首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 452 毫秒
1.
川西龙门山及邻区地壳上地幔远震P波层析成像   总被引:31,自引:13,他引:18       下载免费PDF全文
本文利用川西地震台阵记录到的远震P波走时数据和非线性层析成像算法,获得龙门山地区400 km深度范围内的三维P波速度结构.为了适应川西地区复杂的地质结构,本文的层析成像方法采用了快速行进三维走时计算算法和Tarantola非线性反演算法.我们的结果揭示了川滇地块、松潘-甘孜地块和四川盆地三个不同地块构造差异及该区深部动力学特征.本文的研究表明:1)研究区地壳上地幔P波速度结构具有较为明显的分区特征,松潘-甘孜地块和川滇地块岩石圈速度较低,四川盆地岩石圈速度较高,四川盆地的岩石圈厚度从南250 km向北逐渐减薄至100 km.松潘-甘孜地块上地幔存在地幔上涌的特征.2)川滇地块和四川盆地仅是垂直接触关系,而在龙门山地区四川盆地前缘存在减薄的现象,并伴随松潘-甘孜地块上地幔低速物质有侵入四川盆地岩石圈下方的特征,这显示了四川盆地与松潘-甘孜地块和川滇地块的动力学关系的差异.3)以映秀为界,龙门山断裂带被从松潘-甘孜侵入的低速异常分为南北两段:龙门山南段和龙门山北段,汶川大地震及其余震序列均分布在龙门山断裂带的北段.在青藏高原向东挤压和地幔上涌的双重作用下造成松潘-甘孜地块隆升,由于汶川处于龙门山北段的最南端,应力容易在此集中.这些因素可能是汶川MS8.0地震的基本动力学背景.本文的结果不支持四川盆地的俯冲及层间流动的动力学模型.  相似文献   

2.
南北地震带岩石圈S波速度结构面波层析成像   总被引:13,自引:8,他引:5       下载免费PDF全文
本文利用天然地震面波记录和层析成像方法,研究了南北地震带及邻近区域的岩石圈S波速度结构和各向异性特征.结果表明南北地震带的东边界不但是地壳厚度剧变带,也是地壳速度的显著分界.其西侧中下地壳的S波速度显著低于东侧,强震大多发生在低速区内部和边界.青藏高原东缘中下地壳速度显著低于正常大陆地壳,在松潘甘孜地块和川滇地块西部大约25~45 km深度存在壳内低速层;这些低速特征与高原主体的低速区相连,有利于下地壳物质的侧向流动.地壳的各向异性图像与下地壳流动模式相符,即下地壳物质绕喜马拉雅东构造结运动,东向的运动遇到扬子坚硬地壳阻挡而变为向南和向北东的运动.面波层析成像结果支持青藏高原地壳运动的下地壳流动模型.南北地震带的岩石圈厚度与其东侧的扬子和鄂尔多斯地块相似但速度较低.川滇西部地块上地幔顶部(莫霍面至88 km左右)异常低速;松潘甘孜地块上地幔盖层中有低速夹层(约90~130 km深度).岩石圈上地幔的速度分布图像与地壳显著不同,在高原主体与川滇之间存在北北东向高速带,可能会阻挡地幔物质的东向运动.上地幔各向异性较弱且与地壳的分布图像显然不同.因此青藏高原岩石圈地幔的构造运动具有与地壳不同的模式,软弱的下地壳提供了壳幔运动解耦的条件.  相似文献   

3.
2008年5月12日我国四川省汶川地区发生了震惊世界的MS8.0地震.历史上,同类地震在大陆内部极为罕见.该地震深部构造背景的研究对理解其成因极为重要.本文利用中国地震局地质研究所地震动力学国家重点实验室在川西地区布设的大规模密集流动宽频带地震台阵记录的远震P波波形数据和接收函数非线性反演方法,得到了沿北纬31°线的19个台站下方120 km深度范围内的S波速度结构及台站下方地壳的平均泊松比.该观测剖面穿越了主震区,总长度约为420 km. 我们的结果揭示了川滇地块、松潘-甘孜地块和四川盆地三个不同地块构造差异.上述三个地块的地壳结构特征可以概括为:(1)四川盆地前陆壳幔界面向西侧倾斜并有较为明显的横向变形,地壳厚度存在46~52 km的横向变化,中下地壳S波速度存在横向变化,地壳平均泊松比值较高(0.28~0.31),但在龙门山断裂带附近,显示了坚硬地壳的特征,地壳平均泊松比仅为0.2;(2)松潘-甘孜地块地壳厚度由西侧靠近鲜水河断裂的60 km,向东减薄为52 km,在14~50 km深度范围内存在S波速度2.75~3.15 km/s的楔状低速区,其厚度由西侧的~30 km向东逐渐减薄为~15 km,相应区域的地壳平均泊松比高达0.29~0.31; (3)鲜水河断裂西侧,川滇地块地壳结构相对简单,地壳厚度为58 km,并在26 km深度存在约10 km厚度的高速层,地壳内平均泊松比约为0.25;(4)汶川大震区在12~23 km深度上具有近乎4.0 km/s的S波高速结构,而其下方的地壳为低速结构,地壳平均泊松比0.31~0.32,汶川大震的余震序列主要分布在高速介质区域内. 本文的结果表明松潘-甘孜地块的地壳相对软弱;而且并不存在四川盆地向西侧的俯冲.我们认为在青藏高原东向挤压的长期作用下,四川盆地强硬地壳的阻挡作用可导致松潘-甘孜地块内部蓄积很大的应变能量以及上、下地壳在壳内低速层顶部边界的解耦,在龙门山断裂带附近形成上地壳的铲形逆冲推覆.汶川大地震及其邻近区域所具有的坚硬上地壳和四川盆地的阻挡作用为低应变率下的高强度应力积累创造了必要条件,而松潘-甘孜地块长期变形积累的高应变能构成了孕育汶川大地震的动力来源.  相似文献   

4.
汶川Ms8.0地震:地壳上地幔S波速度结构的初步研究   总被引:27,自引:11,他引:16       下载免费PDF全文
2008年5月12日我国四川省汶川地区发生了震惊世界的Ms8.0地震.历史上,同类地震在大陆内部极为罕见.该地震深部构造背景的研究对理解其成因极为重要.本文利用中国地震局地质研究所地震动力学国家重点实验室在川西地区布设的大规模密集流动宽频带地震台阵记录的远震P波波形数据和接收函数非线性反演方法,得到了沿北纬31°线的19个台站下方120 km深度范围内的S泼速度结构及台站下方地壳的平均泊松比.该观测剖面穿越了主震区,总长度约为420 km.我们的结果揭示了川滇地块、松潘-甘孜地块和四川盆地三个不同地块构造差异.上述三个地块的地壳结构特征口J以概括为:(1)四川盆地前陆壳幔界面向西侧倾斜井有较为明显的横向变肜,地壳厚度存在46~52 km的横向变化,中下地壳S波速度存在横向变化,地壳平均泊松比值较高(0.28~0.31),但在龙门山断裂带附近,显示了坚硬地壳的特征,地壳平均泊松比仪为0.2;(2)松潘-甘孜地块地壳厚度由西侧靠近鲜水河断裂的60 km,向东减薄为52 km,在14~50 km深度范围内存在S波速度2.75~3.15 km/s的楔状低速区,其厚度由西侧的~30 km向东逐渐减薄为~15 km,相应区域的地壳平均泊松比高达0.29~0.31;(3)鲜水河断裂西侧,川滇地块地壳结构相对简单,地壳厚度为58 km,并在26 km深度存在约10 km厚度的高速层,地壳内平均泊松比约为0.25;(4)汶川大震区在12~23 km深度上具有近乎4.0 km/s的S波高速结构,而其下方的地壳为低速结构,地壳平均泊松比0.31~0.32,汶川大震的余震序列主要分布在高速介质区域内.本文的结果表明松潘-甘孜地块的地壳相对软弱;而且并不仔在四川盆地向西侧的俯冲,我们认为在青藏高原东向挤压的长期作用下,四川盆地强硬地壳的阻挡作用可导致松潘-甘孜地块内部蓄积很大的应变能量以及上、下地壳存壳内低速层顶部边界的解耦,在龙门山断裂带附近形成上地壳的铲形逆冲推覆.汶川大地震及其邻近区域所具有的坚硬上地壳和四川盆地的阻挡作用为低应变率下的高慢度应力积累创造了必要条件,而松潘-甘孜地块长期变形积累的高应变能构成了孕育汶川大地震的动力来源.  相似文献   

5.
2008年5月12日汶川MW7.9地震发生在龙门山断裂带。龙门山断裂带及其邻域的地壳上地幔三维速度结构的研究对于理解汶川大地震的动力学背景具有重要的意义。2006年10月至2009年10月,在国家重大基础研究项目(973)的支持下,中国地震局地质研究所地震动力学国家重点实验室在川西地区(26°~32°N,100°~105°E)布设了由297台宽频带数字地震仪组成的流动观测台阵(简称川西台阵)。根据川西台阵记录的环境噪声和远震波形数据,利用噪声成像技术和接收函数方法,我们研究了川西地区(29°~32°N,100°~105°E)地壳上地幔100km深度范围内的三维S波速度结构。本文得到的结果为研究川西高原和四川盆地的地壳结构提供了新的高分辨率观测证据。我们的结果表明:1)观测台阵覆盖的川滇地块、松潘-甘孜地块和四川盆地的地壳上地幔S波速度结构具有显着差异,龙门山断裂和鲜水河断裂带,作为地块间的边界断裂带,对两侧地壳结构具有明显的控制作用。2)观测台阵覆盖区域的地壳厚度存在明显差异,川滇地块的地壳厚度为60~64km,松潘-甘孜地块的地壳厚度为52~56km,四川盆地前陆的地壳厚度为46~52km,沿龙门山断裂带松潘-甘孜地块和四川盆地形成镶嵌结构,汶川地震震中处南北两侧的壳幔边界存在约6km的断错。3)四川盆地前陆低速特征表明相应区域存在厚度8~10km的沉积盖层,松潘-甘孜地块和川滇地块的中下地壳具有大面积分布的S波低速区,松潘-甘孜地块地壳平均泊松比高达0.29~0.31,汶川地震余震绝大多数分布在低速区上方的高速介质区域内,而四川盆地的中下地壳呈现整体性的高速特征,以汶川地震的震中为界,龙门山断裂带北段和南段的S波速度结构显示了明显的速度分段特征,其北段的S波速度总体上高于南段。4)本文给出的研究区地壳三维S波速度结构表明,川西高原中下地壳较为软弱,而四川盆地中下地壳的强度应明显高于松潘-甘孜地块,意味着四川盆地坚硬中下地壳可以阻挡松潘-甘孜地块向东的逃逸;另一方面,川西高原和川滇地块的中下地壳虽然均存在大面积的S波低速区,但松潘-甘孜地块内的地壳速度结构相对来说较为复杂,并形成了高、低速相间的结构特征,表明在四川盆地的阻挡作用下,该地块形成了折皱变形的结构。5)与S波低速区相应,松潘-甘孜地块和川滇地块中下地壳应处于部分熔融的状态,这对该区域存在中下地壳通道流(Channelflow)的推断是一个支持;但是,松潘-甘孜地块内是否存在中下地壳通道流仍有待进一步的深入研究。6)接收函数方位各向异性的偏振分析表明,以汶川地震震中为界,龙门山断裂西南侧处于挤压状态,而其东北侧的主压应力方向与断层走向大体平行,推断先存应力场可能驱动了汶川地震逆冲破裂之后沿龙门山断裂向北东方向的走滑破裂。  相似文献   

6.
黎源  雷建设 《地球物理学报》2012,55(11):3615-3624
本研究使用中国地震局地壳应力研究所2010—2011年期间在云南地区布设流动地震台站以及青藏高原周边地区固定地震台站记录到的波形资料,提取了大量高质量Pn波到时资料.联合中国地震台网观测报告,我们获得了一个新的青藏高原东缘上地幔顶部Pn波速度和各向异性结构模型.结果显示,研究区内上地幔顶部存在明显横向不均匀性.古老盆地和稳定地台区如四川盆地、柴达木盆地、拉萨地块和阿拉善块体呈现为明显高波速异常,而祁连山至西秦岭褶皱带和川滇菱形块体北部等为相对弱高波速异常.在龙日坝断裂带以东的松潘—甘孜地块往南沿安宁河—则木河断裂至川滇菱形块体南部显示为一条近南北向明显低波速异常.三江褶皱系、缅甸弧俯冲带以及四川盆地东南等地区为明显低波速异常.地壳强震多发生在高波速异常边缘或高低波速异常过渡带上,表明地壳强震的孕育可能还与地幔构造作用存在一定相关性.青藏高原东构造结的各向异性快波方向呈顺时针旋转分布,与印度—欧亚碰撞密切相关.龙门山断裂带东西两侧的各向异性快波方向发生明显变化,由其西侧松潘—甘孜地块下方的NE向转变为四川盆地下方的近EW向,说明青藏高原物质流动遇四川盆地后分为NE和SW向两支.在川滇地区26°N以南地区上地幔顶部各向异性呈现近NS向与地表GPS观测相一致,但与SKS分裂结果存在较大差异,可能表明地壳与上地幔顶部形变表现为耦合现象,而上地幔顶部至岩石圈内部则存在解耦现象.  相似文献   

7.
青藏高原因其复杂的结构和演化历史,一直都是研究大陆碰撞、构造运动及其动力学的热点区域。本文采用三重震相波形拟合技术,基于中国地震观测台网和大型流动台阵记录到的某地震P波垂向记录,获得了包括拉萨、南羌塘和松潘甘孜地块在内的青藏高原上地幔P波速度结构。结果表明:①拉萨和南羌塘地块下方地幔过渡带存在高速异常,推测是俯冲的印度板片滞留体,过渡带底部的板片残余温度较低,使得660-km相变滞后约3~8km。而松潘甘孜地块下方过渡带同样存在高速异常,可能是欧亚岩石圈发生拆沉进入地幔过渡带所致。这说明印度板块俯冲作用的影响已经到达地幔过渡带,其俯冲前缘位于班公怒江缝合带附近。②从拉萨、南羌塘到松潘甘孜地块,200km之上的地幔岩石圈高速盖层速度由南向北逐渐减小,松潘甘孜地块则出现盖层缺失。推测受小规模地幔对流或者热不稳定性的影响,在南羌塘和松潘甘孜地块,增厚的欧亚岩石圈发生拆沉作用,岩石圈被减薄和弱化,造成羌塘地块上地幔低速和松潘甘孜地块上地幔高速盖层缺失。拆沉的冷的欧亚岩石圈可能部分停留在410-km上方,使得410-km抬升约10km,部分沉入地幔过渡带,表现为松潘甘孜地块地幔过渡带中存在高速异常。低温造成660-km下沉约8km,导致地幔过渡带增厚。   相似文献   

8.
川滇地区速度结构的区域地震波形反演研究   总被引:28,自引:6,他引:22       下载免费PDF全文
利用云南数字地震台网的区域地震波形资料,对川滇地区的地壳上地幔速度结构进行了初步研究. 结果表明,川滇地区上地幔顶部P波速度较小,约78 km/s,P波速度在上地幔表现为较小的正速度梯度,S波在100~160 km深度范围内表现为弱低速层. 对于较短的观测路径,不同路径的平均P波和S波速度存在明显的横向变化. 与川滇菱形块体内部的速度结构不同,在块体边界附近可以观测到比较明显的上地壳低速层,我们认为它可能与块体边界的断裂带有关;川滇菱形块体内部存在的下地壳低速层,有利于块体向南滑动,而中上地壳没有明显低速结构,可能表明川滇菱形块体向南滑动的解耦深度至少在下地壳. 根据不同路径的反演结果,给出了云南中部地区地壳内部的平均速度结构.  相似文献   

9.
松潘—甘孜地块至四川盆地是整个青藏高原地形梯度最大的地区,自西向东30~50 km范围内存在约4 km的显著地形高差,这可能与松潘—甘孜地块埋深20~25 km处的低阻低速层、地壳至上地幔顶部水平向运动速率随深度增加以及地幔对流拖曳力均有关联.为获得松潘—甘孜地块地壳和上地幔顶部现今变形模式,定量评价低阻低速层、中下地壳和上地幔顶部变形对川西高原隆升的影响.本文依据跨龙门山断裂带探测剖面,构建了长300 km、宽104 km的二维有限元接触模型,以1991—2016年GPS观测结果为初始约束,考虑岩石在长时间载荷蠕变作用的前提下,通过改变低阻低速层蠕变参数、模型西边界和底边界加载条件,共计开展了11项数值模拟实验.将模拟结果与综合多学科、不同时间尺度获得的地表隆升速率进行对比,各项模拟结果横向对比,对松潘—甘孜地块地壳至上地幔顶部现今变形及物质运移模式展开讨论,主要结论如下:(1)松潘—甘孜地块长期稳定、更为客观的最大隆升速率可能为1.4~1.5 mm·a-1;(2)低阻低速层可以作为中下地壳和上地幔物质运移的一个滑移面,构成上地壳与中下地壳的“解耦”带,促进松潘...  相似文献   

10.
为了揭示巴颜喀拉地块东缘及邻区的壳幔速度结构差异,获取2017年九寨沟MS7.0地震的深部构造背景,本文收集了2009年5月至2016年8月期间四川及邻区数字测震台网的203个地震台站所记录到的远震P波走时数据,应用有限频体波走时层析成像方法,反演得到了巴颜喀拉地块东缘及邻区50—600 km深度范围内的三维壳幔P波速度结构。反演结果表明:巴颜喀拉地块东缘及邻区的壳幔速度结构具有明显的横向不均匀性和分区特征,松潘—甘孜地槽褶皱系、西秦岭和祁连山褶皱系的整体速度异常较低,研究区东部具有克拉通性质的四川盆地西北缘和鄂尔多斯地块南缘则呈明显的高速异常。上地幔P波速度结构特征差异表明松潘—甘孜地块的抬升可能与地幔上涌有关,巴颜喀拉地块东缘九寨沟震区及周边50—250 km深度范围内的上地幔存在低速异常,在400—600 km地幔过渡带深度范围内表现为明显的高速异常特征。巴颜喀拉地块向东南方向运移受到东部高速、高强度的扬子克拉通地块对青藏高原物质东向挤出的强烈阻挡,而九寨沟震区处于松潘—甘孜地块重要的北东边界断裂交会处附近,应力容易在此集中,这些因素均可能是东昆仑断裂塔藏段与岷江断裂北段交会处附近发生九寨沟MS7.0地震的深部动力学背景。   相似文献   

11.
利用中国数字测震台网(CDSN)记录到的台湾地区两个地震事件6°~30°震中距范围的三重震相波形资料,基于观测与理论波形拟合法,获到华南地区上地幔P波和S波的最佳波形拟合速度模型及其VP/VS比值.与AK135模型相比,华南地区410 km深度上方存在明显低速层:S波低速区厚度约为70 km,速度降为2%~5%;而P波低速区厚度为70~230 km,速度降为5%~6%.另外,410 km间断面整体表现为一个梯度层,厚度约为10~40 km,VP跃增量为4.0%~5.4%,而VS跃增量为2.6%~11.7%.研究区内,低速层的VPVS异常值大小和410 km间断面速度跃变量由北向南逐步减小.结合以往的接收函数和地震层析成像结果,华南地区410 km间断面上方的低速区可能与太平洋俯冲板块脱水有关.  相似文献   

12.
通过分析阿尔金—龙门山地学断面的地震资料,建立了该剖面的地壳纵波速度结构。研究结果表明,阿尔金北侧的塔里木盆地地区莫霍面为50km,而在其南侧的祁连地块莫霍面突然加深至73km,在柴达木盆地莫霍面又抬升至58km左右,然后,在松潘甘孜地块莫霍面降至70km,并呈现为台阶状向龙门山方向抬升到60km左右,最低速层,而在其南部地区则没有低速层出现,推测低速层为地壳中部的局部熔融物质,阿尔金—龙门山剖面上的两个莫霍面坳陷区分别与祁连地块和松潘—甘孜地块上的两个莫霍面坳陷区相对应,指示出这个两个地块具有较深的山根,青藏高原北部的巨厚地壳很可能是由于中生代以来发生的印度板块与亚洲板块碰撞时受到来自东西及南北方向的挤压,使地壳缩短所致。  相似文献   

13.
本文使用位于喜马拉雅东构造结地区布置的24个宽频带地震台站记录的远震波形数据,利用P波接收函数的方法研究了台站下方的Moho面深度、泊松比和地壳速度结构.结果表明,东构造结内Moho面深度呈现出自南西向北东方向逐渐变深的趋势,地壳厚度在54~60 km范围内,其中东久一米林走滑断裂带附近Moho面最浅,东构造结周围拉萨地块的Moho面深度在60 km以上.东构造结西部东久一米林走滑断裂带附近地壳泊松比较高.嘉黎断裂带南北两侧的泊松比差别较大,说明该断裂带两侧地壳结构存在显著差异.东构造结周边拉萨地块地壳内普遍存在低速层,分布在20~40 km深度范围内,厚度约为5~15 km.  相似文献   

14.
本文对喜马拉雅计划二期部分台站的远震波形数据进行接收函数提取,利用接收函数共转换点叠加方法获得阿拉善地块、鄂尔多斯地块以及银川—河套盆地下方0~80 km深度的速度间断面结构.结果表明:鄂尔多斯地块成层性好,地壳厚度为38~42 km,康拉德界面为18~22 km,阿拉善地区的Moho面深度为38~45 km.河套盆地地壳厚度约52 km,银川断陷盆地和贺兰山下方的Moho面最深为~55 km.鄂尔多斯西缘构造边界下方Moho面变化明显,且黄河断裂为深大断裂直接切割莫霍界面.根据本文的间断面成像结果我们进一步确定阿拉善地块与鄂尔多斯地块分属不同的大地构造单元.与此同时,我们推测贺兰山以西70~80 km范围内和鄂尔多斯地块西缘北段存在地壳增厚变形的可能.  相似文献   

15.
Teleseismic P-wave receiver functions at 20 broadband seismic stations in the Longmenshan fault zone (LMFZ) and its vicinity were extracted, and the crustal thickness and the P- and S-wave velocity ratio were calculated by use of the H-k stacking algorithm. With the results as constraints, the S-wave velocity structures beneath each station were determined by the inversion of receiver functions. The crustal structure of the Rear-range zone is similar to that of the Songpan-Garze Block, whereas the velocity structure of the Fore-range zone resembles that of Sichuan Basin, implying that the Central Principal Fault of LMFZ is the boundary between the eastern Tibetan Plateau and the Yangtze Block. Lower velocity zone exists in lower crust of the Songpan-Garze Block and the central-southern segment of the Rear-range zone, which facilitates the detachment of the material in upper and middle crust. Joint analysis of the receiver functions and the Bouguer gravity anomalies supports the thesis on the detachment-thrust mode of the LMFZ. A double-detachment pattern is suggested to the tectonic setting in the Songpan-Garze Block. The upper detachment occurs at the depth of 10-15 km, and represents a high-temperature ductile shear zone. There is a lower detachment at the depth of about 30 km, below which the lower crust flow exists in the eastern Tibetan Plateau. Interpretation of the Bouguer gravity anomalies indicates that the Sichuan Basin is of higher density in upper and middle crust in comparison with that of the Songpan-Garze Block. The LMFZ with higher density is the result from the thrusting of the Songpan-Garze Block over the Sichuan Basin. In the lower crust, higher P velocity and higher density in the Sichuan Basin are related to more rigid material, while lower S velocity and lower density in the Songpan-Garze Block are related to the softened and weakened material. The higher density block beneath the Sichuan Basin obstructs the eastward flow of lower crustal material from the Tibetan Plateau, which is driven by the compression of northward movement of Indian Plate. The eastward movement of upper and middle crustal material is also obstructed by the rigid Yangtze Block, resulting in the stress concentrated and accumulated along the LMFZ. When the stress releases sharply, the Wenchuan M s8.0 earthquake occurs. Supported by the National Natural Science Foundation of China (Grant Nos. 40334041, 40774037) and Joint Foundation of Earthquake Science (Grant No. 1040062)  相似文献   

16.
天水-礼县地区地壳速度结构   总被引:2,自引:0,他引:2  
1984—1985年,利用厂坝铅锌矿工业爆破,在天水—礼县地区布设测线进行了大范围的地震测深工作。对该地区的地壳速度结构的研究结果表明,该地区沉积层平均厚度为2.5km,速度为4.0km/s(P波);地壳平均厚度为43.68km,平均速度为6.20km/s;徽县—礼县地壳速度剖面可分为5层,其中在24—29km深处有一低速层,基底深度变化较大,在礼县地壳浅部发现一断层。对天水—礼县地区还进行了P波、S波联合反演,获得了该区P波与S波速度结构,其地壳范围内的平均波速比为1.73。  相似文献   

17.
本文利用川滇地区宽频地震接收函数结果和WGM2012全球布格重力场模型数据,采用正则化参数和接收函数结果交叉验证得到最优莫霍面参考深度和上下界面密度差,使用基于球坐标系下的快速非线性重力反演方法建立川滇地区莫霍面深度模型.研究结果显示,川滇地区整体莫霍面深度介于30~69km,青藏高原内部地区莫霍面深度大于50km;四川盆地莫霍面深度在36~38km;攀枝花地区莫霍面出现明显的隆起和下凹,变化范围在42~48km;川滇菱形地块莫霍面深度在40~50km;滇西和滇南地块莫霍面深度由南向北逐渐变深,变化范围在38~44km.本文反演莫霍面深度与接收函数结果平均误差为0.18km,与该区域天然地震层析成像、人工地震探测以及重力数据反演结果基本一致,但细节更加丰富,进一步确认了莫霍面在攀西裂谷地区存在隆起,小江断裂带下方存在下凹的特征.该结果可作为精细化川滇地区地壳密度界面模型,为研究该地区岩石圈结构和地质构造演化提供参考.  相似文献   

18.
By using moving average method to separate Bouguer gravity anomaly field in Sichuan-Yunnan region, we got the low-frequency Bouguer gravity anomaly field which reflects the undulating of Moho interface. The initial model is obtained after seismic model transformation and elevation correction. Then, we used Parker method to invert the low-frequency Bouguer gravity anomaly field to obtain the depth of Moho interface and crustal thickness in the area. The results show that the Qinghai-Tibet block in the northwest of the study area deepens and thickens from the edge to the interior, with the depth of Moho interface and the crust thickness of about 52~62km and 54~66km, respectively. The depth of Moho interface in Sichuan Basin is about 38~42km. In Sichuan-Yunnan block, the depth of Moho interface is about 42~62km from southeast to northwest. Beneath the West Yunnan block, west of the Red River fault zone, the Moho depth is about 34~52km from south to north. The Longmen Mountains and Red River fault zone are the gradient zone of the Moho depth change. Along the Red River fault zone, the depth difference of Moho interface is increasing gradually from north to south. No obvious uplift is found on the Moho interface of Panzhihua rift valley. The depth of Moho interface distribution in Sichuan and Yunnan is obviously restricted by the collision between the Indian plate and the Eurasian plate and the lateral subduction of the Indo-China peninsula. The mean square error of the depth of Moho interface is less than 1.7km between the result of divisional density interface inversion and artificial seismic exploration. At the same time, we compared the integral with divisional inversion result. It shows that:in areas where there is obvious difference between the crust velocity and density structure in different tectonic blocks, the use of high resolution seismic exploration data as the constraints to the divisional density interface inversion can effectively improve the reliability of inversion results.  相似文献   

19.
云南壳幔S波速度结构与强震的构造背景   总被引:8,自引:2,他引:6       下载免费PDF全文
本文选取云南及周边65个台站记录到的47个地震事件,利用相匹配滤波技术分离出了基阶Rayleigh面波信号.选取与震中处于同一大圆弧上的两个台站,利用双台格林函数法获取了台间相速度频散,频散的周期范围在10~80 s之间.从2000个波形记录中提取了152个台站对之间的相速度频散,最后,利用台间的相速度频散反演得到云南...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号