首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 119 毫秒
1.
针对水下滑翔机运动过程中的特点,水下滑翔机实际运动过程可以分为定常运动段和非定常运动段,对自设计的水下滑翔机原理样机建立了基于单刚体六自由度的定常运动段的数学模型并进行了数值仿真,在此基础上分别对水下滑翔机运动过程中的两种定常运动—直线定常运动和螺旋定常运动进行了分析。结论显示在直线定常运动中俯仰角和攻角随平移质量块位置的增大先变化迅速后变化缓慢。滑翔角随平移质量块位置的增大近似呈线性增大的关系。在螺旋定常运动中通过模型仿真得到螺旋运动特征参数(螺旋半径、螺旋线螺距、螺旋时间周期、速度)和状态参数(滑翔角、翻滚角、各方向速度分量、各方向角速度分量),根据最小二乘法拟合得到它们之间的关系,从而说明了螺旋运动状态是如何通过调整平移质量块移动距离,旋转质量块旋转角度和净重力等控制量而变化的。  相似文献   

2.
水下滑翔机器人运动分析与载体设计   总被引:4,自引:0,他引:4  
水下滑翔机器人是一种新型水下机器人,具有噪声低、航行距离远、续航时间长、成本低等特点。分析了水下滑翔机器人的驱动机理和运动实现,给出了水下滑翔机器人典型运动的仿真结果,并以正在设计的一水下滑翔机试验样机为研究对象,描述了样机的整体结构布局,详细研究了浮力调节机构、俯仰调节机构和横滚调节机构的实现方法,并就样机中各执行机构的设计实现进行了论述。  相似文献   

3.
半潜式航行体是遥控猎雷系统的重要组成部分,其回转机动性直接影响系统的探测精度及作业安全。 参照国外典型半潜式航行体设计仿真模型,建立其运动方程组,分别在不同航速和不同垂直舵角下对半潜式航行体的水平定深回转运动进行仿真分析。 仿真结果表明:半潜式航行体具有较好的回转机动性, 回转半径随着垂直舵角的增大而减小,横滚角随着航速及垂直舵角的增大而增大,应综合考虑回转半径及横滚角进行实际控制。  相似文献   

4.
对水下滑翔器定常直线滑翔运动的稳定性问题进行研究.以定常直线滑翔运动时的纵倾角为考察对象,利用自由扰动运动方程特征根的方法对研制的滑翔器的运动稳定性进行了分析判断.在此基础上,考察了在小扰动作用下纵倾角扰动量的时间响应特性.研究结果表明,研制的水下滑翔器在做定常直线滑翔运动时,具有运动稳定性,而且具有方向稳定性.  相似文献   

5.
水下滑翔机器人系统研究   总被引:10,自引:2,他引:10  
水下滑翔机器人是一种新型的水下机器人,可以作为水下监测平台用于大范围、长时间的大尺度海洋环境监测作业。文中调查了水下滑翔机器人的国内外发展现状,分析了其可能的应用领域。详细介绍了中国科学院沈阳自动化研究所开发的水下滑翔机器人系统,包括载体外形优化设计、载体结构设计和控制系统设计。分析了水下滑翔机器人定常滑翔运动和空间螺旋会转运动的运动性能。  相似文献   

6.
续航力与水平速度均是水下滑翔器的重要性能指标。采用单位重量滑翔器、单位水平速度所耗功率作为滑翔效率的评价指标,以一新型扁平型水下滑翔器为研究对象,利用 CFD 计算结合模型试验验证的方法获取了所需的流体动力系数,然后进行了滑翔运动分析及垂直面滑翔运动仿真计算,得到了最优滑翔运动参数。 建立的滑翔性能计算方法对扁平型水下滑翔器水动力性能设计及滑翔运动参数优化有着重要的应用价值。  相似文献   

7.
水下滑翔器整体外形设计及水动力性能分析   总被引:1,自引:0,他引:1       下载免费PDF全文
对水下滑翔器的整体外形设计与水动力性能进行研究。在Slocum等几种典型水下滑翔器样机的基础上,对滑翔器的主体和附体进行一体化设计,得到阻力最小的新型水下滑翔器构型设计。利用CFD方法对水下滑翔器进行模拟仿真,通过分析对比五种主体构型,得到了比较合理的主体线型,然后用正交设计方法和曲线拟合法对附体进行了优选工作,最后得到了性能更优的整体载体外形。模拟仿真实验表明,滑翔器在8°左右攻角航行时,具有最大的升阻比;和Slocum等经典样机相比,新的载体具有更好的水动力性能。通过上述研究工作,也可以缩短水下滑翔器研制周期,降低设计成本,并为水下滑翔器的更优设计提供了有力的技术指导和参考。  相似文献   

8.
温差能驱动的水下滑翔器设计与实验研究   总被引:10,自引:1,他引:10  
论文设计开发了一种新型的温差能驱动的水下滑翔器,并对它做了水域实验研究。文章讨论了温差能驱动的滑翔器运动机理及其在垂直剖面的运动分析,得到稳态运动的参数解。结合能够把水域温差能转变为机械能的热机设计以及滑翔器的主要机械结构和控制硬件系统设计,完成了滑翔器的初步设计与开发。滑翔器在千岛湖进行了水域实验,实验结果表明,此水下滑翔器完全能够利用温差能实现预定的滑翔运动。  相似文献   

9.
水下滑翔机(Autonomous Underwater Glider,AUG)是一种浮力驱动的自主水下航行器 (Autonomous Underwater Vehicle,AUV),通过调整滑动质量块来改变重心与浮心的相对位置,从而控制自身的运动姿态。完成了水下滑翔机的外形设计,同时,对其各系统组成部分进行了初步设计与布局。利用 MATLAB 软件基于计算得到的流体动力参数对滑翔机进行运动特性分析,得出定常运动状态下攻角、俯仰角和水平速度等参量随重心水平位移和净浮质量之间的关系。最后使用 Simulink 软件对垂直面内滑翔机的运动模型进行弹道仿真,验证了水下滑翔机总体设计方法的有效性和可行性。  相似文献   

10.
船舶在随机波浪中操纵运动预报   总被引:1,自引:0,他引:1  
将船舶操纵运动模型和船舶耐波性理论结合起来,建立了适用于求解船舶在随机波浪中运动的六自由度数学模型.该模型采用水平随船坐标系,与操纵运动有关的水动力采用经验公式估算;与耐波性相关的水动力除二阶力外采用从频域到时域的方法,其中一阶波浪力通过脉冲响应函数的卷积求取,记忆效应力由时延函数的卷积表示;对于二阶波浪力则只考虑其定常部分.最后,应用该模型对一艘集装箱船在静水、规则波、随机波下的回转运动进行了预报,并就波浪对回转运动的影响做了讨论.认为一阶力对船舶操纵运动影响不明显;在考察波浪对船舶操纵运动的影响,必须考虑二阶力的作用.  相似文献   

11.
Underwater glider is an autonomous underwater vehicle that glides by controlling their buoyancy and attitude using internal actuators. By changing the vehicle's buoyancy intermittently, vertical motion can be achieved. Characteristics of glider motion include upward and downward movement in a saw tooth pattern, turning and gliding in a vertical spiral motion and gliding without using thrusters or propellers. This paper presents the modelling and identification on net buoyancy, depth and pitching angle of an underwater glider system. A ballast tank subsystem is considered appropriate for the identification process since it is the main parameter for the motion control. By selecting the ballast rate as the input, three aspects of the dynamics of a glider can be observed: buoyancy, depth of the glider and pitching angle. The MATLAB System Identification ToolboxTM is used to obtain a mathematical model of the glider ballast-buoyancy, ballast-depth and ballast-pitching angle conditioning system. The best three parametric estimation models are chosen, and the results of the comparison between simulated and estimated outputs are presented. The information obtained from the modelling and identification approaches are used for USM's Underwater Glider Prototype controller design. The information observed during this procedure are utilised for optimisation, stability, reliability and robustness analysis of the underwater glider.  相似文献   

12.
Development and experiments of the Sea-Wing underwater glider   总被引:1,自引:0,他引:1  
Underwater gliders,which glide through water columns by use of a pair of wings,are efficient long-distance,long-duration marine environment observatory platforms.The Sea-Wing underwater glider,developed by the Shenyang Institute of Automation,CAS,is designed for the application of deep-sea environment variables observation.The system components,the mechanical design,and the control system design of the Sea-Wing underwater glider are described in this paper.The pitch and roll adjusting models are derived based on the mechanical design,and the adjusting capabilities for the pitch and roll are analyzed according to the models.Field experiments have been carried out for validating the gliding motion and the ability of measuring ocean environment variables.Experimental results of the motion performances of the glider are presented.  相似文献   

13.
水下滑翔机是开展海洋无人移动观测的重要平台,其实际航行轨迹往往与预设路径存在较大差异,多台水下滑翔机协同观测时,难以始终保持预设的组网阵列。本研究提出一种基于牛顿力学积分的水下滑翔机群协同控制算法,根据水下滑翔机群出、入水的异步性调节水下滑翔机入水前的运动参数。基于对水下滑翔机受力分析,利用牛顿力学积分还原水下滑翔机在海洋中的运动状态,进而运用水下滑翔机群的协同控制算法同时约束多台水下滑翔机的运动,并开展仿真实验。实验结果证明该算法能够使多台水下滑翔机较好地保持预设组网阵列,从而可对目标海域进行协同观测。  相似文献   

14.
Model-based feedback control of autonomous underwater gliders   总被引:6,自引:0,他引:6  
We describe the development of feedback control for autonomous underwater gliders. Feedback is introduced to make the glider motion robust to disturbances and uncertainty. Our focus is on buoyancy-propelled, fixed-wing gliders with attitude controlled by means of active internal mass redistribution. We derive a nonlinear dynamic model of a nominal glider complete with hydrodynamic forces and coupling between the vehicle and the movable internal mass. We use this model to study stability and controllability of glide paths and to derive feedback control laws. For our analysis, we restrict to motion in the vertical plane and consider linear control laws. For illustration, we apply our methodology to a model of our own laboratory-scale underwater glider  相似文献   

15.
A hybrid underwater glider Petrel-II has been developed and field tested. It is equipped with an active buoyancy unit and a compact propeller unit. Its working modes have been expanded to buoyancy driven gliding and propeller driven level-flight, which can make the glider work in strong currents, as well as many other complicated ocean environments. Its maximal gliding speed reaches 1 knot and the propelling speed is up to 3 knots. In this paper, a 3D dynamic model of Petrel-II is derived using linear momentum and angular momentum equations. According to the dynamic model, the spiral motion in the underwater space is simulated for the gliding mode. Similarly the cycle motion on water surface and the depth-keeping motion underwater are simulated for the level-flight mode. These simulations are important to the performance analysis and parameter optimization for the Petrel-II underwater glider. The simulation results show a good agreement with field trials.  相似文献   

16.
A hybrid underwater glider Petrel-II has been developed and field tested. It is equipped with an active buoyancy unit and a compact propeller unit. Its working modes have been expanded to buoyancy driven gliding and propeller driven level-flight, which can make the glider work in strong currents, as well as many other complicated ocean environments. Its maximal gliding speed reaches 1 knot and the propelling speed is up to 3 knots. In this paper, a 3D dynamic model of Petrel-II is derived using linear momentum and angular momentum equations. According to the dynamic model, the spiral motion in the underwater space is simulated for the gliding mode. Similarly the cycle motion on water surface and the depth-keeping motion underwater are simulated for the level-flight mode. These simulations are important to the performance analysis and parameter optimization for the Petrel-II underwater glider.The simulation results show a good agreement with field trials.  相似文献   

17.
PETREL,a winged hybrid-driven underwater glider is a novel and practical marine survey platform which combines the features of legacy underwater glider and conventional AUV (autonomous underwater vehicle).It can be treated as a multi-rigid-body system with a floating base and a particular hydrodynamic profile.In this paper,theorems on linear and angular momentum are used to establish the dynamic equations of motion of each rigid body and the effect of translational and rotational motion of internal masses on the attitude control are taken into consideration.In addition,due to the unique external shape with fixed wings and deflectable rudders and the dual-drive operation in thrust and glide modes,the approaches of building dynamic model of conventional AUV and hydrodynamic model of submarine are introduced,and the tailored dynamic equations of the hybrid glider are formulated.Moreover,the behaviors of motion in glide and thrust operation are analyzed based on the simulation and the feasibility of the dynamic model is validated by data from lake field trials.  相似文献   

18.
For Cconsideration ofing both the eccentric rotatable rigid body and the translational rigid body, the dynamic model of the underwater glider is derived. Dynamical behaviors are also studied based on the model and can be used as the guidance to underwater gliders design. Gibbs function of the underwater glider system is derived first, and then the nonlinear dynamic model is obtained by use of Apell Equations. The relationships between dynamical behaviors and design parameters are studied by solving the dynamic model. The spiral motion, swerving motion in three dimensions and the saw-tooth motion of the underwater glider in vertical plane are studied. Lake trials are carried out to validate the dynamic model.  相似文献   

19.
水下滑翔器浮力驱动机构布局分析   总被引:1,自引:0,他引:1  
水下滑翔器是一种新型海洋测量平台,它采用浮力驱动方式,并依靠调整重心实现姿态控制.文中从研究水下滑翔器纵垂面内滑翔运动的平衡状态入手,通过对将浮力驱动机构布置在滑翔器的艏部和艉部时的平衡状态受力进行对比分析,指出将浮力驱动机构布置在艏部可以有效缩短重心调节重物的移动距离.并分析了两种布局方式的优缺点,为水下滑翔器的结构设计和控制系统设计提供了参考.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号