首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 140 毫秒
1.
本研究调查了秋季红沿河核电站海域镭、氡同位素的活度水平及分布情况,结合镭同位素表观年龄模型计算该海域的水体年龄,进而得出研究区域的水体运移方向,初步探讨了水母丰度分布与水体运移的相关关系。得到结论如下:(1)红沿河核电站海域表层水体中224Ra、226Ra及222Rn的活度水平分别为2.9~62.4 dpm/(100 L),11.9~57.4 dpm/(100 L)及0.1~1.3 dpm/L,镭同位素活度呈现出近岸高、远岸低的分布趋势,氡同位素的分布则更大程度上受水温控制;(2)通过224Ra/226Ra表观年龄模型计算得出红沿河海域表层水体年龄范围介于0~16 d,平均年龄(10.9±3.6) d,水体主体流向为北偏东方向,流速为7.2 cm/s;(3)水母丰度分布与水体流向呈现出较为一致的对应关系,在主体流向方向上,水体年龄较大的海域水母丰度最高。  相似文献   

2.
钦州湾河流沉积物中镭的解吸行为   总被引:1,自引:0,他引:1  
放射性镭同位素在海底地下水排放(SGD)等海洋物质变化过程的研究中具有优良的示踪作用,估算SGD通量时需要计算河流悬浮颗粒物的解吸通量。因此,对河流沉积物/悬浮颗粒物中镭同位素解吸行为的研究不可或缺,而目前对于粒度较小范围内镭同位素的解吸特征及其机理的研究依然不足。本文选用钦州湾河流沉积物,通过室内实验探究粒度和盐度对沉积物中镭同位素解吸行为的影响。结果表明,在沉积物平均粒径0.9~136.0 μm范围内,随着粒径增大,沉积物中镭同位素在海水(盐度为33.9)中解吸活度逐渐减小,且变化趋势也逐渐变缓,平均粒径大于43.7 μm后,解吸量几乎不变;在海水盐度4.9~33.9范围内,随着盐度增大,沉积物中镭同位素解吸活度逐渐增大,盐度大于24.9后,解吸量趋于不变。本文创新性地建立了沉积物表面分形结构的镭解吸理论模型,拟合得到钦州湾河流沉积物表面最大可交换态224Ra、226Ra和228Ra活度分别为1.13 dpm/g、0.17 dpm/g和0.85 dpm/g,以干重计;沉积物中224Ra、226Ra和228Ra最大解吸比分别为30%、7%和18%。钦州湾河流沉积物颗粒表面最大可交换态224Ra和226Ra活度分别处于全球中等水平和较低水平,而其最大解吸比分别处于全球较高水平和较低水平。本研究结果有助于更好地理解镭同位素的解吸行为,以帮助更准确地估算SGD通量。  相似文献   

3.
基于223Ra和224Ra的桑沟湾海底地下水排放通量   总被引:1,自引:0,他引:1  
海底地下水排放(SGD)是陆地向海洋输送水量和营养物质的重要通道之一,对沿海物质通量及其生物地球化学循环有重要的影响,对生态环境起着不可忽视的作用。本文运用天然放射性同位素223Ra和224Ra示踪估算了我国北方典型养殖基地桑沟湾的海底地下水排放通量。结果表明,海底地下水样尤其是间隙水中Ra活度[224Ra=(968±31)dpm/(100 L),223Ra=(31.4±4.9)dpm/(100 L),n=9]远高于表层海水[224Ra=(38.7±2.0)dpm/(100 L),223Ra=(1.70±0.50)dpm/(100 L), n=21]。假设稳态条件下,考虑Ra的各源、汇项,利用Ra平衡模型,估算出桑沟湾SGD排放通量为(0.23~1.03)×107 m3/d。潮周期内的观测结果显示,涨潮时,水力梯度较小,SGD排放变弱,落潮时,水力梯度较大,导致了相对较多的SGD排放。在一个潮周期间,基于223Ra和224Ra得到的SGD排放通量平均为0.39×107 m3/d。潮汐动力下的SGD排放平均占总SGD排放的61%,因此桑沟湾沿岸的地下水排放主要受潮汐动力的影响,并对海水组成及海陆间物质交换有显著贡献。  相似文献   

4.
北黄海水体的226Ra和228Ra   总被引:1,自引:0,他引:1  
王芬芬  门武  刘广山 《台湾海峡》2010,29(2):265-276
用锰纤维富集-射气法测定了北黄海海水中的镭同位素226Ra和228Ra,研究了该海域水体中镭同位素的含量和分布.研究结果表明北黄海水体夏季226Ra的比活度为1.80~4.35 Bq/m3,平均值为3.06 Bq/m3;冬季226Ra的比活度为2.08~5.20 Bq/m3,平均值为3.28 Bq/m3.北黄海夏季228Ra的比活度为3.85~25.60 Bq/m3,平均值为10.60 Bq/m3;冬季228Ra的比活度为3.14~15.60Bq/m3,平均值为7.66 Bq/m3.该数据范围和中国近海其他海域、孟加拉湾、泰国昭披耶河口、濑户内海等海域相近.北黄海东北部海域,渤海海峡靠近山东半岛的海区和中北部海区表层镭同位素活度较高.C1断面镭同位素的分布特征从镭同位素的方面证实了渤海海峡水交换表现为北进南出特征这一结论的正确性.226Ra和228Ra的垂直分布较为复杂,大部分站位呈现出底层活度变高的趋势,其他少数站位呈现出中间层活度高的分布特征,不同来源的镭同位素输入至该海域形成了这样的分布特征.  相似文献   

5.
用锰纤维富集-射气法测定了北黄海海水中的镭同位素226Ra和228Ra,研究了该海域水体中镭同位素的含量和分布.研究结果表明北黄海水体夏季226Ra的比活度为1.80~4.35 Bq/m3,平均值为3.06 Bq/m3;冬季226Ra的比活度为2.08~5.20 Bq/m3,平均值为3.28 Bq/m3.北黄海夏季228Ra的比活度为3.85~25.60 Bq/m3,平均值为10.60 Bq/m3;冬季228Ra的比活度为3.14~15.60Bq/m3,平均值为7.66 Bq/m3.该数据范围和中国近海其他海域、孟加拉湾、泰国昭披耶河口、濑户内海等海域相近.北黄海东北部海域,渤海海峡靠近山东半岛的海区和中北部海区表层镭同位素活度较高.C1断面镭同位素的分布特征从镭同位素的方面证实了渤海海峡水交换表现为北进南出特征这一结论的正确性.226Ra和228Ra的垂直分布较为复杂,大部分站位呈现出底层活度变高的趋势,其他少数站位呈现出中间层活度高的分布特征,不同来源的镭同位素输入至该海域形成了这样的分布特征.  相似文献   

6.
In certain regions,submarine groundwater discharge(SGD) into the ocean plays a significant role in coastal material fluxes and their biogeochemical cycle;therefore,the impact of SGD on the ecosystem cannot be ignored.In this study,SGD was estimated using naturally occurring radium isotopes(~(223)Ra and ~(224)Ra) in a subtropical estuary along the Beibu Gulf,China.The results showed that the Ra activities of submarine groundwater were approximately 10 times higher than those of surface water.By assuming a steady state and using an Ra mass balance model,the SGD flux in May 2018 was estimated to be 5.98×10~6 m~3/d and 3.60×10~6 m~3/d based on ~(224)Ra and ~(223)Ra,respectively.At the same time,the activities of Ra isotopes fluctuated within a tidal cycle;that is,a lower activity was observed at high tide and a higher activity was seen at low tide.Based on these variations,the average tidal pumping fluxes of SGD were 1.15×10~6 m~3/d and 2.44×10~6 m~3/d with ~(224)Ra and ~(223)Ra,respectively.Tidaldriven SGD accounts for 24%-51% of the total SGD.Therefore,tidal pumping is an important driving force of the SGD in the Dafengjiang River(DFJR) Estuary.Furthermore,the SGD of the DFJR Estuary in the coastal zone contributes significantly to the seawater composition of the Beibu Gulf and the material exchange between land and sea.  相似文献   

7.
海底地下水排放对典型红树林蓝碳收支的影响   总被引:1,自引:0,他引:1  
海底地下水排放(Submarine Groundwater Discharge,SGD)是陆海相互作用的重要表现形式之一,其携带的物质对近岸海域生源要素的收支有重要影响。本文利用222Rn示踪技术估算了我国典型红树林海湾—广西珍珠湾在2019年枯季(1月)SGD携带的碳通量。调查发现,地下水中222Rn活度、溶解无机碳(DIC)和溶解有机碳(DOC)的平均浓度均高于河水和湾内表层海水。利用222Rn质量平衡模型估算得到珍珠湾SGD速率为(0.36±0.36) m/d,SGD输入到珍珠湾的DIC和DOC通量分别为(2.41±2.63)×107 mol/d和(1.96±2.20)×106 mol/d。珍珠湾溶解碳的源汇收支表明,SGD携带的DIC和DOC分别占珍珠湾总DIC和总DOC来源的91%和89%。因此,SGD携带的DIC和DOC是珍珠湾DIC和DOC的主要来源,是海岸带蓝碳收支和生物地球化学循环过程中的重要组成。  相似文献   

8.
中国近岸海域沉积物226Ra的分布特征   总被引:4,自引:0,他引:4  
本文对中国7个近岸海域沉积物226Ra的分布进行了研究,结果表明珠江口表层沉积物的226Ra含量较高,其余6个近岸海域(黄河口、胶州湾、长江口、杭州湾、厦门湾、大亚湾)的226Ra含量相近。226Ra含量值显示了研究海域沉积物的“亲陆性”,但不同站位226Ra含量受物源区域、水动力作用及其他环境理化诸因素的影响。226Ra在况积物盐酸沥取相的放射性比度及总量均大于残渣相的相应数值,说明陆源物质在风化及向海迁移过程中绝大部分镭进入到水相中。元洪码头附近海域岩心中226Ra的垂直分布表明,镭发生了沉积后的再迁移。所有各相的活度比(238Ra/226U)a.r、(226Ra/230Th)a.r.均小于1.0,进一步证明中国近岸沉积物普遍存在226Ra-238U、226Ra-230Th不平衡现象。  相似文献   

9.
白令海表层营养盐水平输送的镭-228示踪   总被引:1,自引:1,他引:0       下载免费PDF全文
对白令海表层海水228Ra的分析表明,白令海表层海水228Ra比活度从低于检测限变化至0.81 Bq/m3,低于西北冰洋陆架区的报道值。表层水228Ra比活度和228Ra/226Ra)A.R.的空间分布均呈现由西南部中心海盆向东北部陆架区增加的趋势。由228Ra/226Ra)A.R.和盐度的关系揭示出白令海环流、白令海陆坡流和阿拉斯加沿岸流对228Ra和228Ra/226Ra)A.R.分布有明显影响。运用一维稳态扩散模型计算出白令海由中心海盆向东北部陆架方向上水体混合的水平涡动扩散系数为1.9×108 m2/d。结合海盆-陆架界面营养盐的水平浓度梯度,估算得硝酸盐、活性磷酸盐和活性硅酸盐由白令海中心海盆向东北部陆架区的水平输送通量,该通量对白令海东北部陆架区新生产力的贡献很小,其他途径输送的营养盐更为重要。  相似文献   

10.
白令海峡水团来源的镭同位素示踪   总被引:4,自引:3,他引:1       下载免费PDF全文
对白令海峡64.3°N纬向断面镭同位素的研究表明,水体中226Ra比活度、228Ra比活度和228Ra/226Ra)A.R.存在明显的纬向变化,反映出太平洋与北冰洋水体交换的多种路径.根据温度、盐度和镭同位素的水平与垂直分布,太平洋水进入北冰洋的路径可能主要有3支,分别为白令海峡西侧的阿拉德水、白令海峡东侧的阿拉斯加沿...  相似文献   

11.
In order to estimate submarine groundwater discharge (SGD) and SGD-driven nutrient fluxes, we measured the concentrations of nutrients, 224Ra, and 226Ra in seawater, river water, and coastal groundwater of Yeongil Bay (in the southeastern coast of Korea) in August 2004 and February 2005. The bottom sediments over the shallow areas of this bay are composed mainly of coarse sands. Large excess concentrations of 224Ra, 226Ra, and Si supplied from SGD were observed in August 2004, while these excess concentrations were not apparent in February 2005. Based on the mass balance for 224Ra, 226Ra, and Si, which showed conservative mixing behavior in seawater, SGD was estimated to be approximately 6 × 106 m3 day− 1 (seepage rate = 0.2 m day− 1) in shallow areas (< 9 m water depth) in August 2004, which is much higher than the SGD level typically found in other coastal regions worldwide. During the summer period, SGD-driven nutrients in this bay contributed approximately 98%, 12%, and 76% of the total inputs for dissolved inorganic nitrogen (DIN), phosphorus (DIP), and silicate (DSi), respectively. Our study implies that the ecosystem in this highly permeable bed coastal zone is influenced strongly by SGD during summer, while such influences are negligible in winter.  相似文献   

12.
Submarine groundwater discharge (SGD) is now recognized as an important pathway for water and chemical species fluxes to the coastal ocean. In order to determinate SGD to the Gulf of Lion (France), we measured the activities of 226Ra and 228Ra by thermal ionization mass spectrometry (TIMS) in coastal waters and in the deep aquifer waters of the Rhone deltaic plain after pre-concentration of radium by MnO2. Compared to conventional counting techniques, TIMS requires lower quantities of water for the analyses, and leads to higher analytical precision. Radium isotopes were thus measured on 0.25–2 L water samples containing as little as 20 fg of 226Ra and 0.2–0.4 fg of 228Ra with precision equal to 2%. We demonstrate that coastal surface waters samples are enriched in 226Ra and 228Ra compared to the samples further offshore. The high precision radium measurements display a small but significant 226Ra and 228Ra enrichment within a strip of circa 30 km from the coast. Radium activities decrease beyond this region, entrained in the northern current along the shelf break or controlled by eddy diffusion. The radium excess in the first 30 km cannot be accounted for by the river nor by the early diagenesis. The primary source of the radium enrichment must therefore be ascribed to the discharge of submarine groundwater. Using a mass-balance model, we estimated the advective fluxes of 226Ra and 228Ra through SGD to be 5.2 × 1010 and 21 × 1010 dpm/d respectively. The 226Ra activities measured in the groundwater from the Rhone deltaic plain aquifer are comparable to those from other coastal groundwater studies throughout the world. By contrast, 228Ra activities are higher by up to one order of magnitude. Taking those groundwater radium activities as typical of the submarine groundwater end-member, a minimum volume of 0.24–4.5 × 1010 l/d is required to support the excess radium isotopes on the inner shelf. This has to be compared with the average rivers water runoff of 15.4 × 1010 l/d during the study period (1.6 to 29% of the river flow).  相似文献   

13.
The input of groundwater-borne nutrients to Adelaide's (South Australia) coastal zone is not well known but could contribute to the ongoing decline of seagrass in the area. As a component of the Adelaide Coastal Waters Study (ACWS), the potential for using the radium quartet (223Ra, 224Ra, 226Ra and 228Ra) and 222Rn to evaluate submarine groundwater discharge (SGD) was evaluated. Potential isotopic signatures for SGD were assessed by sampling groundwater from three regional aquifers potentially contributing SGD to the ACWS area. In addition, intertidal groundwater was sampled at two sand beach sites. In general, the regional groundwaters were enriched in long-lived Ra isotopes (226Ra and 228Ra) and in 222Rn relative to intertidal groundwater. Radium activity (but not 222Rn activity) was positively correlated to salinity in groundwater from one of the regional aquifers and in intertidal groundwater. Radium isotope ratios (223Ra/226Ra, 224Ra/226Ra and 228Ra/226Ra) were less variable than individual Ra isotope activities within potential SGD sources. Recirculated seawater (estimated from the intertidal groundwater samples with seawater-like salinities) also had distinctly higher Ra isotope ratios than the regional groundwaters. The activities for all radioisotopes were relatively low in seawater. The activity of the short-lived 223Ra and 224Ra were highest at the shoreline and declined exponentially with distance offshore. In contrast, 228Ra and 226Ra activities had a weak linear declining trend with distance offshore. Rn-222 activity was at or near background in all seawater samples. The pattern of enrichment in short-lived Ra isotopes and the lack of 222Rn in seawater suggest that seawater recirculation is the main contributor to SGD in the ACWS area. Preliminary modeling of the offshore flux of 228Ra and 226Ra suggest that the SGD flux to the ACWS area ranges between 0.2 and 3 · 10− 3 m3 (m of shoreline)− 1 s− 1.  相似文献   

14.
Multiple tracers of groundwater input (salinity, Si, 223Ra, 224Ra, and 226Ra) were used together to determine the magnitude, character (meteoric versus seawater), and nutrient contribution associated with submarine groundwater discharge across the leeward shores of the Hawai'ian Islands Maui, Moloka'i, and Hawai'i. Tracer abundances were elevated in the unconfined coastal aquifer and the nearshore zone, decreasing to low levels offshore, indicative of groundwater discharge (near-fresh, brackish, or saline) at all locations. At several sites, we detected evidence of fresh and saline SGD occurring simultaneously. Conservative estimates of SGD fluxes ranged widely, from 0.02–0.65 m3 m− 2 d− 1at the various sites. Groundwater nutrient fluxes of 0.04–40 mmol N m− 2 d− 1 and 0.01–1.6 mmol P m− 2 d− 1 represent a major source of new nutrients to coastal ecosystems along these coasts. Nutrient additions were typically greatest at locations with a substantial meteoric component in groundwater, but the recirculation of seawater through the aquifer may provide a means of transferring terrestrially-derived nutrients to the coastal zone at several sites.  相似文献   

15.
Activities of the naturally occurring radium nuclides 228Ra, 226Ra, 224Ra and 223Ra were determined in waters of the open German Bight and adjacent nearshore areas in the North Sea, in order to explore the potential use of radium isotopes as natural tracers of land–ocean interaction in an environment characterised by extensive tidal flats, as well as riverine and groundwater influx. Data collected at various tidal phases from the Weser Estuary (228Ra: 46.3 ± 4.6; 226Ra: 17.1 ± 1.1; 224Ra: 26.1 ± 8.2 to 36.5 ± 6.1; 223Ra: 1.8 ± 0.1 to 4.0 ± 0.4), tidal flats near Sahlenburg (228Ra: 39.3 ± 3.8 to 46.0 ± 4.5; 226Ra: 15.5 ± 1.5 to 16.5 ± 1.7; 224Ra: 34.3 ± 2.2 to 85.3 ± 6.3; 223Ra: 3.6 ± 0.5 to 8.0 ± 1.2), freshwater seeps on tidal flats near Sahlenburg (228Ra: 42.1 ± 4.1; 226Ra: 21.3 ± 2.2; 224Ra: 5.1 ± 0.9; 223Ra: 2.6 ± 1.3) and also in permanently inundated parts of the North Sea (228Ra: 23.0 ± 2.3 to 28.2 ± 2.8; 226Ra: 8.2 ± 0.8 to 11.8 ± 1.2; 224Ra: 3.1 ± 1.0 to 10.1 ± 0.9; 223Ra: 0.1 ± 0.02 to 0.9 ± 0.05; units: disintegrations per minute per 100 kg water sample) reveal that, except for the fresh groundwater, the potential end-members of nearshore water mass mixing have quite similar radium signatures, excluding a simple discrimination between the sources. However, the decreasing activities of the short-lived 224Ra and 223Ra isotopes recorded towards the island of Helgoland in the central German Bight show a potential to constrain fluxes of land-derived material to the open North Sea. The largest source for all radium isotopes is generally found on the vast tidal flats and in the Weser Estuary. Future work could meaningfully combine this so-called radium quartet approach with investigations of radon activity. Indeed, preliminary data from a tidal flat site with fresh groundwater seepage reveal a 222Rn signal that is clearly lower in seawater.  相似文献   

16.
There is increasing evidence that submarine groundwater discharge (SGD) in many areas represents a major source of dissolved chemical constituents to the coastal ocean. In Great South Bay, NY, previous studies have shown that the discharge of nutrients with SGD may cause harmful algal blooms. This study estimates SGD to Great South Bay during August 2006 by performing a mass balance for each of the dissolved Ra isotopes (224Ra, 223Ra, 228Ra, 226Ra). The budget indicates a major unknown source (between 30 and 60% of the total input) of Ra to the bay. This imbalance can be resolved by a flux of Ra-enriched groundwater on the order of 3.5–4.5 × 109 L d− 1, depending on the Ra isotope. The Ra-estimated SGD rates compare well with those previously estimated by models of flow that decreases exponentially away from shore. Compared to previous reports of fresh groundwater discharge to the bay, the Ra-estimated discharge must comprise approximately 90% recirculated seawater. The good agreement between Ra- and model-estimated flow rates indicates that the primary SGD endmember may be best sampled at shallow depths in the sediments a short distance bayward of the low tide line.  相似文献   

17.
The four naturally-occurring radium isotopes (223Ra, 224Ra, 226Ra and 228Ra) were used to estimate the submarine groundwater discharge (SGD) in the Isola La Cura marsh area in the northern Venice Lagoon (Italy). By determining the radium contributors to the study area (river, coastal ocean and sediments) the radium excess in the lagoon water was quantified through a mass balance model. This radium excess is attributed to a submarine groundwater discharge source and represents the most important input of radium. Possible endmembers were considered from analysis of groundwater samples (subtidal and marsh piezometers, marsh wells and seepage meters) that were enriched in Ra by one to two orders of magnitude relative to surface waters. In particular, a permeable layer at 80 cm depth in the surrounding marsh is considered to be representative of the most likely SGD source, although similar radium activities were measured in other subtidal porewater samples collected in the Isola La Cura area. The estimated SGD flux to the study area ranged from 1 · 109 to 6 · 109 L·d− 1, the same order of magnitude as the overall riverine input to the lagoon (3 · 109 L·d− 1). A major fraction of this SGD flux is likely recirculated seawater, as evidenced by the endmember salinity. The water residence time of 2 days was estimated by both using the shortest-lived radium isotope and estimating the volume of water exchanged between the lagoon and the open sea during a tidal cycle (tidal prism approach). This SGD flux could be used to estimate the input of other chemical species (metals, nutrients, etc.) via SGD which might affect the Venice Lagoon ecosystem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号