首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The competitive adsorption and the release of selected heavy metals and their speciation distribution before and after adsorption in the Yellow River sediments are discussed. The adsorption of metals onto sediments increases with increasing pH value and decreases with increasing ionic strength. The competitive coefficient K c and the distribution coefficient K d are obtained to analyze the competitive abilities of selected heavy metals, which are ranked as Pb > Cu >> Zn > Cd. The competition among selected heavy metals becomes more impetuous with increasing ion concentration in water. Speciation analysis was done by an improved analytical procedure involving five steps of sequential extraction. Cu, Pb and Zn were mainly transformed into the carbonate-bound form (50.8–87.7%) in adsorption. Most of (60.7–77.3%) Cd was transformed into the exchangeable form, and the percentage of carbonate-bound Cd was 19.7–30.4%. The release reaction was so quick that the release capacity of selected heavy metals from sediments to aqueous solution reached half of the maximum value only in 30 s. As opposed to adsorption, the release capacities of selected heavy metals were ranked as Cd > Zn >> Cu > Pb. In this study, Cd produces the most severe environmental hazards, because its concentration in the release solution is 85.8 times more than the human health criteria of US EPA.  相似文献   

2.
pH influence on sorption characteristics of heavy metal in the vadose zone   总被引:10,自引:0,他引:10  
Sorption is an important process in the modelling and prediction of the movement of heavy metals in unsaturated clay barriers. This experimental study investigates the effect of pH changes in the acidic range on the sorption characteristics of heavy metals such as: lead, copper and zinc in an unsaturated soil. A series of one-dimensional coupled solute and moisture leaching column tests, using different heavy metal solutions, were conducted on an unsaturated illitic soil at varying pH values. Variations of volumetric water content (VWC) with distance were measured for different time durations, and concentrations of heavy metals in the liquid and solid phases were analysed. Partitioning coefficient profiles of contaminants along the soil column were determined for each individual layer in the soil.

Results from column leaching tests showed that the sorption characteristics of heavy metals are controlled by many factors which should be taken into consideration, i.e. the VWC, time of wetting, soil pH, and the influent heavy metal concentrations. Simplification of Kd as a constant and of the VWC as a linear function cannot be considered a good assumption and may lead to an improper evaluation of the sorption phenomena and also to serious errors in predicting contaminant transport through unsaturated soils.  相似文献   


3.
The aim of this study was to evaluate soil pollution by heavy metals in an irregular settlement built on a dumpsite. The soil samples were analyzed for Cd, Cr, Cu, Pb and Ni. None of the concentrations found for the heavy metals analyzed were higher than the established Mexican official standards for contaminated soils. The mean concentrations found for the analyzed metals were as follows: 1.4 mg kg−1 for Cd, 4.7 in mg kg−1 for Cr, 304 mg kg−1 for Cu, 74 mg kg−1 for Pb and 6 mg kg−1 for Ni. The results of the geoacummulation index values show that the site was very polluted with Cu and Pb (class 7), polluted to strongly polluted with Ni (class 4); moderately polluted to polluted with Cd (class 3), and moderately polluted with Cr (class 1). The correlation analysis shows a high correlation between Pb and Cu (r 2 = 0.98), which would be explained if the main source of the polluting heavy metals was the result of electrical wire burning to recover Copper. Principal component analysis shows three principal components. The first main component (PC1) encompasses Cr, Cd, Pb and Cu. These heavy metals most likely have their origins from the open burning of municipal solid waste, tires and wire. The other two components are encompassed by Cr (PC2) and Ni (PC3). The sources of these pollutants are more likely related to the corrosion of junk metal objects and automobile use.  相似文献   

4.
Coastal reclamation has been carried out along the coastal areas near Shenzhen, China in a large scale since 1980s by dumping fill materials over the marine mud at the sea bottom. Usually the area to be reclaimed is drained first and some of the mud is air-dried for a few weeks before it is buried by fill. After reclamation, the terrestrial groundwater, which is relatively acidic and with high dissolved oxygen, gradually displaces the seawater, which is alkaline with high salinity. The changes in the burial conditions of mud and the properties of the pore water in the mud may induce the release of some heavy metals into the mud. Field survey confirms that the pH and salinity of the groundwater in the reclamation site are much lower than the seawater. Chemical analyses of mud and groundwater samples collected from the reclamation sites reclaimed in different years indicate that most of the heavy metals in the mud decrease gradually with time, but the heavy metals in the groundwater are increased. The release of heavy metals into pore water due to reactivation of heavy metals in the mud is of environmental concern. To understand why some of the heavy metals can be released from the mud more easily than others, a sequential extraction method was used to study the operationally determined chemical forms of five heavy metals (Cu, Ni, Pb, Zn, and Cd) in the mud samples. Heavy metals can be presented in five chemical forms: exchangeable, carbonate, Fe–Mn oxide, organic, and residual. Ni and Pb were mainly associated with the Fe–Mn oxide fraction and carbonate fraction; Zn was mainly associated with organic fraction and Fe–Mn oxide fraction, while Cu and Cd were associated with organic fraction and carbonate fraction, respectively. If the residual fraction can be considered as an inert phase of the metal that cannot be mobilized, it is the other four forms of heavy metal that cause the noticeable changes in the concentration of heavy metals in the mud. On the basis of the speciation of heavy metals, the mobility of metals have the following order: Pb (36.63%) > Cu (31.11%) > Zn (20.49%) > Ni (18.37%) > Cd (13.46%). The measured metal mobility fits reasonably well with the degree of concentration reduction of the metals with time of burial observed in the reclamation site.  相似文献   

5.
On their way from the Rhine estuary into the North Sea and Dutch Wadden Sea, Rhine sediments “lose” large portions of their original heavy metal concentrations. Until now these losses were explained by a mobilization process, solubilization — the decomposition products of organic matter form soluble organometallic complexes with the metals of the sediment. Our investigations of the sediments of the Elbe clearly indicate that a mixing process, whereby highly polluted Elbe sediments mix with relatively non-polluted North Sea sediments, rather than solubilization, is the cause of the dilution of heavy metals in the sediments of the Elbe estuary. Because of the similarity of the Elbe data with those from the Rhine River, we propose that a mixing process is also effective in the Rhine estuary and adjacent North Sea areas. The mechanism by which heavy metals are “diluted” is important to the marine ecosystem. In the mixing process proposed in this paper, the heavy metals fixed to the suspected material are trapped in bottom sediments of the marine environment, whereas solubilization would increase the concentration of heavy metals in the sea water and thus they would be more available for uptake by aquatic organisms.  相似文献   

6.
Urban roadside soils are important environmental media for assessing heavy metal concentrations in urban environment. However, among other things, heavy metal concentrations are controlled by soil particle grain size fractions. In this study, two roadside sites were chosen within the city of Xuzhou (China) to reflect differences in land use. Bulk soil samples were collected and then divided by particle diameter into five physical size fractions, 500–250, 250–125, 125–74, 74–45, < 45 μm. Concentrations of metals (Ti, Cr, Al, Ga, Pb, Ba, Cd, Co, Cu, Mn, Ni, V, Zn, Mo, As, Sb, Se, Hg, Bi, Ag) were determined for each individual fraction. These metals could be roughly classified into two groups: anthropogenic element (Pb, Ba, Cd, Cu, Zn, Mo, As, Sb, Se, Hg, Bi, Ag) and lithophile element (Ti, Cr, Al, Ga, Co, Mn, Ni, V) in terms of values of enrichment factor. As expected, higher concentrations of anthropogenic heavy metals (Cu, Zn, Mo, As, Hg, Bi, Ag) are observed in the finest particle grain size fraction (i.e. < 45 μm). However, heavy metals Se, Sb and Ba behave independently of selected grain size fractions. From the viewpoint of mass loading, more than 30% of the concentrations for all anthropogenic heavy metals are contributed by the particle grain size fractions of 45–74 μm at site 1 and more than 70% of the concentrations for all heavy metals are contributed by the particle grain size fractions of 45–74 and 74–125 μm at site 2. These results are important for transport of soil-bound heavy metals and pollution control by various remedial options.  相似文献   

7.
Accumulation and distribution of heavy metals and phosphorus in sediments impact water quality. There has been an increasing concern regarding fish health in the St. Lucie Estuary, which is related to increased inputs of nutrients and metals in recent decades. To investigate vertical changes of contaminants (P, Cd, Cr, Co, Cu, Ni, Pb, Zn, and Mn) in sediments of the St. Lucie Estuary in South Florida, 117 layer samples from six of the 210 to 420 cm depth cores were analyzed for their total and water-soluble P and heavy metals, clay, total Fe, Al, K, Ca, Mg, Na, and pH. Principal component analysis (PCA) was used in two sets of analytical data (total and water-soluble contaminant concentrations) to document changes of contaminants in each core of sediments. The PCA of total contaminants and minerals resulted in two factors (principal components). The first and second factors accounted for 61.7 and 17.2 % of the total variation in all variables, and contrast indicators associated with contaminants of P, Cd, Co, Cr, Ni, Pb, Zn, and Mn and accumulation of Fe and Al oxides, respectively. The first factor could be used for overall assessment of P and heavy metal contamination, and was higher in the upper 45–90 cm than the lower depths of each core. The concentrations of P and heavy metals in the surface layers of sediments significantly increased, as compared with those in the sediments deeper than 45–90 cm. The PCA of water-soluble contaminants developed two factors. The second factor (Cu–P) was higher in the upper than the lower depths of the sediment, whereas the highest score of the first factor (Cd–Co–Cr–Ni–Pb–Zn–Mn) occurred below 100 cm. The water-soluble Cu and P concentrations were mainly dependent on their total concentrations in the sediments, whereas the water-soluble Cd, Co, Cr, Ni, Pb, Zn, and Mn concentrations were mainly controlled by pH.  相似文献   

8.
采用实验室内模拟吸附方法,研究不同溶液pH下沉积物、悬浮颗粒物和生物膜吸附重金属的热力学特征。结果表明:在不同pH下,Langmuir方程均可以很好地描述自然水体三种固相介质吸附重金属的热力学过程。在相同pH条件下,三种固相介质对重金属的吸附能力从大到小依次为悬浮颗粒物、生物膜、沉积物,它们对重金属的吸附能力为铅>铜>镉;这三种固相介质对重金属的吸附能力都随着pH值的升高而增大,其中悬浮颗粒物对重金属的吸附能力受溶液pH影响最大;另外,相对于铜和镉,三种固相介质对铅的吸附受溶液pH影响较大。  相似文献   

9.
 Extensive irrigation by the effluents released from a paper mill near Nanjangud have led to the accumulation of heavy metals in the soil and different parts of the paddy crops. In this paper, the physicochemical characteristics of paper mill effluents and the accumulation of heavy metals (Cu, Zn, Pb, Co, Cd, Cr, and Ni) in the soil and different parts (root, leaf, and seed) of the paddy crops growing in the irrigated area are described and compared with the soil and paddy crops irrigated by natural waters (unpolluted). Chemical and biological oxygen demands of wastewater were found to be 437 and 1070 ppm respectively, which are beyond the tolerance limits set by Indian standards. The total dissolved and suspended solids are 1754 and 900 ppm respectively. The concentration of heavy metals (except Zn) in the seeds is remarkably less than that in the roots and leaves of the paddy crops. The heavy metal uptake by plants shows the greatest accumulation of Cu, Cr, Co, and Pb in the roots; Cd and Ni in the leaves; and Zn in the seeds of rice. The heavy metal content of the soil and their total uptake by paddy roots has the relation: Pb>Zn>Cu>Cd and Pb>Cu>Zn>Cd. Survival of paddy crops irrigated by polluted waters indicates tolerance to toxic heavy metals. In conclusion, since in many tropical countries the common diet of people is rice, the accumulation of toxic heavy metals in rice may lead to health disorders. Received: 18 July 1995 / Accepted: 24 February 1997  相似文献   

10.
 Geochemical characteristics of six trace metals – Cu, Co, Ni, Zn, Cd and Cr – in the bulk sediment and sand, silt and clay fractions of a tropical estuary on the southwest coast of India have been studied and discussed. In bulk sediment, the trace metal concentration is controlled mainly by the textural composition of the sample. Mud, sandy mud and sandy silt register higher concentrations of trace metals than that in sand-dominant sediments. The granulometric partitioning studies also re-affirmed the role of particle size in enriching the trace metals. The silt and clay fractions exhibit 7–8 times the enrichment of Cu and Cd compared to that in sand. The enrichment factors of Zn, Cr, Ni and Co in the silt and clay fractions, compared to that in sand, are 5–6, 4–5, 2–5 and 2–3 times, respectively. The trace metals in the sand fraction, particularly Ni and Cr, exhibit strong positive correlation with the heavy mineral content of the samples. It clearly indicates a heavy mineral pathway to the trace metals in the sand fraction. Cu and Co in silt and clay fractions exhibit a marked decrease towards the high saline zones of the estuary. This is attributed to the desorption of Cu and Co from particulate phases during estuarine mixing. Contrary to Cu and Co, the content of Zn in the clay fraction shows a marginal increase towards the estuarine mouth. This could be explained by the influx of Zn-rich contaminant discharges from Zn-smelting industries located slightly north of the estuarine mouth. The released Zn will effectively be held in the lattices of the clay mineral montmorillonite, which also exhibits a marked increase towards the estuarine mouth. The anomalously high values of Cd in some places of the Central Vembanad estuary is attributed to the local pollution. Received: 10 July 1995 · Accepted: 3 June 1996  相似文献   

11.
This study examined the chemical speciation and mobility of As and heavy metals in a tailings impoundment in Samsanjeil mine located in Gosung, Korea, as well as the factors affecting them. XRD, SEM, and 5-step sequential extraction were used to examine the samples at two sampling sites (NN and SN sites). The pH of the tailings decreased with increasing depth at the NN site (from 7.2 to 2.8), whereas no significant differences were observed at the SN site (8.1–8.8). The samples at the SN site showed a larger amount of calcite than those at the NN site, indicating that calcite plays an important role buffering the pH in the study sites. Jarosite was found only at the lower part of the NN site, where calcite was not found. The mineralogical observation of jarosite and calcite was also confirmed by SEM. The concentrations of As and heavy metals in the tailings were as follows: Cu > As > Zn > > Pb > Co > Cr > Ni > Cd. The total concentrations of Ni, Zn, Co, and Cd were higher at the SN site than those at the NN site. On the other hand, the concentrations of As and Cr existing as oxyanions were higher at the NN site, which can be explained by the mobility changes of those elements affected by pH variations. At the NN site, the fractions of heavy metals bound to the Fe/Mn oxides, except for As and Cr, decreased, and Cu, Zn, and Co showed an increasing fraction of exchangeable metals with increasing depth. This suggests that the pH and resulting surface charge of minerals, such as goethite and jarosite, are the dominant factors controlling the chemical speciation of metals. These results highlight the importance of mineralogy in controlling the mobility and possible bioavailability of heavy metals in tailings.  相似文献   

12.
During the manufacturing of chromate salts (1972–1992) large quantities of Chromite Ore Processing Residue (COPR) were released into a decantation pond east of the former chemical plant of Porto-Romano (Durres, Albania), giving rise to yellow colored pond sediments. These Cr(VI) bearing sediments were deposited upon Quaternary silty-clay lagoonal sediments rich in iron oxides and organic matter. The pH values in these lagoonal sediments vary around 6.6, while in the pond sediments, it is mainly acidic (due to the presence of the sulfur stock piles in the area and the release of the H2SO4 from the activity of the former chemical plant), varying between 1.4 and 3.8. Continuous leaching of the COPR waste resulted in yellow-colored surface water runoff. The prediction of pH changes in the different types of sediments based upon acid/base neutralizing capacity (ANC/BNC) jointly with the quantitative data on release of heavy metals and especially Cr is considered an important advantage of the pHstat leaching test if compared to conventional leaching procedures. Thus, factors controlling the leaching of Cr(VI), Cr(III), Ca, Al, Fe, Mg from the COPR were investigated by means of pHstat batch leaching tests and mineralogical analysis. Moreover, mathematical and geochemical modeling complemented the study. The COPR in the area contain very high concentrations of chromium 24,409 mg/kg, which mainly occurs as Cr(III) (75–90%) as well as Cr(VI) (25–10%). The leaching of Cr(VI) occurs in all the range (2–10) of the tested pH values, however, it decreases under acidic conditions. Beside some reduction of Cr(VI) to Cr(III), the Cr(VI) content of the leachtes remains relatively high in the acidic environment, while the limning of Cr(VI) pond sediments will increase the release of the latter specie. The leaching of the Cr(III) occurs strictly under acidic conditions, whereby limning of these sediments will give rise to the lower solubility of Cr(III). The key mineral phases responsible for the fast release of the Cr(VI) are: the chromate salts (i.e. sodium chromate and sodium dichromate), while sparingly soluble chromatite (CaCrO4) and hashemite (BaCrO4) release Cr(VI) very slowly. Thus, pH and mineral solubility have been identified as key factors in the retention and the release of the hexavalent CrO4 2− and Cr2O7 from the COPR-rich pond sediments.  相似文献   

13.
Consuming edible plants contaminated by heavy metals transferred from soil is an important pathway for human exposure to environmental contaminants. In the past several decades, heavy metal accumulation in contaminated soil has been widely studied; however, few researches investigated the background levels of metals in plants and evaluated the difference in plants grown in soils produced from different parent rocks. In this study, a systemic survey of heavy metal distribution and accumulation in the soil–pepper system was investigated in an unpolluted area, Hainan Island, China. Levels of Cu, Pb, Zn and Cd were measured in soils and pepper fruits from five representative pepper-growing areas with different soil parent rocks (i.e. basalt, granite, sedimentary rock, metamorphic rock and alluvial deposits). Average concentrations of Cu, Pb, Zn and Cd in pepper fruits were 11.52, 0.84, 8.77 and 0.05 mg/kg, respectively. The concentrations of heavy metals in soils are controlled by the parent materials and varied greatly from in different areas. Heavy metal contents in all pepper samples were lower than the Chinese maximum contaminant levels. The relationship between heavy metals in soils and biological absorption coefficient (BAC) of pepper fruits suggests that the uptake ability of pepper for soil metals depends mainly on the physiological mechanism, while in some cases, the soil types and supergene environment are also important.  相似文献   

14.
The concentration of heavy metals such as Ba, Co, Cr, Cu, Ni, Pb, Rb, Sr, V, Y, Zn, Zr were studied in soils of Balanagar industrial area, Hyderabad to understand heavy metal contamination due to industrialization and urbanization. This area is affected by the industrial activities like steel, petrochemicals, automobiles, refineries, and battery manufacturing generating hazardous wastes. The assessment of the contamination of the soils was based on the geoaccumulation index, enrichment factor (EF), contamination factor, and degree of contamination. Soil samples were collected from Balanagar industrial area from top 10–50 cm layer of soil. The samples were analyzed using X-ray fluorescence spectrometer for heavy metals. The data revealed that the soils in the study area are significantly contaminated, showing high level of toxic elements than normal distribution. The ranges of concentration of Cr (82.2–2,264 mg/kg), Cu (31.3–1,040 mg/kg), Ni (34.3–289.4 mg/kg), Pb (57.5–1,274 mg/kg), Zn (67.5–5819.5 mg/kg), Co (8.6–54.8 mg/kg), and V (66.6–297 mg/kg). The concentration of above-mentioned other elements was similar to the levels in the earth’s crust pointed to metal depletion in the soil as the EF was <1. Some heavy metals showed high EF in the soil samples indicating that there is a considerable heavy metal pollution, which could be correlated with the industries in the area. A contamination site poses significant environmental hazards for terrestrial and aquatic ecosystems. They are important sources of pollution and may results in ecotoxicological effects on terrestrial, groundwater and aquatic ecosystems.  相似文献   

15.
In an attempt to delineate heavy metal contamination precincts and to evaluate the extent and degree of toxic levels, besides their possible sources, 38 water samples from Ankaleshwar Industrial Estate, south Gujarat, India were analyzed. By clutching geochemical analyses and GIS-based colour composites areas depicting anomalously high concentration of heavy metals (Mo, Zn, Pb, Ni, Co, Cd, etc.) in the groundwater were revealed. The multicomponent overlays in grey-scale facilitated in identifying situates of heavy metal ‘hot spots’, and lateral protuberances of the contamination plume around defile stretch of the main stream Amla Khadi flowing through the area. The multiple pollution plumes emerging from other parts of the area further coincide with effluent laden streams and small channels indicating industrial establishments as major sources of groundwater contamination. Influent nature of the streams, accelerated infiltration process, high mass influx and shallow groundwater table are the factors conducive for easy access of heavy metals to the phreatic aquifers affecting over 20 km2 area. On the basis of P/U ratios (concentration of metals in polluted water to unpolluted water), geogenic and anthropogenic sources have been identified. Very high levels of technogenic elements present in the ground water raise concerns about possible migration into food crops, as the area is an important horticultural locale and is highly cultivated.  相似文献   

16.
钝化处理被广泛应用于含重金属尾矿的处理,可以从源头上防止酸矿废水(AMD)的产生,寻找一种价廉易得且对环境危害小的钝化剂十分必要。本文主要研究在骨炭作用下,用pH值为4的双氧水对黄铁矿进行氧化,探讨骨炭对黄铁矿氧化释放重金属的钝化作用。实验结果表明,添加不同含量的骨炭(分别为0.5、2.5和5 g)能将溶液的pH值分别提高到8.93、10.01和10.42,表明骨炭具有较强的中和能力,同时黄铁矿氧化释放的Pb、Zn和Cd等重金属离子浓度明显地降低。但当骨炭含量超过2.5 g时,对As有促进释放的趋势。红外光谱分析显示钝化后黄铁矿样品位于420、563、603、1 044、1 091 cm~(-1)处的特征峰主要来自PO_4~(3-)的振动,XRD进一步揭示了黄铁矿表面主要含磷次生矿物是磷铁矿和羟磷铁铅石,这些次生矿物对重金属钝化起着重要作用。因此,骨炭有望作为钝化含多重金属尾矿的钝化剂。  相似文献   

17.
 Leaching of two contrasting types of sulphidic tailings in humidity cells has been performed. The release of heavy metals and the oxidation rate have been studied. Tailings from the Laver mine contain a few percent sulphides and lack carbonates, whereas tailings from the Stekenjokk mine are both sulphide- and carbonate-rich. The results showed that in the leachates from the Laver samples, the metal concentrations increased and pH decreased with time, indicating an increased oxidation rate. In the Stekenjokk samples, pH remained high during the experiment, thereby keeping the metal concentrations low in the leachates. The oxidation rate also decreased with time, probably due to Fe-hydroxide coatings on sulphide surfaces. The results show that addition of carbonates and the maintenance of a high pH not only reduce the solubility of heavy metals, but also decrease the oxidation rate of sulphides. Received: 20 January 1998 · Accepted: 2 April 1998  相似文献   

18.
This study presents a combined geochemical and mineralogical survey of urban surface soils. Many studies on urban soils are restricted to purely chemical surveys in order to investigate soil pollution caused by anthropogenic activities such as traffic, heating, industrial processing, waste disposal and many more. In environmental studies, chemical elements are often distinguished as lithogenic and anthropogenic elements. As a novel contribution to those studies, the authors combined the analysis of a broad set of chemical elements with the analysis of the main mineralogical phases. The semi-quantification of mineralogical phases supported the assignment of groups of chemical elements to lithogenic or anthropogenic origin. Minerals are important sinks for toxic elements. Thus, knowledge about their distribution in soils is crucial for the assessment of the environmental hazards due to pollution of urban soils. In Pforzheim, surface soils (0–5 cm depth) from various land use types (forest, agriculture, urban green space, settlement areas of various site densities) overlying different geological units (clastic and chemical sediments) were investigated. Urban surface soils of Pforzheim reflect to a considerable degree the mineral and chemical composition of parent rocks. Irrespective of the parent rocks, elevated concentrations of heavy metals (Zn, Cu, Pb, Sn, Ag) were found in soils throughout the whole inner urban settlement area of Pforzheim indicating pollution. These pollutants will tend to accumulate in inner urban surface soils according to the available adsorption capacity, which is normally higher in soils overlying limestone than in soils overlying sandstone. However, inner urban surface soils overlying sandstone show elevated concentrations of carbonates, phyllo-silicates and Fe and elevated pH values compared with forest soils overlying sandstone. Thus, in comparison to forest soils overlying sandstones, inner urban soils overlying sandstone affected by pollution concurrently possess elevated concentrations of mineral phases typically providing relatively high adsorption capacities for heavy metals.  相似文献   

19.
In this study, environmental magnetic, heavy metal and statistical analyses were conducted on 21 surface sediments collected from Chennai coast, India, to examine the feasibility of heavy metal pollution using magnetic susceptibility. The Chennai coastal sediment samples are dominated by ferrimagnetic minerals corresponding to magnetite-like minerals. The percentage of frequency dependent magnetic susceptibility reflects the presence of super-paramagnetic/single domain magnetic minerals in Chennai harbour, Cooum and Adayar rivers sediments. High pollution load index in sample E1, E2, CH7, C11, C12 and A16 is mainly due to anthropogenic activities such as, harbour activities, Cooum and Adayar rivers input and industrial effluent. Factor analysis shows that the magnetic concentration dependent parameters (χ, χ ARM and SIRM) covary with the heavy metal concentrations, suggesting that the input of magnetic minerals and heavy metals in Chennai coastal sediments are derived from the same anthropogenic sources. Strong correlation obtained between pollution load index (PLI) and concentration dependent parameters (χ, χ ARM and SIRM) for the polluted samples with magnetic susceptibility excess of 50×10 − 8 m3kg − 1. Significant correlations between heavy metals and magnetic susceptibility point out the potential of magnetic screening/monitoring for simple and rapid proxy indicator of heavy metal pollution in marine sediments.  相似文献   

20.
研究了固定配比的钠化膨润土与土壤在不同pH条件下对重金属离子的吸附效果。钠化膨润土与污染土壤按质量比1∶10和1∶20的比例混合,用碳酸氢铵-二乙三胺五乙酸(AB-DTPA)法提取土壤中有效态重金属。结果表明,在钠化膨润土与土壤质量比为1∶20的条件下,取得了最佳的修复效果;在pH=9.14时该混合土壤对重金属的总体吸附效果最佳。在实际土壤修复中,针对不同重金属污染,应灵活调整修复材料与污染土壤的配比和土壤的pH条件。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号