首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
矩形港池的港内共振研究   总被引:1,自引:0,他引:1  
在理想地形条件下,应用MIKE 21-BW模块进行了不同入射波周期的矩形港池的港内波高分布计算,数值计算结果表明,港池尺度为入射波半波长的整数倍时,港内将产生驻波共振;港内共振与口门宽度相关.在某一尺度下,口门宽度越小,港池共振越明显;港池口门的位置会对港池共振的模式发生影响,可能导致出现第二类共振频率.  相似文献   

2.
A numerical model based on the mild-slope equation is applied to reproduce the propagation of small-amplitude transient waves. The model makes use of the Fourier Transform to convert the time-dependent hyperbolic equation into a set of elliptic equations in the frequency domain. The results of two available experimental studies on tsunamis generated by landslides are used to validate the model, which appears to be able of carefully reproducing the effects of the frequency dispersion. An example application of tsunamis propagating around the Stromboli island is also presented to show the applicability of the present approach to real life scenarios. It is finally discussed how this model could be applied as support to a tsunami early warning system.  相似文献   

3.
An improvement on the simulation of outgoing waves on a time dependent numerical model for water wave propagation in the nearshore region is presented. The governing equations consist of a system of first order partial differential equations (PDEs), the equation of continuity and the equation of motion. A comparative study of first order radiation boundary conditions (BCs) and first order radiation BCs combined with sponge layers is presented for cases where outgoing waves leave the numerical domain of calculation through the open boundary. A reduction of spurious reflections from the numerical open boundaries can be obtained with an irrelevant increase in terms of computational cost.  相似文献   

4.
港域波浪数学模型的改进与验证   总被引:2,自引:0,他引:2  
通过物理模型对改进的港内波浪传播变形数学模型进行验证。该数学模型以推广的时变缓坡方程为控制方程,采用含松弛因子的ADI法求解,并对波浪反射和透射边界模拟方法进行改进。先通过物理模型试验确定斜向浪入射条件下抛石防波堤前的波浪反射系数,作为数学模型中部分反射边界模拟的依据。然后进行了一个典型港口内波浪折射、绕射和反射的模型试验,测量港内波浪分布。对比模型试验和数学模型计算的结果表明,数学模型可较好地模拟港内复杂地形和边界条件下规则波和不规则波的传播变形。  相似文献   

5.
A numerical model for wave propagation in a harbour is verified by use of physical models.The extended time-dependent mild slope equation is employed as the governing equation,and the model is solved by use of ADI method containing the relaxation factor.Firstly,the reflection coefficient of waves in front of rubble-mound breakwaters under oblique incident waves is determined through physical model tests,and it is regarded as the basis for simulating partial reflection boundaries of the numerical model.Then model tests on refraction,diffraction and reflection of waves in a harbour are performed to measure wave height distribution.Comparative results between physical and numerical model tests show that the present numerical model can satisfactorily simulate the propagation of regular and irregular waves in a harbour with complex topography and boundary conditions.  相似文献   

6.
波浪水槽中非线性浅水波传播特性与模拟   总被引:2,自引:0,他引:2  
通过建立解析解、进行数值模拟和物理实验,研究了波浪水槽中非线性浅水波浪传播特性,给出了数值模拟中对应造波板做正弦运动的二阶入射边界条件。数值模拟采用高阶Boussinesq方程。实验结果、数值结果和解析解进行对比,并讨论了解析解的适用范围、高次谐波的产生及三波相互作用问题。  相似文献   

7.
柳淑学  孙冰 《海洋工程》2007,25(1):35-42,56
缓坡方程是描述近岸波浪运动较好的数学模型之一。在发展的自适应有限元求解缓坡方程的基础上,采用迭代求解的方法,确定波浪相对于边界的入射方向,从而对边界条件进行改进,建立了求解缓坡方程的数值计算模型。典型算例表明,考虑波浪相对于边界的入射角度后,模型可以更好地模拟吸收波浪边界,同时对多向波对双突堤的绕射进行了模拟研究,与试验结果比较表明,所建立的数值计算模型能够适用于多向不规则波传播过程的模拟研究。  相似文献   

8.
While the destruction caused by a tsunami can vary significantly owing to near- and onshore controls, we have only a limited quantitative understanding of how different local parameters influence the onshore response of tsunamis. Here, a numerical model based on the non-linear shallow water equations is first shown to agree well with analytical expressions developed for periodic long waves inundating over planar slopes. More than 13,000 simulations are then conducted to examine the effects variations in the wave characteristics, bed slopes, and bottom roughness have on maximum tsunami run-up and water velocity at the still water shoreline. While deviations from periodic waves and planar slopes affect the onshore dynamics, the details of these effects depend on a combination of factors. In general, the effects differ for breaking and non-breaking waves, and are related to the relative shift of the waves along the breaking–non-breaking wave continuum. Variations that shift waves toward increased breaking, such as steeper wave fronts, tend to increase the onshore impact of non-breaking waves, but decrease the impact of already breaking waves. The onshore impact of a tsunami composed of multiple waves can be different from that of a single wave tsunami, with the largest difference occurring on long, shallow onshore topographies. These results demonstrate that the onshore response of a tsunami is complex, and that using analytical expressions derived from simplified conditions may not always be appropriate.  相似文献   

9.
During the last few years it has been shown that the results of model tests of harbour basins and moored ships are highly dependent on the correct reproduction of wave groups and the attached long waves. Although these bounded long waves are of second order and thus of a rather limited height, resonance and shoaling effects can increase their influence on the results of model investigations. In traditional first order wave generation, the boundary conditions at the wave board are not fulfilled for the bounded long waves, and consequently various spurious, free long waves are unintentionally produced. This paper outlines the general equations and the solution for a rotating and translating wave board. The translatory case is treated in detail, i.e. a physical interpretation of all the second order terms is given, and an approximate control signal for the suppression of spurious long waves for practical use is described. Finally, laboratory experiments successfully verify the various long wave terms and the effectiveness of the suppression terms.  相似文献   

10.
A Numerical Model for Nonlinear Wave Propagation on Non-uniform Current   总被引:3,自引:0,他引:3  
On the basis of the new type Boussinesq equations (Madsen et al.,2002),a set of equations explicitly including the effects of currents on waves are derived.A numerical implementation of the present equations in one dimension is described.The numerical model is tested for wave propagation in a wave flume of uniform depth with current present.The present numerical results are compared with those of other researchers.It is validated that the present numerical model can reasonably reflect the nonlinear influences of currents on waves.Moreover,the effects of inputting different incident boundary conditions on the calculated results are studied.  相似文献   

11.
Seiche modes in a compound harbour (an “Outer Harbour” connected both to the sea and to an “Inner Harbour”) were studied using water level data and a numerical model. A variety of harbour oscillations are present, with periods up to 67 min. Periods longer than 25 min exceed resonant modes of the harbour. This paper addresses the characteristics and causes of the open-basin modes. The dual harbour open-basin mode is modified by constriction at the connection between harbours, by partial reflection at the antinode, and by the geometry of the entrance. The single-harbour open-basin mode excites the dual harbour closed-basin mode, which has nearly the same period. This forcing moves the closed-basin antinode and slightly changes the modal period, but the coupling permits the amplitude to increase through the closed-basin resonance. The water level response to wind stress is weak, but significant residual currents can occur, which take the form of clockwise gyres in each basin. Energetic peaks in the water level spectrum at 26, 35, and 67 min are shown to correspond to possible edge waves on the local shelf. The work has practical implications to port design, e.g. towards minimisation of ship ranging while at anchor.  相似文献   

12.
If the upstream boundary conditions are prescribed based on the incident wave only, the time-dependent numerical models cannot effectively simulate the wave field when the physical or spurious reflected waves become significant. This paper describes carefully an approach to specifying the incident wave boundary conditions combined with a set sponge layer to absorb the reflected waves towards the incident boundary. Incorporated into a time-dependent numerical model, whose governing equations are the Boussinesq-type ones, the effectiveness of the approach is studied in detail. The general boundary conditions, describing the down-wave boundary conditions are also generalized to the case of random waves. The numerical model is in detail examined. The test cases include both the normal one-dimensional incident regular or random waves and the two-dimensional oblique incident regular waves. The calculated results show that the present approach is effective on damping the reflected waves towards the incident wave boundary.  相似文献   

13.
邹志利  金红 《海洋工程》2012,30(2):38-45
建立具有色散性的水平二维非线性波浪方程,方程的非线性近似到了三阶。方程以波面升高和自由表面速度势表达的微分-积分型数学方程,给出方程的数值求解方法和算例,对方程积分项的处理给出了计算方法。计算结果与Boussinesq方程模型和缓坡方程模型的对应计算结果进行了对比。  相似文献   

14.
The influence of the seaward boundary condition on the internal swash hydrodynamics is investigated. New numerical solutions of the characteristics form of the nonlinear shallow-water equations are presented and applied to describe the swash hydrodynamics forced by breaking wave run-up on a plane beach. The solutions depend on the specification of characteristic variables on the seaward boundary of the swash zone, equivalent to prescribing the flow depth or the flow velocity. It is shown that the analytical solution of Shen and Meyer [Shen, M.C., Meyer, R.E., 1963. Climb of a bore on a beach. Part 3. Runup. J. Fluid Mech. 16, 113–125] is a special case of the many possible solutions that can describe the swash flow, but one that does not appear appropriate for practical application for real waves. The physical significance of the boundary conditions is shown by writing the volume and momentum fluxes in terms of the characteristic variables. Results are presented that illustrate the dependence of internal flow depth and velocity on the boundary condition. This implies that the internal swash hydrodynamics depend on the shape and wavelength of the incident bore, which differs from the hydrodynamic similarity inherent in the analytical solution. A solution appropriate for long bores is compared to laboratory data to illustrate the difference from the analytical solution. The results are important in terms of determining overwash flows, flow forces and sediment dynamics in the run-up zone.  相似文献   

15.
For Navier-Stokes equation model using the VOF scheme, Lin and Liu (Lin, P. and Liu, P.L.-F. (1999). Internal wave-maker for Navier-Stokes equations models. J. Waterw. Port Coast. Ocean Eng., 125 (4), 207–215.) developed an internal wave-maker method for which a mass source function of the continuity equation was used to generate target wave trains. Using this internal wave-maker method, various numerical experiments have been conducted without any problems due to waves reflected by a wave-maker. In this study, an internal wave-maker method using a momentum source function was proposed. Various numerical simulations in two and three dimensions were performed using the momentum source wave-maker applied to the RANS equation model in a CFD code, FLUENT. To verify their applicability in 2 dimensions, the computational results obtained using the momentum source wave-maker in a channel of constant depth were compared with the results obtained by using the mass source wave-maker and with the analytical solutions. And the results of the present numerical simulations of hydraulic experiments, which represent nonlinear waves on a submerged shoal and breaking waves on a plane beach, were compared with measurements. The comparisons showed good agreements between them. To see their applicability into 3-dimensional cases, the present results in a basin of constant depth were compared with the analytical solutions, and they agreed well with each other. In addition, vertical variation of longshore current was presented by using the 3-dimensional simulation results.  相似文献   

16.
In recent years the group-induced long waves have received an enhanced degree of attention. Especially in nearshore regions, the long waves can be of considerable height, and consequently the influence on harbour resonance, on the operation of ship terminals, on moorings of large vessels, etc. is obviously very important. It is the grouping of natural wave fields that generates the long waves, and they are proportional to the square of the short-wave height. Therefore, the expressions for the long-wave elevations can be found to include the short-wave components of the wave field and a second-order transfer function. This function is presented in a diagram with dimensionless parameters. For practical purposes a formula for rough estimate of the long-wave height is proposed.The second-order equations show that the long waves are determined by the difference of the wave-number vectors of the short waves. This is shown to imply that the spread of the long waves is larger than that of the short waves, and that the wave lengths of the long waves are dependent on the short-wave spread. Hereby it is possible to change the long-wave lengths, which seems to be a quality of great practical importance.The long waves are also expressed in spectral terms. That is, a formula for the directional long-wave spectrum is shown to comprise the transfer function squared and the short-wave amplitudes and phases.  相似文献   

17.
This paper presents a technique to generate waves at oblique angles in finite difference numerical models in a rectangular grid system by using internal generation technique [Lee, C., Suh, K.D., 1998. Internal generation of waves for time-dependent mild-slope equations. Coast. Eng. 34, 35–57.] along an arc-shaped line source. Tests were made for four different types of wave generation layouts. Quantitative experiments were conducted under the following conditions: the propagation of waves on a flat bottom, the refraction and shoaling of waves on a planar slope, and the diffraction of waves to a semi-infinite breakwater. Numerical experiments were conducted using the extended mild-slope equations of Suh et al. [Suh, K.D., Lee, C., Park, W.S., 1997. Time-dependent equations for wave propagation on rapidly varying topography. Coast. Eng. 32, 91–117.]. The fourth layout type consisting of two parallel lines connected to a semicircle showed the best solutions, especially for a small grid size. This technique is useful for the numerical simulation of irregular waves with broad-banded directional spectrum using conventional spectral wave models for the reasonable estimation of bottom friction and wave-breaking.  相似文献   

18.
Long-period oscillations of moored ships whose periods are about 1 or 2 min cause many troubles in many ports and harbours. It is necessary to investigate these phenomena and verify their causes and countermeasures in each case because they are strongly dependent on the environment of each port and harbour. From this point of view, long-period oscillations of moored ships in the Port of Shibushi in Japan were investigated by means of wave observations, the image processing of moored ship motions using the video camera and motion-capture software and numerical simulations. From observation results, the relationship between offshore long-period waves and long-period oscillations of moored ships was recognized and surge and heave amplitudes were quantified by using wave data in order to forecast moored ship motions. Furthermore, from observation and numerical results, it was revealed that long-period waves with the peak period of 120 s from the offshore typhoon kept or exaggerated the local harbour oscillation of 60–70 s and it caused long-period oscillations of moored ships. Numerical results in case of reducing the reflection coefficient of the target berth implied that it ceased the local harbour oscillation and it would give an effective countermeasure to reduce long-period oscillations of moored ships in the Port of Shibushi.  相似文献   

19.
A finite element model of Boussinesq-type equations was set up, and a direct numerical method is proposed so that the full reflection boundary condition is exactly satisfied at a curved wall surface. The accuracy of the model was verified in tests. The present model was used to further examine cnoidal wave propagation and run-up around the cylinder. The results showed that the Ursell number is a nonlinear parameter that indicates the normalized profile of cnoidal waves and has a significant effect on the wave run-up. Cnoidal waves with the same Ursell number have the same normalized profile, but a difference in the relative wave height can still cause differences in the wave run-up between these waves. The maximum dimensionless run-up was predicted under various conditions. Cnoidal waves hold entirely distinct properties from Stokes waves under the influence of the water depth, and the nonlinearity of cnoidal waves enhances rather than weakens with increasing wavelength. Thus, the variations in the maximum run-up with the wavelength for cnoidal waves are completely different from those for Stokes waves, and there are even significant differences in the variation between different cnoidal waves.  相似文献   

20.
On unstable ship motions resulting from strong non-linear coupling   总被引:1,自引:0,他引:1  
In this paper, the modelling of strong parametric resonance in head seas is investigated. Non-linear equations of ship motions in waves describing the couplings between heave, roll and pitch are contemplated. A third-order mathematical model is introduced, aimed at describing strong parametric excitation associated with cyclic changes of the ship restoring characteristics. A derivative model is employed to describe the coupled restoring actions up to third order. Non-linear coupling coefficients are analytically derived in terms of hull form characteristics.The main theoretical aspects of the new model are discussed. Numerical simulations obtained from the derived third-order non-linear mathematical model are compared to experimental results, corresponding to excessive motions of the model of a transom stern fishing vessel in head seas. It is shown that this enhanced model gives very realistic results and a much better comparison with the experiments than a second-order model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号