首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tolo Harbour is a landlocked bay with poor tidal flushings in the northeastern part of Hong Kong. During the 1980s, excessive nutrient loading led to dramatic increase in nutrient concentrations, accompanied by lower N:P ratios, higher algal biomass and shifts in the phytoplankton community. We studied the effects of nutrient loading reduction measures on nutrient concentrations, nutrient ratios and phytoplankton dynamics in Tolo Harbour by comparing data collected before the full implementation of nutrient loading reduction measures (1986-1997) to those after the implementation (1998-2008). Such measures led to declines in nutrient concentrations, changes in N:P and N:Si ratios, lower chlorophyll-a concentrations and fewer algal blooms. Diatoms were the most abundant phytoplankton group in Tolo Harbour both before and after declines in nutrient concentrations. The density of dinoflagellates did not change, but substantial increase in other algal group abundance was recorded.  相似文献   

2.
The Patos–Mirim Lagoon system along the southern coast of Brazil is linked to the coastal ocean by a narrow mouth and by groundwater transport through a Holocene barrier. Although other groundwater systems are apparently active in this region, the hydraulic head of the lagoon, the largest in South America, drives groundwater transport to the coast. Water levels in wells placed in the barrier respond to changing water level in the lagoon. The wells also provide a measure of the nutrient concentrations of groundwater flowing toward the ocean. Additionally, temporary well points were used to obtain nutrient samples in groundwater on the beach face of the barrier. These samples revealed a subterranean freshwater–seawater mixing zone over a ca. 240 km shoreline. Previously published results of radium isotopic analyses of groundwater and of surface water from cross-shelf transects were used to estimate a water flux of submarine groundwater discharge (SGD) to nearshore surface waters of 8.5 × 107 m3/day. Using this SGD and the nutrient concentrations in different compartments, nutrient fluxes between groundwater and surface water were estimated. Fluxes were computed using both average and median reservoir (i.e. groundwater and surface water) nutrient concentrations. The SGD total dissolved inorganic nitrogen, phosphate and silicate fluxes (2.42, 0.52, 5.92 × 106 mol day− 1, respectively) may represent as much as 55% (total N) to 10% (Si) of the nutrient fluxes to the adjacent shelf environment. Assuming nitrogen limitation, SGD may be capable of supporting a production rate of ca. 3000 g C m2 year− 1in the nearshore surf zone in this region.  相似文献   

3.
In order to estimate submarine groundwater discharge (SGD) and SGD-driven nutrient fluxes, we measured the concentrations of nutrients, 224Ra, and 226Ra in seawater, river water, and coastal groundwater of Yeongil Bay (in the southeastern coast of Korea) in August 2004 and February 2005. The bottom sediments over the shallow areas of this bay are composed mainly of coarse sands. Large excess concentrations of 224Ra, 226Ra, and Si supplied from SGD were observed in August 2004, while these excess concentrations were not apparent in February 2005. Based on the mass balance for 224Ra, 226Ra, and Si, which showed conservative mixing behavior in seawater, SGD was estimated to be approximately 6 × 106 m3 day− 1 (seepage rate = 0.2 m day− 1) in shallow areas (< 9 m water depth) in August 2004, which is much higher than the SGD level typically found in other coastal regions worldwide. During the summer period, SGD-driven nutrients in this bay contributed approximately 98%, 12%, and 76% of the total inputs for dissolved inorganic nitrogen (DIN), phosphorus (DIP), and silicate (DSi), respectively. Our study implies that the ecosystem in this highly permeable bed coastal zone is influenced strongly by SGD during summer, while such influences are negligible in winter.  相似文献   

4.
There is increasing evidence that submarine groundwater discharge (SGD) in many areas represents a major source of dissolved chemical constituents to the coastal ocean. In Great South Bay, NY, previous studies have shown that the discharge of nutrients with SGD may cause harmful algal blooms. This study estimates SGD to Great South Bay during August 2006 by performing a mass balance for each of the dissolved Ra isotopes (224Ra, 223Ra, 228Ra, 226Ra). The budget indicates a major unknown source (between 30 and 60% of the total input) of Ra to the bay. This imbalance can be resolved by a flux of Ra-enriched groundwater on the order of 3.5–4.5 × 109 L d− 1, depending on the Ra isotope. The Ra-estimated SGD rates compare well with those previously estimated by models of flow that decreases exponentially away from shore. Compared to previous reports of fresh groundwater discharge to the bay, the Ra-estimated discharge must comprise approximately 90% recirculated seawater. The good agreement between Ra- and model-estimated flow rates indicates that the primary SGD endmember may be best sampled at shallow depths in the sediments a short distance bayward of the low tide line.  相似文献   

5.
Multiple tracers of groundwater input (salinity, Si, 223Ra, 224Ra, and 226Ra) were used together to determine the magnitude, character (meteoric versus seawater), and nutrient contribution associated with submarine groundwater discharge across the leeward shores of the Hawai'ian Islands Maui, Moloka'i, and Hawai'i. Tracer abundances were elevated in the unconfined coastal aquifer and the nearshore zone, decreasing to low levels offshore, indicative of groundwater discharge (near-fresh, brackish, or saline) at all locations. At several sites, we detected evidence of fresh and saline SGD occurring simultaneously. Conservative estimates of SGD fluxes ranged widely, from 0.02–0.65 m3 m− 2 d− 1at the various sites. Groundwater nutrient fluxes of 0.04–40 mmol N m− 2 d− 1 and 0.01–1.6 mmol P m− 2 d− 1 represent a major source of new nutrients to coastal ecosystems along these coasts. Nutrient additions were typically greatest at locations with a substantial meteoric component in groundwater, but the recirculation of seawater through the aquifer may provide a means of transferring terrestrially-derived nutrients to the coastal zone at several sites.  相似文献   

6.
Stable isotopes, tritium, radium isotopes, radon, trace elements and nutrients data were collected during two sampling campaigns in the Ubatuba coastal area (south-eastern Brazil) with the aim of investigating submarine groundwater discharge (SGD) in the region. The isotopic composition (δD, δ18O, 3H) of submarine waters was characterised by significant variability and heavy isotope enrichment. The stable isotopes and tritium data showed good separation of groundwater and seawater groups. The contribution of groundwater in submarine waters varied from a few % to 17%. Spatial distribution of 222Rn activity concentration in surface seawater revealed changes between 50 and 200 Bq m−3 which were in opposite relationship with observed salinities. Time series measurements of 222Rn activity concentration in Flamengo Bay (from 1 to 5 kBq m−3), obtained by in situ underwater gamma-spectrometry showed a negative correlation between the 222Rn activity concentration and tide/salinity. This may be caused by sea level changes as tide effects induce variations of hydraulic gradients, which increase 222Rn concentration during lower sea level, and opposite, during high tides where the 222Rn activity concentration is smaller. The estimated SGD fluxes varied during 22–26 November between 8 and 40 cm d−1, with an average value of 21 cm d−1 (the unit is cm3/cm2 per day). The radium isotopes and nutrient data showed scattered distributions with offshore distance and salinity, which implies that in a complex coast with many small bays and islands, the area has been influenced by local currents and groundwater–seawater mixing. SGD in the Ubatuba area is fed by coastal contaminated groundwater and re-circulated seawater (with small admixtures of groundwater), which claims for potential environmental concern with implications on the management of freshwater resources in the region.  相似文献   

7.
C. Rocha  J. Ibanhez  C. Leote   《Marine Chemistry》2009,115(1-2):43-58
To investigate both the role of tides on the timing and magnitude of Submarine Groundwater Discharge (SGD), and the effect on benthic nitrogen biogeochemistry of nitrate-enriched brackish water percolating upwards at the seepage face, we conducted a study of SGD rates measured simultaneously with seepage meters and mini-piezometers, combined with sets (n = 39) of high resolution in-situ porewater profiles describing NH4+, NO3, Si(OH)4 and salinity distribution with depth (0–20 cm). Sampling took place during two consecutive spring tidal cycles in four different months (November 2005, March, April and August 2006) at a backbarrier beach face in the Ria Formosa lagoon, southern Portugal. Our results show that the tide is one of the major agents controlling the timing and magnitude of SGD into the Ria Formosa. Intermittent pumping of brackish, nitrate-bearing water at the beach face through surface sediments changed both the magnitudes and depth distributions of porewater NH4+ and NO3 concentrations. The most significant changes in nitrate and ammonium concentrations were observed in near-surface sediment horizons coinciding with increased fraction of N in benthic organic matter, as shown by the organic C:N ratio. On the basis of mass balance calculations executed on available benthic profiles, providing ratios of net Ammonium Production Rate (APR) to Nitrate Reduction Rate (NRR), coupled to stoichiometric calculations based on the composition of organic matter, potential pathways of nitrogen transformation were speculated upon. Although the seepage face occasionally contributes to reduce the groundwater-borne DIN loading of the lagoon, mass balance analysis suggests that a relatively high proportion of the SGD-borne nitrogen flowing into the lagoon may be enhanced by nitrification at the shallow (1–3 cm) subsurface and modulated by dissimilatory nitrate reduction to ammonium (DNRA).  相似文献   

8.
Eight stations were chosen for this 14 month survey of Tolo Harbour in Hong Kong, four of them in the harbour proper and four in the estuaries of the major streams entering the harbour. Various chemical and physical factors were measured twice each month. Water samples were collected for nutrient, phytoplankton, chlorophyll and bacteriological analysis.The annual discharge of nutrients from the four streams into Tolo Harbour has been estimated, based on the nutrient analyses and computation of annual discharge (QA) values for these streams. The seasonal and spatial variations in nutrient content are discussed in relation to the increasing organic pollution of Tolo Harbour. Calculations of various ratios between SiO3, PO4, NO3 and total inorganic N reveal that excessive amounts of phosphate are entering the harbour and subsequently accumulating in the bottom waters and sediments, leading to changes in the trophic condition of this water body and the development of anoxic conditions in the bottom layer.Significant correlation has been demonstrated between standing crop and various environmental parameters in both estuarine and marine waters and similarly between chlorophyll a concentration and various environmental parameters. However, no significant correlation values were obtained between either standing crop or chlorophyll a concentrations, SiO3Si (the latter presumably due to the predominance of diatoms in the phytoplankton). Neither standing crop nor chlorophyll determinations reveal any evidence of alternating periods of high productivity and decomposition which could explain the deteriorating bottom water conditions. This again is taken as evidence that the high organic inputs are responsible for such deterioration.Increasing TC, FC and FS densities have been noted in Tolo Harbour as a direct result of the increasing organic pollution and ratios between FC and FS densities indicate that in 55% of the samples pollution was derived from human sewage. The bacterial levels well exceeded various international standards for bathing waters and shellfish collection for at least a part of the survey period and at a number of stations for the entire survey period. Pathogenic organisms were also present. This underlines the potential health risks in these waters.Finally, the future prospects for this harbour are discussed in relation to activities such as reclamation and the development of new towns and their impact on water quality.  相似文献   

9.
基于223Ra和224Ra的桑沟湾海底地下水排放通量   总被引:1,自引:0,他引:1  
海底地下水排放(SGD)是陆地向海洋输送水量和营养物质的重要通道之一,对沿海物质通量及其生物地球化学循环有重要的影响,对生态环境起着不可忽视的作用。本文运用天然放射性同位素223Ra和224Ra示踪估算了我国北方典型养殖基地桑沟湾的海底地下水排放通量。结果表明,海底地下水样尤其是间隙水中Ra活度[224Ra=(968±31)dpm/(100 L),223Ra=(31.4±4.9)dpm/(100 L),n=9]远高于表层海水[224Ra=(38.7±2.0)dpm/(100 L),223Ra=(1.70±0.50)dpm/(100 L), n=21]。假设稳态条件下,考虑Ra的各源、汇项,利用Ra平衡模型,估算出桑沟湾SGD排放通量为(0.23~1.03)×107 m3/d。潮周期内的观测结果显示,涨潮时,水力梯度较小,SGD排放变弱,落潮时,水力梯度较大,导致了相对较多的SGD排放。在一个潮周期间,基于223Ra和224Ra得到的SGD排放通量平均为0.39×107 m3/d。潮汐动力下的SGD排放平均占总SGD排放的61%,因此桑沟湾沿岸的地下水排放主要受潮汐动力的影响,并对海水组成及海陆间物质交换有显著贡献。  相似文献   

10.
Dilution experiments were conducted to investigate microzooplankton grazing impact on phytoplankton of different taxonomic groups and size fractions (< 5, 5–20, 20–200 μm) during spring and summer bloom periods at two different sites (inner Tolo Harbour and Tolo Channel) in the Tolo Harbour area, the northeastern coastal area of Hong Kong. Experiments combined with HPLC pigment analysis in three phytoplankton size fractions measured pigment and size specific phytoplankton growth rates and microzooplankton grazing rates. Pigment-specific phytoplankton growth rates ranged between 0.08 and 3.53 d 1, while specific grazing rates of microzooplankton ranged between 0.07 and 2.82 d 1. Highest specific rates of phytoplankton growth and microzooplankton grazing were both measured in fucoxanthin in 5–20 μm size fraction in inner Tolo Harbour in summer, which coincided with the occurrence of diatom bloom. Results showed significant correlations between phytoplankton growth and microzooplankton grazing rates. Microzooplankton placed high grazing pressure on phytoplankton community. High microzooplankton grazing impact on alloxanthin (2.63–5.13) suggested strong selection toward cryptophytes. Our results provided no evidence for size selective grazing on phytoplankton by microzooplankton.  相似文献   

11.
The distributions of dissolved organic carbon (DOC), Ba, U, and a suite of naturally occurring radionuclides in the U/Th decay series (222Rn, 223,224,226,228Ra) were studied during high- and low-discharge conditions in the Loxahatchee River estuary, Florida to examine the role of submarine groundwater discharge in estuarine transport. The fresh water endmember of this still relatively pristine estuary may reflect not only river-borne constituents, but also those advected during active groundwater/surface water (hyporheic) exchange. During both discharge conditions, Ba concentrations indicated slight non-conservative mixing. Such Ba excesses could be attributed either to submarine groundwater discharge or particle desorption processes. Estuarine dissolved organic carbon concentrations were highest at salinities closest to zero. Uranium distributions were lowest in the fresh water sites and mixed mostly conservatively with an increase in salinity. Suspended particulate matter (SPM) concentrations were generally lowest (< 5 mg L− 1) close to zero salinity and increased several-fold ( 18 mg L− 1; low discharge) toward the seaward endmember, which may be attributed to dynamic resuspension of bottom sediments within Jupiter Inlet.Surface water-column 222Rn activities were most elevated (> 28 dpm L− 1) at the freshwater endmember of the estuary and appear to identify regions of the river most influenced by the discharge of fresh groundwater. Activities of four naturally occurring isotopes of Ra (223,224,226,228Ra) in this estuary and select adjacent shallow groundwater wells yield mean estuarine water-mass transit times of less than 1 day; these values are in close agreement to those calculated by tidal prism and tidal frequency. Submarine groundwater discharge rates to the Loxahatchee River estuary were calculated using a tidal prism approach, an excess 226Ra mass balance, and an electromagnetic seepage meter. Average SGD rates ranged from 1.0 to 3.8 × 105 m3 d− 1 (20–74 L m− 2 d− 1), depending on river-discharge stage. Such calculated SGD estimates, which must include both a recirculated as well as fresh water component, are in close agreement with results obtained from a first-order watershed mass balance. Average submarine groundwater discharge rates yield NH4+ and PO4− 3 flux estimates to the Loxahatchee River estuary that range from 62.7 to 1063.1 and 69.2 to 378.5 μmol m− 2 d− 1, respectively, depending on river stage. SGD-derived nutrient flux rates are compared to yearly computed riverine total N and total P load estimates.  相似文献   

12.
EcologyofthemarinecladoceranPeniliaavirostrisDanainToloHarbour,HongKong¥WongChongKim;ChanLai-chunandChenQingchao(ReceivedApri...  相似文献   

13.
Submarine groundwater discharge (SGD) is now recognized as an important pathway for water and chemical species fluxes to the coastal ocean. In order to determinate SGD to the Gulf of Lion (France), we measured the activities of 226Ra and 228Ra by thermal ionization mass spectrometry (TIMS) in coastal waters and in the deep aquifer waters of the Rhone deltaic plain after pre-concentration of radium by MnO2. Compared to conventional counting techniques, TIMS requires lower quantities of water for the analyses, and leads to higher analytical precision. Radium isotopes were thus measured on 0.25–2 L water samples containing as little as 20 fg of 226Ra and 0.2–0.4 fg of 228Ra with precision equal to 2%. We demonstrate that coastal surface waters samples are enriched in 226Ra and 228Ra compared to the samples further offshore. The high precision radium measurements display a small but significant 226Ra and 228Ra enrichment within a strip of circa 30 km from the coast. Radium activities decrease beyond this region, entrained in the northern current along the shelf break or controlled by eddy diffusion. The radium excess in the first 30 km cannot be accounted for by the river nor by the early diagenesis. The primary source of the radium enrichment must therefore be ascribed to the discharge of submarine groundwater. Using a mass-balance model, we estimated the advective fluxes of 226Ra and 228Ra through SGD to be 5.2 × 1010 and 21 × 1010 dpm/d respectively. The 226Ra activities measured in the groundwater from the Rhone deltaic plain aquifer are comparable to those from other coastal groundwater studies throughout the world. By contrast, 228Ra activities are higher by up to one order of magnitude. Taking those groundwater radium activities as typical of the submarine groundwater end-member, a minimum volume of 0.24–4.5 × 1010 l/d is required to support the excess radium isotopes on the inner shelf. This has to be compared with the average rivers water runoff of 15.4 × 1010 l/d during the study period (1.6 to 29% of the river flow).  相似文献   

14.
Submarine groundwater discharge (SGD) to coastal southern Rhode Island was estimated from measurements of the naturally-occurring radioisotopes 226Ra (t1/2 = 1600 y) and 228Ra (t1/2 = 5.75 y). Surface water and porewater samples were collected quarterly in Winnapaug, Quonochontaug, Ninigret, Green Hill, and Pt. Judith–Potter Ponds, as well as nearly monthly in the surface water of Rhode Island Sound, from January 2002 to August 2003; additional porewater samples were collected in August 2005. Surface water activities ranged from 12–83 dpm 100 L− 1 (60 dpm = 1 Bq) and 21–256 dpm 100 L− 1 for 226Ra and 228Ra, respectively. Porewater 226Ra activities ranged from 16–736 dpm 100 L− 1 (2002–2003) and 95–815 dpm 100 L− 1 (2005), while porewater 228Ra activities ranged from 23–1265 dpm 100 L− 1. Combining these data with a simple box model provided average 226Ra-based submarine groundwater fluxes ranging from 11–159 L m− 2 d− 1 and average 228Ra-derived fluxes of 15–259 L m− 2 d− 1. Seasonal changes in Ra-derived SGD were apparent in all ponds as well as between ponds, with SGD values of 30–472 L m− 2 d− 1 (Winnapaug Pond), 6–20 L m− 2 d− 1 (Quonochontaug Pond), 36–273 L m− 2 d− 1 (Ninigret Pond), 29–76 L m− 2 d− 1 (Green Hill Pond), and 19–83 L m− 2 d− 1 (Pt. Judith–Potter Pond). These Ra-derived fluxes are up to two orders of magnitude higher than results predicted by a numerical model of groundwater flow, estimates of aquifer recharge for the study period, and values published in previous Ra-based SGD studies in Rhode Island. This disparity may result from differences in the type of flow (recirculated seawater versus fresh groundwater) determined using each technique, as well as variability in porewater Ra activity.  相似文献   

15.
The four naturally-occurring radium isotopes (223Ra, 224Ra, 226Ra and 228Ra) were used to estimate the submarine groundwater discharge (SGD) in the Isola La Cura marsh area in the northern Venice Lagoon (Italy). By determining the radium contributors to the study area (river, coastal ocean and sediments) the radium excess in the lagoon water was quantified through a mass balance model. This radium excess is attributed to a submarine groundwater discharge source and represents the most important input of radium. Possible endmembers were considered from analysis of groundwater samples (subtidal and marsh piezometers, marsh wells and seepage meters) that were enriched in Ra by one to two orders of magnitude relative to surface waters. In particular, a permeable layer at 80 cm depth in the surrounding marsh is considered to be representative of the most likely SGD source, although similar radium activities were measured in other subtidal porewater samples collected in the Isola La Cura area. The estimated SGD flux to the study area ranged from 1 · 109 to 6 · 109 L·d− 1, the same order of magnitude as the overall riverine input to the lagoon (3 · 109 L·d− 1). A major fraction of this SGD flux is likely recirculated seawater, as evidenced by the endmember salinity. The water residence time of 2 days was estimated by both using the shortest-lived radium isotope and estimating the volume of water exchanged between the lagoon and the open sea during a tidal cycle (tidal prism approach). This SGD flux could be used to estimate the input of other chemical species (metals, nutrients, etc.) via SGD which might affect the Venice Lagoon ecosystem.  相似文献   

16.
毛献忠  姜茜 《海洋工程》2012,30(2):129-135
基于历史数据的分析,选择历史上强度最强的台风"荷贝"作为设计超强台风的强度,最不利路径的台风"雪莉"作为设计路径,作为深圳香港海域设计超强台风。采用海洋-陆架区-海岸三重嵌套网格建立的天文潮-风暴潮-台风浪耦合模型计算设计超强台风遭遇天文大潮的高潮位登陆时深圳香港海域的可能最高潮位和浪高。计算结果表明,大鹏湾北部和香港吐露港内,可能最高风暴潮位在3.00 m以上,浪高达到4.0~5.0 m;香港维多利亚港风暴潮位2.92 m,深圳香港水域东部南部在2.50 m以上,浪高3.0~5.0 m。可能最高风暴潮位比大鹏湾防潮警戒水位高1.62 m左右,比香港维多利亚港200年一遇的潮位高0.50 m。  相似文献   

17.
The input of groundwater-borne nutrients to Adelaide's (South Australia) coastal zone is not well known but could contribute to the ongoing decline of seagrass in the area. As a component of the Adelaide Coastal Waters Study (ACWS), the potential for using the radium quartet (223Ra, 224Ra, 226Ra and 228Ra) and 222Rn to evaluate submarine groundwater discharge (SGD) was evaluated. Potential isotopic signatures for SGD were assessed by sampling groundwater from three regional aquifers potentially contributing SGD to the ACWS area. In addition, intertidal groundwater was sampled at two sand beach sites. In general, the regional groundwaters were enriched in long-lived Ra isotopes (226Ra and 228Ra) and in 222Rn relative to intertidal groundwater. Radium activity (but not 222Rn activity) was positively correlated to salinity in groundwater from one of the regional aquifers and in intertidal groundwater. Radium isotope ratios (223Ra/226Ra, 224Ra/226Ra and 228Ra/226Ra) were less variable than individual Ra isotope activities within potential SGD sources. Recirculated seawater (estimated from the intertidal groundwater samples with seawater-like salinities) also had distinctly higher Ra isotope ratios than the regional groundwaters. The activities for all radioisotopes were relatively low in seawater. The activity of the short-lived 223Ra and 224Ra were highest at the shoreline and declined exponentially with distance offshore. In contrast, 228Ra and 226Ra activities had a weak linear declining trend with distance offshore. Rn-222 activity was at or near background in all seawater samples. The pattern of enrichment in short-lived Ra isotopes and the lack of 222Rn in seawater suggest that seawater recirculation is the main contributor to SGD in the ACWS area. Preliminary modeling of the offshore flux of 228Ra and 226Ra suggest that the SGD flux to the ACWS area ranges between 0.2 and 3 · 10− 3 m3 (m of shoreline)− 1 s− 1.  相似文献   

18.
The biogeochemistry and magnitude of submarine groundwater discharge (SGD) was investigated in one of the largest tidal flat ecosystems worldwide, along the Yellow Sea coast. A representative semi-enclosed embayment located in the south eastern Yellow Sea, Hampyeong Bay, was chosen for this purpose. Groundwater and seawater samples were collected in three seasons (May, July, and September) and analyzed for Ra isotopes, nutrients, and photosynthetic pigments. The biogeochemistry of SGD was strongly influenced by tidal oscillations and seasonal precipitation changes and switched from a brackish, nutrient-enriched regime in May and July to an exclusively saline regime, with lower nutrient concentrations, in September. SGD magnitudes, calculated by using a 226Ra mass balance model, were 0.14 m3 m? 2 d? 1 in May and 0.35 m3 m? 2 d? 1 in September. A nutrient mass balance was established for the two campaigns, which suggests that SGD causes the flushing of substantial amounts of pore water nutrients into this embayment; because of SGD, the embayment acts as a source of dissolved inorganic silicates (DSi) that are transported to the open ocean. Potential C fixation rates derived from this nutrient mass balance were compared with two different models for water-column phytoplankton productivity based on water-column Chl a and local irradiation levels. The Chl a-based models generally showed lower C fixation rates than the nutrient-based mass balance, indicating removal of up to 70% of the nutrients by other primary producers, such as benthic algae. During monsoon season, when benthic algal biomass is high and nutrient fluxes are substantial due to a terrestrial component, SGD — driven benthic primary production could play a significant role in this large tidal flat ecosystem.  相似文献   

19.
Sub-cellular perturbations in the lysosomal compartment of molluscan haemocytes were examined in mussels (Perna viridis), collected along a pollution gradient. The neutral red technique was validated using a well defined contamination gradient among indigenous populations from five stations along Tolo Harbour, Hong Kong. Condition indices (shell length:dry tissue wt) and tissue metal concentrations were also measured in an attempt to identify a relationship between contamination level and adverse physiological effects. Correlations were found between lysosomal retention time and condition along the pollution gradient. There were significant differences between mussels collected from stations on offshore islands and those collected from inner harbour sites (p < 0.05). There was, however, little correlation between metal concentrations and retention time or condition (p > 0.05).  相似文献   

20.
This paper reports the initial results of a study of groundwater and coastal waters of southern Brazil adjacent to a 240 km barrier spit separating the Patos Lagoon, the largest coastal lagoon in South America, from the South Atlantic Ocean. The objective of this research is to assess the chemical alteration of freshwater and freshwater–seawater mixtures advecting through coastal permeable sands, and the influence of the submarine discharge of these fluids (SGD) on the chemistry of coastal waters. Here we focus on dissolved iron in this system and use radium isotopic tracers to quantify SGD and cross-shelf fluxes. Iron concentrations in groundwaters vary between 0.6 and 180 μM. The influence of the submarine discharge of these fluids into the surf zone produces dissolved Fe concentrations as high as several micromolar in coastal surface waters. The offshore gradient of dissolved Fe, coupled with results for Ra isotopes, is used to quantify the SGD flux of dissolved Fe from this coastline. We estimate the SGD flux to be 2 × 106 mol day− 1 and the cross-shelf flux to be 3.2 × 105 mol day− 1. This latter flux is equal to about 10% of the soluble atmospheric Fe flux to the entire South Atlantic Ocean. We speculate on the importance of this previously unrecognized iron input to regional ocean production and on the potential significance of this source to understanding variations in glacial–interglacial ocean production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号