首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A mass balance for the naturally-occurring radium isotopes (224Ra, 223Ra, 228Ra, and 226Ra) in Jamaica Bay, NY, was conducted by directly estimating the individual Ra contributions of wastewater discharge, diffusion from fine-grained subtidal sediments, water percolation through marshes, desorption from resuspended particles, and water exchange at the inlet. The mass balance revealed a major unknown source term accounting for 19–71% of the total Ra input, which could only be resolved by invoking a source from submarine groundwater. Shallow (< 2 m depth) groundwater from permeable sediments in Jamaica Bay was brackish and enriched in Ra relative to surface bay waters by over two orders of magnitude. To balance Ra fluxes, a submarine groundwater input of 0.8 × 109–9.0 × 109 L d− 1 was required. This flux was similar for all four isotopes, with individual estimates varying by less than a factor of 2. Our calculated groundwater flux was 6- to 70-fold higher than the fresh groundwater discharge to the bay estimated by hydrological methods, but closely matched direct flow rates measured with seepage meters. This suggests that a substantial portion of the discharge consisted of recirculated seawater. The magnitude of submarine groundwater discharge varied seasonally, in the order: summer > autumn > spring. Chemical analyses suggest that the recirculated seawater component of submarine groundwater delivers as much dissolved nitrogen to the bay as the fresh groundwater flux.  相似文献   

2.
In order to estimate submarine groundwater discharge (SGD) and SGD-driven nutrient fluxes, we measured the concentrations of nutrients, 224Ra, and 226Ra in seawater, river water, and coastal groundwater of Yeongil Bay (in the southeastern coast of Korea) in August 2004 and February 2005. The bottom sediments over the shallow areas of this bay are composed mainly of coarse sands. Large excess concentrations of 224Ra, 226Ra, and Si supplied from SGD were observed in August 2004, while these excess concentrations were not apparent in February 2005. Based on the mass balance for 224Ra, 226Ra, and Si, which showed conservative mixing behavior in seawater, SGD was estimated to be approximately 6 × 106 m3 day− 1 (seepage rate = 0.2 m day− 1) in shallow areas (< 9 m water depth) in August 2004, which is much higher than the SGD level typically found in other coastal regions worldwide. During the summer period, SGD-driven nutrients in this bay contributed approximately 98%, 12%, and 76% of the total inputs for dissolved inorganic nitrogen (DIN), phosphorus (DIP), and silicate (DSi), respectively. Our study implies that the ecosystem in this highly permeable bed coastal zone is influenced strongly by SGD during summer, while such influences are negligible in winter.  相似文献   

3.
《Marine Chemistry》2007,103(1-2):131-145
We have investigated submarine groundwater discharge to Nueces Bay (Texas) using naturally occurring Ra isotopes. Dissolved Ra activities in Nueces Bay are among the highest observed in coastal estuaries; as great as 2600 dpm m 3 for 228Ra and 1000 dpm m 3 for 226Ra. Using a combination of salt and Ra mass balances, we demonstrate that river discharge and bay bottom sediments cannot supply the Ra needed to balance tidal export. In the case of 226Ra there is an additional source of 218 × 106 ± 105% dpm day 1 which is 9 times the maximum supply from bay bottom sediments and 50 times the Ra supplied by the Nueces River. A groundwater flux of 310,000 m3 day 1 is required to supply the needed 226Ra, based on the measured maximum Ra activity of local groundwater. Though as little as 10% of this flux may be advecting terrestrial groundwater this would still represent 160% of the Nueces River discharge. This makes it unlikely that groundwater discharge alone is supplying all of the additional 226Ra. Oil-field brine could potentially account for the remainder. Leakage of 6290 m3 day 1 of oil-field brine from the submerged petroleum wells and pipelines within the bay could supply all of the needed 226Ra. Such large fluxes of brackish groundwater and oil-field brine could significantly affect bay nitrogen budgets, salinities, and dissolved oxygen concentrations and should be considered when determining the freshwater inflow requirements for Nueces Bay and similar estuaries.  相似文献   

4.
This paper reports the initial results of a study of groundwater and coastal waters of southern Brazil adjacent to a 240 km barrier spit separating the Patos Lagoon, the largest coastal lagoon in South America, from the South Atlantic Ocean. The objective of this research is to assess the chemical alteration of freshwater and freshwater–seawater mixtures advecting through coastal permeable sands, and the influence of the submarine discharge of these fluids (SGD) on the chemistry of coastal waters. Here we focus on dissolved iron in this system and use radium isotopic tracers to quantify SGD and cross-shelf fluxes. Iron concentrations in groundwaters vary between 0.6 and 180 μM. The influence of the submarine discharge of these fluids into the surf zone produces dissolved Fe concentrations as high as several micromolar in coastal surface waters. The offshore gradient of dissolved Fe, coupled with results for Ra isotopes, is used to quantify the SGD flux of dissolved Fe from this coastline. We estimate the SGD flux to be 2 × 106 mol day− 1 and the cross-shelf flux to be 3.2 × 105 mol day− 1. This latter flux is equal to about 10% of the soluble atmospheric Fe flux to the entire South Atlantic Ocean. We speculate on the importance of this previously unrecognized iron input to regional ocean production and on the potential significance of this source to understanding variations in glacial–interglacial ocean production.  相似文献   

5.
海底地下水排放对典型红树林蓝碳收支的影响   总被引:1,自引:0,他引:1  
海底地下水排放(Submarine Groundwater Discharge,SGD)是陆海相互作用的重要表现形式之一,其携带的物质对近岸海域生源要素的收支有重要影响。本文利用222Rn示踪技术估算了我国典型红树林海湾—广西珍珠湾在2019年枯季(1月)SGD携带的碳通量。调查发现,地下水中222Rn活度、溶解无机碳(DIC)和溶解有机碳(DOC)的平均浓度均高于河水和湾内表层海水。利用222Rn质量平衡模型估算得到珍珠湾SGD速率为(0.36±0.36) m/d,SGD输入到珍珠湾的DIC和DOC通量分别为(2.41±2.63)×107 mol/d和(1.96±2.20)×106 mol/d。珍珠湾溶解碳的源汇收支表明,SGD携带的DIC和DOC分别占珍珠湾总DIC和总DOC来源的91%和89%。因此,SGD携带的DIC和DOC是珍珠湾DIC和DOC的主要来源,是海岸带蓝碳收支和生物地球化学循环过程中的重要组成。  相似文献   

6.
The four naturally-occurring radium isotopes (223Ra, 224Ra, 226Ra and 228Ra) were used to estimate the submarine groundwater discharge (SGD) in the Isola La Cura marsh area in the northern Venice Lagoon (Italy). By determining the radium contributors to the study area (river, coastal ocean and sediments) the radium excess in the lagoon water was quantified through a mass balance model. This radium excess is attributed to a submarine groundwater discharge source and represents the most important input of radium. Possible endmembers were considered from analysis of groundwater samples (subtidal and marsh piezometers, marsh wells and seepage meters) that were enriched in Ra by one to two orders of magnitude relative to surface waters. In particular, a permeable layer at 80 cm depth in the surrounding marsh is considered to be representative of the most likely SGD source, although similar radium activities were measured in other subtidal porewater samples collected in the Isola La Cura area. The estimated SGD flux to the study area ranged from 1 · 109 to 6 · 109 L·d− 1, the same order of magnitude as the overall riverine input to the lagoon (3 · 109 L·d− 1). A major fraction of this SGD flux is likely recirculated seawater, as evidenced by the endmember salinity. The water residence time of 2 days was estimated by both using the shortest-lived radium isotope and estimating the volume of water exchanged between the lagoon and the open sea during a tidal cycle (tidal prism approach). This SGD flux could be used to estimate the input of other chemical species (metals, nutrients, etc.) via SGD which might affect the Venice Lagoon ecosystem.  相似文献   

7.
Multiple tracers of groundwater input (salinity, Si, 223Ra, 224Ra, and 226Ra) were used together to determine the magnitude, character (meteoric versus seawater), and nutrient contribution associated with submarine groundwater discharge across the leeward shores of the Hawai'ian Islands Maui, Moloka'i, and Hawai'i. Tracer abundances were elevated in the unconfined coastal aquifer and the nearshore zone, decreasing to low levels offshore, indicative of groundwater discharge (near-fresh, brackish, or saline) at all locations. At several sites, we detected evidence of fresh and saline SGD occurring simultaneously. Conservative estimates of SGD fluxes ranged widely, from 0.02–0.65 m3 m− 2 d− 1at the various sites. Groundwater nutrient fluxes of 0.04–40 mmol N m− 2 d− 1 and 0.01–1.6 mmol P m− 2 d− 1 represent a major source of new nutrients to coastal ecosystems along these coasts. Nutrient additions were typically greatest at locations with a substantial meteoric component in groundwater, but the recirculation of seawater through the aquifer may provide a means of transferring terrestrially-derived nutrients to the coastal zone at several sites.  相似文献   

8.
Submarine groundwater discharge (SGD) is now recognized as an important pathway for water and chemical species fluxes to the coastal ocean. In order to determinate SGD to the Gulf of Lion (France), we measured the activities of 226Ra and 228Ra by thermal ionization mass spectrometry (TIMS) in coastal waters and in the deep aquifer waters of the Rhone deltaic plain after pre-concentration of radium by MnO2. Compared to conventional counting techniques, TIMS requires lower quantities of water for the analyses, and leads to higher analytical precision. Radium isotopes were thus measured on 0.25–2 L water samples containing as little as 20 fg of 226Ra and 0.2–0.4 fg of 228Ra with precision equal to 2%. We demonstrate that coastal surface waters samples are enriched in 226Ra and 228Ra compared to the samples further offshore. The high precision radium measurements display a small but significant 226Ra and 228Ra enrichment within a strip of circa 30 km from the coast. Radium activities decrease beyond this region, entrained in the northern current along the shelf break or controlled by eddy diffusion. The radium excess in the first 30 km cannot be accounted for by the river nor by the early diagenesis. The primary source of the radium enrichment must therefore be ascribed to the discharge of submarine groundwater. Using a mass-balance model, we estimated the advective fluxes of 226Ra and 228Ra through SGD to be 5.2 × 1010 and 21 × 1010 dpm/d respectively. The 226Ra activities measured in the groundwater from the Rhone deltaic plain aquifer are comparable to those from other coastal groundwater studies throughout the world. By contrast, 228Ra activities are higher by up to one order of magnitude. Taking those groundwater radium activities as typical of the submarine groundwater end-member, a minimum volume of 0.24–4.5 × 1010 l/d is required to support the excess radium isotopes on the inner shelf. This has to be compared with the average rivers water runoff of 15.4 × 1010 l/d during the study period (1.6 to 29% of the river flow).  相似文献   

9.
The input of groundwater-borne nutrients to Adelaide's (South Australia) coastal zone is not well known but could contribute to the ongoing decline of seagrass in the area. As a component of the Adelaide Coastal Waters Study (ACWS), the potential for using the radium quartet (223Ra, 224Ra, 226Ra and 228Ra) and 222Rn to evaluate submarine groundwater discharge (SGD) was evaluated. Potential isotopic signatures for SGD were assessed by sampling groundwater from three regional aquifers potentially contributing SGD to the ACWS area. In addition, intertidal groundwater was sampled at two sand beach sites. In general, the regional groundwaters were enriched in long-lived Ra isotopes (226Ra and 228Ra) and in 222Rn relative to intertidal groundwater. Radium activity (but not 222Rn activity) was positively correlated to salinity in groundwater from one of the regional aquifers and in intertidal groundwater. Radium isotope ratios (223Ra/226Ra, 224Ra/226Ra and 228Ra/226Ra) were less variable than individual Ra isotope activities within potential SGD sources. Recirculated seawater (estimated from the intertidal groundwater samples with seawater-like salinities) also had distinctly higher Ra isotope ratios than the regional groundwaters. The activities for all radioisotopes were relatively low in seawater. The activity of the short-lived 223Ra and 224Ra were highest at the shoreline and declined exponentially with distance offshore. In contrast, 228Ra and 226Ra activities had a weak linear declining trend with distance offshore. Rn-222 activity was at or near background in all seawater samples. The pattern of enrichment in short-lived Ra isotopes and the lack of 222Rn in seawater suggest that seawater recirculation is the main contributor to SGD in the ACWS area. Preliminary modeling of the offshore flux of 228Ra and 226Ra suggest that the SGD flux to the ACWS area ranges between 0.2 and 3 · 10− 3 m3 (m of shoreline)− 1 s− 1.  相似文献   

10.
We used naturally occurring radium isotopes as tracers of water exchange in Apalachicola Bay, a shallow coastal-plain estuary in northwestern Florida. The bay receives fresh water and radium from the Apalachicola River, and mixes with Gulf of Mexico waters through four inlets. We deployed moored buoys with attached Mn-fibers at several stations throughout the estuary during two summer and two winter periods. After deployment for at least one tidal cycle we measured the ratio of the two short-lived radium isotopes 223Ra (half-life = 11 d) and 224Ra (3.6 d) to estimate “radium ages” of the water in the bay.During our four seasonal deployments the river discharge ranged from 338 to 1016 m3 s 1. According to our calculations the water turnover time in the bay during these samplings ranged from 6 to 12 days. Age contours in the bay showed that winds and tides as well as river discharge influence the water movement and the residence time of freshwater in the bay. We also calculated the mean age of river water in the bay which was between 5 to 9 days during the studied periods. We suggest that this approach can be used to quantify transport processes of dissolved substances in the bay. For example, soluble nutrient or pollutant transport rates from a point source could be examined. We conclude that the radium age technique is well suited for flushing rate calculations in river dominated shallow estuaries.  相似文献   

11.
基于223Ra和224Ra的桑沟湾海底地下水排放通量   总被引:1,自引:0,他引:1  
海底地下水排放(SGD)是陆地向海洋输送水量和营养物质的重要通道之一,对沿海物质通量及其生物地球化学循环有重要的影响,对生态环境起着不可忽视的作用。本文运用天然放射性同位素223Ra和224Ra示踪估算了我国北方典型养殖基地桑沟湾的海底地下水排放通量。结果表明,海底地下水样尤其是间隙水中Ra活度[224Ra=(968±31)dpm/(100 L),223Ra=(31.4±4.9)dpm/(100 L),n=9]远高于表层海水[224Ra=(38.7±2.0)dpm/(100 L),223Ra=(1.70±0.50)dpm/(100 L), n=21]。假设稳态条件下,考虑Ra的各源、汇项,利用Ra平衡模型,估算出桑沟湾SGD排放通量为(0.23~1.03)×107 m3/d。潮周期内的观测结果显示,涨潮时,水力梯度较小,SGD排放变弱,落潮时,水力梯度较大,导致了相对较多的SGD排放。在一个潮周期间,基于223Ra和224Ra得到的SGD排放通量平均为0.39×107 m3/d。潮汐动力下的SGD排放平均占总SGD排放的61%,因此桑沟湾沿岸的地下水排放主要受潮汐动力的影响,并对海水组成及海陆间物质交换有显著贡献。  相似文献   

12.
海底地下水排放(SGD)是近海海域的一个重要的营养盐来源。本研究借助多种天然镭同位素对春季苏北浅滩海域的SGD及其携带入海的营养盐通量进行量化评估。研究发现:苏北浅滩海域的~(224)Ra、~(223)Ra和~(226)Ra等镭同位素的浓度水平较高,呈现近岸高、远岸低的分布趋势;根据~(224)Ra/~(226)Ra的"表观年龄模型"估算的水龄的分布情况推断,春季该海域表层水体主体流向为东北向,流速约为0.1m/s,这与前人物理海洋数值模拟结果一致;最终利用226Ra质量平衡模型发现海域的SGD通量为(46±29)cm/d,由其携带入海的溶解态无机氮、磷、硅营养盐(DIN、 DIP、 DSi)等的通量分别为(2.6±3.1)×1~09、(3.0±2.5)×10~6和(5.5±4.2)×10~8mol/d。  相似文献   

13.
The biogeochemistry and magnitude of submarine groundwater discharge (SGD) was investigated in one of the largest tidal flat ecosystems worldwide, along the Yellow Sea coast. A representative semi-enclosed embayment located in the south eastern Yellow Sea, Hampyeong Bay, was chosen for this purpose. Groundwater and seawater samples were collected in three seasons (May, July, and September) and analyzed for Ra isotopes, nutrients, and photosynthetic pigments. The biogeochemistry of SGD was strongly influenced by tidal oscillations and seasonal precipitation changes and switched from a brackish, nutrient-enriched regime in May and July to an exclusively saline regime, with lower nutrient concentrations, in September. SGD magnitudes, calculated by using a 226Ra mass balance model, were 0.14 m3 m? 2 d? 1 in May and 0.35 m3 m? 2 d? 1 in September. A nutrient mass balance was established for the two campaigns, which suggests that SGD causes the flushing of substantial amounts of pore water nutrients into this embayment; because of SGD, the embayment acts as a source of dissolved inorganic silicates (DSi) that are transported to the open ocean. Potential C fixation rates derived from this nutrient mass balance were compared with two different models for water-column phytoplankton productivity based on water-column Chl a and local irradiation levels. The Chl a-based models generally showed lower C fixation rates than the nutrient-based mass balance, indicating removal of up to 70% of the nutrients by other primary producers, such as benthic algae. During monsoon season, when benthic algal biomass is high and nutrient fluxes are substantial due to a terrestrial component, SGD — driven benthic primary production could play a significant role in this large tidal flat ecosystem.  相似文献   

14.
为评价胶州湾水体表观年龄和地下水入海通量,2011年9—10月在胶州湾地区分别采集地下水、河水和海水样品,对水样的224Ra和226Ra活度进行测量。基于224Ra和226Ra半衰期的差异,运用224Ra与226Ra的活度比值计算了胶州湾水体表观年龄;采用三端元混合模型计算了胶州湾海水中地下水、河水与湾外海水的混合比例;在水体表观年龄和混合比例的基础上,计算了地下水入海通量。结果表明:研究期间胶州湾水体表观年龄分布范围为3.2—39.4d,平均值为14.7d,呈现从湾顶到湾口年龄逐渐增大的趋势,地下水的平均混合比例是11.0%,地下水的入海通量为7.29×106m3/d,海底地下水排泄速率为3.8cm/d。  相似文献   

15.
The distributions of dissolved organic carbon (DOC), Ba, U, and a suite of naturally occurring radionuclides in the U/Th decay series (222Rn, 223,224,226,228Ra) were studied during high- and low-discharge conditions in the Loxahatchee River estuary, Florida to examine the role of submarine groundwater discharge in estuarine transport. The fresh water endmember of this still relatively pristine estuary may reflect not only river-borne constituents, but also those advected during active groundwater/surface water (hyporheic) exchange. During both discharge conditions, Ba concentrations indicated slight non-conservative mixing. Such Ba excesses could be attributed either to submarine groundwater discharge or particle desorption processes. Estuarine dissolved organic carbon concentrations were highest at salinities closest to zero. Uranium distributions were lowest in the fresh water sites and mixed mostly conservatively with an increase in salinity. Suspended particulate matter (SPM) concentrations were generally lowest (< 5 mg L− 1) close to zero salinity and increased several-fold ( 18 mg L− 1; low discharge) toward the seaward endmember, which may be attributed to dynamic resuspension of bottom sediments within Jupiter Inlet.Surface water-column 222Rn activities were most elevated (> 28 dpm L− 1) at the freshwater endmember of the estuary and appear to identify regions of the river most influenced by the discharge of fresh groundwater. Activities of four naturally occurring isotopes of Ra (223,224,226,228Ra) in this estuary and select adjacent shallow groundwater wells yield mean estuarine water-mass transit times of less than 1 day; these values are in close agreement to those calculated by tidal prism and tidal frequency. Submarine groundwater discharge rates to the Loxahatchee River estuary were calculated using a tidal prism approach, an excess 226Ra mass balance, and an electromagnetic seepage meter. Average SGD rates ranged from 1.0 to 3.8 × 105 m3 d− 1 (20–74 L m− 2 d− 1), depending on river-discharge stage. Such calculated SGD estimates, which must include both a recirculated as well as fresh water component, are in close agreement with results obtained from a first-order watershed mass balance. Average submarine groundwater discharge rates yield NH4+ and PO4− 3 flux estimates to the Loxahatchee River estuary that range from 62.7 to 1063.1 and 69.2 to 378.5 μmol m− 2 d− 1, respectively, depending on river stage. SGD-derived nutrient flux rates are compared to yearly computed riverine total N and total P load estimates.  相似文献   

16.
We observed the origin, behavior, and flux of dissolved organic carbon (DOC), dissolved organic nitrogen (DON), colored dissolved organic matter (CDOM), and dissolved inorganic nitrogen (DIN) in the subterranean estuary of a volcanic island, Jeju, Korea. The sampling of surface seawater and coastal groundwater was conducted in Hwasun Bay, Jeju, in three sampling campaigns (October 2010, January 2011, and June 2011). We observed conservative mixing of these components in this subterranean environment for a salinity range from 0 to 32. The fresh groundwater was characterized by relatively high DON, DIN, and CDOM, while the marine groundwater showed relatively high DOC. The DON and DIN fluxes through submarine groundwater discharge (SGD) in the groundwater of Hwasun Bay were estimated to be 1.3 × 105 and 2.9 × 105 mol d 1, respectively. In the seawater of Hwasun Bay, the groundwater-origin DON was almost conservative while about 91% of the groundwater-origin DIN was removed perhaps due to biological production. The DON flux from the entire Jeju was estimated to be 7.9 × 108 mol yr 1, which is comparable to some of the world's large rivers. Thus, our study highlights that DON flux through SGD is potentially important for delivery of organic nitrogen to further offshore while DIN is readily utilized by marine plankton in near-shore waters under N-limited conditions.  相似文献   

17.
Submarine groundwater discharge (SGD) to coastal southern Rhode Island was estimated from measurements of the naturally-occurring radioisotopes 226Ra (t1/2 = 1600 y) and 228Ra (t1/2 = 5.75 y). Surface water and porewater samples were collected quarterly in Winnapaug, Quonochontaug, Ninigret, Green Hill, and Pt. Judith–Potter Ponds, as well as nearly monthly in the surface water of Rhode Island Sound, from January 2002 to August 2003; additional porewater samples were collected in August 2005. Surface water activities ranged from 12–83 dpm 100 L− 1 (60 dpm = 1 Bq) and 21–256 dpm 100 L− 1 for 226Ra and 228Ra, respectively. Porewater 226Ra activities ranged from 16–736 dpm 100 L− 1 (2002–2003) and 95–815 dpm 100 L− 1 (2005), while porewater 228Ra activities ranged from 23–1265 dpm 100 L− 1. Combining these data with a simple box model provided average 226Ra-based submarine groundwater fluxes ranging from 11–159 L m− 2 d− 1 and average 228Ra-derived fluxes of 15–259 L m− 2 d− 1. Seasonal changes in Ra-derived SGD were apparent in all ponds as well as between ponds, with SGD values of 30–472 L m− 2 d− 1 (Winnapaug Pond), 6–20 L m− 2 d− 1 (Quonochontaug Pond), 36–273 L m− 2 d− 1 (Ninigret Pond), 29–76 L m− 2 d− 1 (Green Hill Pond), and 19–83 L m− 2 d− 1 (Pt. Judith–Potter Pond). These Ra-derived fluxes are up to two orders of magnitude higher than results predicted by a numerical model of groundwater flow, estimates of aquifer recharge for the study period, and values published in previous Ra-based SGD studies in Rhode Island. This disparity may result from differences in the type of flow (recirculated seawater versus fresh groundwater) determined using each technique, as well as variability in porewater Ra activity.  相似文献   

18.
The Patos–Mirim Lagoon system along the southern coast of Brazil is linked to the coastal ocean by a narrow mouth and by groundwater transport through a Holocene barrier. Although other groundwater systems are apparently active in this region, the hydraulic head of the lagoon, the largest in South America, drives groundwater transport to the coast. Water levels in wells placed in the barrier respond to changing water level in the lagoon. The wells also provide a measure of the nutrient concentrations of groundwater flowing toward the ocean. Additionally, temporary well points were used to obtain nutrient samples in groundwater on the beach face of the barrier. These samples revealed a subterranean freshwater–seawater mixing zone over a ca. 240 km shoreline. Previously published results of radium isotopic analyses of groundwater and of surface water from cross-shelf transects were used to estimate a water flux of submarine groundwater discharge (SGD) to nearshore surface waters of 8.5 × 107 m3/day. Using this SGD and the nutrient concentrations in different compartments, nutrient fluxes between groundwater and surface water were estimated. Fluxes were computed using both average and median reservoir (i.e. groundwater and surface water) nutrient concentrations. The SGD total dissolved inorganic nitrogen, phosphate and silicate fluxes (2.42, 0.52, 5.92 × 106 mol day− 1, respectively) may represent as much as 55% (total N) to 10% (Si) of the nutrient fluxes to the adjacent shelf environment. Assuming nitrogen limitation, SGD may be capable of supporting a production rate of ca. 3000 g C m2 year− 1in the nearshore surf zone in this region.  相似文献   

19.
Measurements of submarine groundwater discharge (SGD) along the South American coast and over fractured rock aquifers are rare. The rate and distribution of SGD was measured using three types of vented benthic chambers on the floor of Flamengo Bay located at the southeast coast of Brazil. Discharge rates were found up to almost 400 cm day−1, although typically less than 100 cm d−1. Large variations in SGD rates were seen over distances of a few meters which are attributed to the geomorphologic features of the fracture rock aquifer underlying a thin blanket of coastal sediments; clustering of fractures and the topography of the rock–sediment interface might be focusing or dispersing the discharge of groundwater. SGD was modulated by the tides with the highest values occurring at times of low tide, but the interaction was non-linear and, the correlation was weak at tidal ranges less than 1 m. The effect was masked by devices that integrated the SGD, but detected on continuously recording devices.  相似文献   

20.
We examined the contribution of submarine groundwater discharge (SGD) to nutrient budgets in Hwasun Bay, Jeju Island, Korea in August 2009, October 2014, and May 2015. The concentrations of dissolved inorganic nitrogen (DIN) and dissolved inorganic phosphorus (DIP) in fresh groundwater were in the range of 285?716 μM and 2.3?3.2 μM, respectively, which were each 1?2 orders of magnitude higher than those in the bay seawater. The outer-bay seawater flowing into the bay was oligotrophic (2.9 ± 1.9 μM for DIN and 0.2 ± 0.3 μM for DIP). Nutrient budget calculations were performed for each season by accounting for submarine fresh groundwater discharge (SFGD) and water residence times. In August 2009 (DIN = 1.8 μM and DIN:DIP ratio = 4.6 for the outerbay water), DIN inputs from SFGD accounted for approximately 40% of the DIN inventory in the bay seawater. In October 2014 (DIN = 1.1 μM and DIP < 0.05 μM for the outer-bay water), DIP from SFGD accounted for approximately 100% of the DIP inventory in the bay seawater. In May 2015, mean concentrations of DIN and DIP in the bay seawater were 8.6 ± 12 μM and 0.11 ± 0.04 μM, respectively, with conservative behaviors in the bay seawater in association with excessive groundwater inputs. These results imply that SGD plays a critical but different role in nutrient budgets and stoichiometry in coastal waters off a volcanic island depending on open-ocean nutrient conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号