. The towed cable behavior during ship turning manoeuvers. Ocean Engineering 11, 327–361]. For small-radius ship turns, the vehicle trajectory initially followed a corkscrew pattern with the vehicle depth oscillating about and eventually decaying to the steady-state turning solution of Chapman (1984). The change between monotonic and oscillatory behavior in the time history of the vehicle depth was well defined and offered an alternate measure to Chapman's (1984) critical radius for the transition point between large-radius and small-radius behavior. For steady circular turning in the presence of current, there was no longer a steady-state turning solution. Instead, the vehicle depth oscillated with amplitude that was a function of the ship-turning radius and the ship speed. The dynamics of a single 360° turn and a 180° U-turn are discussed in terms of the transients of the steady turning maneuver. For a single 360° large-radius ship turn, the behavior was marked by the vehicle dropping to the steady-state turning depth predicted by Chapman (1984) and then rising back to the initial, straight-tow equilibrium depth once the turn was completed. For small ship-turning radius, the vehicle dropped to a depth corresponding to the first trough of the oscillatory time series of the steady turning maneuver before returning to the straight-tow equilibrium depth once the turn was completed. For some ship-turning radii, this resulted in a maximum vehicle depth that was greater than the steady-state turning depth. For a 180° turn and ship-turning radius less than the length of the tow cable, the vehicle never reached the steady-state turning depth.  相似文献   

15.
A hybrid marine vehicle concept has been developed which utilizes a combination of static and dynamic support. This concept, termed HYCAT2 for HYdrofoil CATamaran, combines a planing catamaran hull with two fully submerged hydrofoils mounted in tandem fore and aft. The hullform is developed by adding a high length/beam ratio, high deadrise sidehull along the keel of each catamaran demihull. The sidehull, which is the only portion immersed when operating foilborne, provides buoyancy support. Spray strips provide discontinuities which separate the flow and provide dynamic lift in addition to the hydrofoils. Stability in the heave, pitch and roll degrees of freedom is achieved through the displacement dependent sidehull buoyancy and the rate and displacement dependent lift developed by the spray strips and hydrofoils. A comprehensive series of model tests has been conducted to characterize the smooth and rough water performance.  相似文献   

16.
Model-based feedback control of autonomous underwater gliders   总被引:6,自引:0,他引:6  
We describe the development of feedback control for autonomous underwater gliders. Feedback is introduced to make the glider motion robust to disturbances and uncertainty. Our focus is on buoyancy-propelled, fixed-wing gliders with attitude controlled by means of active internal mass redistribution. We derive a nonlinear dynamic model of a nominal glider complete with hydrodynamic forces and coupling between the vehicle and the movable internal mass. We use this model to study stability and controllability of glide paths and to derive feedback control laws. For our analysis, we restrict to motion in the vertical plane and consider linear control laws. For illustration, we apply our methodology to a model of our own laboratory-scale underwater glider  相似文献   

17.
水下滑翔机是开展海洋无人移动观测的重要平台,其实际航行轨迹往往与预设路径存在较大差异,多台水下滑翔机协同观测时,难以始终保持预设的组网阵列。本研究提出一种基于牛顿力学积分的水下滑翔机群协同控制算法,根据水下滑翔机群出、入水的异步性调节水下滑翔机入水前的运动参数。基于对水下滑翔机受力分析,利用牛顿力学积分还原水下滑翔机在海洋中的运动状态,进而运用水下滑翔机群的协同控制算法同时约束多台水下滑翔机的运动,并开展仿真实验。实验结果证明该算法能够使多台水下滑翔机较好地保持预设组网阵列,从而可对目标海域进行协同观测。  相似文献   

18.
Corresponding to the sliding and the overturning failure, the elementary motion modes of caisson breakwater include the horizontal-rotational oscillation coupled motion, the horizontal sliding-rotational oscillation coupled motion, the horizontal vibrating-uplift rocking coupled motion, and the horizontal sliding- uplift rocking coupled motion. The motion mode of a caisson will transform from one to another depending on the wave forces and the motion behaviors of the caisson. The numerical models of four motion modes of caisson are developed, and the numerical simulation procedure for joint motion process of various modes of caisson breakwater under wave excitation is presented and tested by a physical model experiment. It is concluded that the simulation procedure is reliable and can be applied to the dynamic stability analysis of caisson breakwaters.  相似文献   

19.
Corresponding to the sliding and the overturning failure, the elementary motion modes of caisson breakwater include the horizontal-rotational oscillation coupled motion, the horizontal sliding-rotational oscillation coupled motion, the horizontal vibrating-uplift rocking coupled motion, and the horizontal sliding-uplift rocking coupled motion. The motion mode of a caisson will transform from one to another depending on the wave forces and the motion behaviors of the caisson. The numerical models of four motion modes of caisson are developed, and the numerical simulation procedure for joint motion process of various modes of caisson breakwater under wave excitation is presented and tested by a physical model experiment . It is concluded that the simulation procedure is reliable and can be applied to the dynamic stability analysis of caisson breakwaters.  相似文献   

20.
Development and experiments of the Sea-Wing underwater glider   总被引:1,自引:0,他引:1  
Underwater gliders,which glide through water columns by use of a pair of wings,are efficient long-distance,long-duration marine environment observatory platforms.The Sea-Wing underwater glider,developed by the Shenyang Institute of Automation,CAS,is designed for the application of deep-sea environment variables observation.The system components,the mechanical design,and the control system design of the Sea-Wing underwater glider are described in this paper.The pitch and roll adjusting models are derived based on the mechanical design,and the adjusting capabilities for the pitch and roll are analyzed according to the models.Field experiments have been carried out for validating the gliding motion and the ability of measuring ocean environment variables.Experimental results of the motion performances of the glider are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号