首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 156 毫秒
1.
投加粉末活性炭对MBR运行性能的影响   总被引:4,自引:0,他引:4  
试验研究比较了在相同的进水和运行条件下,反应器1(投加粉末活性炭,投加量为12.3 g,使其质量浓度达到1 100 mg/L)和反应器2(未投加粉末活性炭)的膜透水性及对污染物的去除效果,并分析了粉末活性炭可以提高膜过滤性能的相关机理。试验结果表明:反应器1的膜通量衰减速率明显小于反应器2;投加粉末活性炭改变了混合液的性质,也大大降低了混合液中胞外聚合物和微细胶体的含量,从而减缓了膜通量的下降速度,可以使系统长时间地以相对高的膜通量运行。  相似文献   

2.
丁尚起  王润华 《地下水》2004,26(2):112-114
通过对生活污水处理方法的介绍,说明MBR膜生物反应器法的优点,并对各种类型膜生物反应器的优缺点进行分析,通过实例说明MBR膜生物反应器在生活污水回用应用于中水方面的价值.  相似文献   

3.
Fenton氧化膜-生物反应器出水中丙烯腈的实验研究   总被引:4,自引:0,他引:4  
采用膜-生物反应器和Fenton氧化组合工艺对丙烯腈废水进行处理。从GC/MS测量结果来看,膜-生物反应器出水中主要物质为2,6双(二甲基-乙基)-4-酚、苯二甲酸和硝基苯二甲酸,均为生物难降解有机物,使出水不能达标。后续Fenton氧化工艺处理膜生物反应器出水,可以使COD含量等指标达到所要求的排放标准。经过膜-生物处理与Fenton法结合的优化工艺,COD去除率达到80%~88%,去除率达到98%,出水水质可达排放标准。Fenton氧化工艺的最佳工艺条件为:pH值为3.4,硫酸亚铁的投加量为700mg/L,双氧水的投加量为600mg/L。  相似文献   

4.
探讨了SBR和PAC-SBR反应器处理盐酸林可霉素原料液生产废水过程中活性污泥特征的变化.随着废水投加量的增加,PAC-SBR反应器的污泥性能始终优于SBR反应器,但是由于盐酸林可霉素原料液生产废水对生物有较强的抑制作用,PAC-SBR反应器和SBR反应器中污泥的活性均发生恶化,COD去除率已明显下降,单独采用SBR或PAC-SBR法处理已难以达到排放标准,必须进行工艺的组合.PAC-SBR反应器较SBR反应器在污泥性质及处理效率上均有一定的改善,对处理盐酸林可霉素原料药生产废水有一定的优势.  相似文献   

5.
为优化高负荷生物絮凝-膜反应器(HLB-MR)的工艺参数,提高其资源化城市污水的效能,采用平行对比实验,考察了不同固体停留时间(tSR)条件下反应器的有机物去除效率、生物絮凝效果、有机物回收效果和膜污染情况。结果表明:在tSR分别为0.2、0.6、1.0 d时,HLB-MR反应器有机物去除效率均在85%以上,其出水化学需氧量(COD)质量浓度均保持在30 mg/L左右;反应器内的生物絮凝效果随着tSR的延长而增强,其胶体COD絮凝效率从tSR为0.2 d时的66%增加到tSR为1.0 d时的95%,与此同时,有机物的矿化损失率也逐渐增加,从tSR为0.2 d时的6.9%增加到tSR为1.0 d时的10.5%,总COD的回收率逐渐降低;反应器内浓缩液的膜污染潜势随着tSR的延长逐渐缓解,这与较长tSR条件下反应器内胞外聚合物(EPS)产量较高、生物絮凝效果较好、微细颗粒(0~1 μm)的颗粒浓度较低有关。经过综合对比分析,0.6 d为反应器较优的tSR参数,在该条件下,胶体COD的絮凝效率高达90%,膜污染程度较轻;总COD的矿化损失率低至7.4%,总COD的回收率(忽略膜清洗时有机物损失)可高达80%以上。  相似文献   

6.
膜生物反应器处理难降解废水的特性研究   总被引:3,自引:3,他引:0  
膜生物反应器与生物接触氧化法处理难降解废水的对比研究表明,在相同的运行条件下,膜生物反应器比生物接触氧化法具有更稳定的出水水质,其平均出水CODcr去除率达到88.41%,比接触氧化法提高了近30%;其平均色度去除率达到85.27%,相比接触氧化法,提高了近30%。通过出水分子量组成分析发现,膜出水以分子量介于3 000和10 000之间的物质为主,占总数的88.36%,接触氧化以分子量大于10 000的物质为主,占总物质的72.04%,介于3 000和10 000之间的仅占9.76%。  相似文献   

7.
胞外聚合物对膜生物反应器运行性能的影响   总被引:3,自引:1,他引:3  
膜生物反应器处理污水过程中,依据胞外聚合物(EPS)、蛋白质、多糖、粘度等参数随时间的变化趋势以及对膜通量的影响,求出上述参数及蛋白质/多糖的比值与膜通量间的相关系数分别为0.28、0.57、0.38、0.14、0.70。结果表明:蛋白质/多糖的比值与膜通量的衰减速度两者相关系数最大。  相似文献   

8.
分析了移动床生物膜反应器(MBBR)的工艺原理及目前研究存在的缺陷,提出MBBR的挂膜过程对反应器的启动时间、生物相及废水处理效果有重要的影响。生物强化技术可以增强对特定污染物的降解能力,改善原有生物处理体系对难降解有机物的去除效能。在简介生物强化技术作用机制及影响因素的基础上,探讨将生物强化技术应用于MBBR启动过程中的必要性和可能性,对提高污水处理能力具有一定的参考价值,可以带来良好的经济和环境效益。  相似文献   

9.
完整极性膜脂作为活的微生物细胞的化学标志物,能够反映海洋沉积物中现存微生物群落结构和生物量等信息.与生物学方法相比,完整极性膜脂分析技术具有无需培养、快速和普适性等特点.综述了海洋沉积物中细菌和古菌的细胞膜完整极性膜脂的组成特点及其在生物地球化学和微生物生态学等研究中的应用,重点评述了在生物地球化学循环中有特殊作用的微生物,如厌氧氨氧化细菌、甲烷氧化古菌、氨氧化古菌、具有四醚膜脂结构的海洋泉古菌等,或者是一些特殊生态系统,如冷泉、海底深部生物圈等研究中完整极性膜脂应用的进展.还简要介绍了完整极性膜脂的分析方法,并对其应用前景进行了展望.  相似文献   

10.
研究高铝粉煤灰特性并加以高附加值利用,是加快固体废物资源化利用的一个重要方面.实验采用激光粒度分析、XRD、FESEM-EDX等手段,研究了准格尔电厂高铝粉煤灰的物理、化学特性以及粉煤灰的矿物组成.在此基础上按照正交实验的方法,用准格尔电厂高铝粉煤灰直接制备了M50莫来石,并用高铝粉煤灰与少量工业氧化铝混合合成了M60和M70莫来石,所得结论如下:  相似文献   

11.
The properties of activated sludge are very important in a membrane bioreactor (MBR) in terms of membrane fouling. The most important parameters affecting the membrane fouling can be listed as mixed liquor suspended solid (MLSS) concentration, soluble microbial products (SMPs), extracellular polymeric substances (EPSs), floc size, aeration and viscosity of both supernatant and activated sludge. The COD/TKN ratio also affects the physical properties of sludge in MBR system. This study aimed to investigate the effect of chemical oxygen demand-to-total Kjeldahl nitrogen (COD/TKN) ratio of feed wastewater treated in an MBR on biological components of activated sludge. The activated sludge characteristics were determined by quantitative analyses such as MLSS, EPS, SMP, floc size distribution, zeta potential, relative hydrophobicity and capillary suction time in a submerged MBR treating simulated wastewater having different COD/TKN ratios (16, 56 and 107). The COD and TKN removal efficiencies were found to be almost equal in the sMBRs having different COD/TKN ratios. However, it was seen that the EPS content and SMP concentration in the supernatant increased with increasing COD/TKN ratio. The results indicated that the COD/TKN ratio of feed should be considered as an effective parameter on activated sludge properties in sMBR systems.  相似文献   

12.
In the present study, two bench-scale anaerobic/ anoxic/ oxic submerged membrane bioreactors were used to study the effect of thermochemical sludge disintegration system on the excess sludge production. Among the two membrane bioreactors, one was named experimental membrane bioreactor and another one was named as control membrane bioreactor, where a part of the mixed liquor was treated with thermo chemical and was returned back to membrane bioreactor. Thermo chemical digestion of sludge was carried out at fixed pH (11) and temperature (75 °C) for 24 % chemical oxygen demand solution. The other one was named control membrane bioreactor and was used as control. The reactors were operated at three different mixed liquor suspended solids range starting from 7500 mg/L to 15000 mg/L. Both of membrane bioreactors were operated at a flux of 17 LMH over a period of 240 days. The designed flux was increased stepwise over a period of one week. During the 240 days of reactor operation, both of membrane bioreactors maintained relatively constant transmembrane pressure. The sludge digestion had no impact on chemical oxygen demand removal efficiency of the reactor. The results based on the study indicated that the proposed process configuration has potential to reduce the excess sludge production as well as it didn’t deteriorate the treated water quality.  相似文献   

13.
Albumen wastewater was treated by Membrane Bio-reactor. Sludge bulking property of Membrane Bio-Reactor was investigated in this study through contrast research. When the sludge bulking appeared, the removal efficiency of COD in Membrane Bio-reactor increased slightly under the function of filamentous bacteria. However, the negative effects of the higher net water-head differential pressures,the higher block rate of membrane pore and the great quantity of filamentous bacteria at the externalsurface presented at the same time. Thus, plenty of methods should be performed to control sludge bulking once it happened in Membrane Bio-reactor.  相似文献   

14.
This review carries out a comparative study of advanced technologies to design, upgrade and rehabilitate wastewater treatment plants. The study analyzed the relevant researches in the last years about the moving bed biofilm reactor process with only attached biomass and with hybrid biomass, which combined attached and suspended growth; both could be coupled with a secondary settling tank or microfiltration/ultrafiltration membrane as a separation system. The physical process of membrane separation improved the organic matter and NH4 +-N removal efficiencies compared with the settling tank. In particular, the pure moving bed biofilm reactor–membrane bioreactor showed average chemical oxygen demand, biochemical oxygen demand on the fifth day and total nitrogen removal efficiencies of 88.32, 90.84 and 60.17%, respectively, and the hybrid moving bed biofilm reactor–membrane bioreactor had mean chemical oxygen demand, biochemical oxygen demand on the fifth day and total nitrogen reduction percentages of 91.18, 97.34 and 68.71%, respectively. Moreover, the hybrid moving bed biofilm reactor–membrane bioreactor showed the best efficiency regarding organic matter removal for low hydraulic retention times, so this system would enable the rehabilitation of activated sludge plants and membrane bioreactors that did not comply with legislation regarding organic matter removal. As the pure moving bed biofilm reactor–membrane bioreactor performed better than the hybrid moving bed biofilm reactor–membrane bioreactor concerning the total nitrogen removal under low hydraulic retention times, this system could be used to adapt wastewater treatment plants whose effluent was flowed into sensitive zones where total nitrogen concentration was restricted. This technology has been reliably used to upgrade overloaded existing conventional activated sludge plants, to treat wastewater coming from textile, petrochemical, pharmaceutical, paper mill or hospital effluents, to treat wastewater containing recalcitrant compounds efficiently, and to treat wastewater with high salinity and/or low and high temperatures.  相似文献   

15.
In Al-Rustamiyah sewage treatment plant in the east of Baghdad city, capital of Iraq, the membrane bioreactor suffering from a severe biofouling problem. The main reason for this problem is inefficient and inadequate aeration process. The objective of this work is to control fouling and to improve the energy efficiency of the submerged membrane bioreactor. Fouling control is achieved by optimizing the two-phase hydrodynamic parameters (air bubble diameter and shear stress), while energy efficiency improved through analysis of flow field. An experimental rig similar to real plant was built, and several operating and design parameters were experimentally tested. The parameters were air flow rate (1–9 L/min), membrane sheets spacing (3, 5, and 7 mm), and air diffuser design (pipe diffuser and disk diffuser). The bubble sizes were measured experimentally using high-speed camera. It was found that larger bubbles were produced at narrow channels between the membrane sheets. Optimization using computational fluid dynamic with ANSYS FLUENT was employed; the results showed that a bubble diameter of 2.5 mm had a slug flow pattern, resulting in better energy saving for a 3 mm space between membrane sheets with a 5 L/min air flow, while maximum shear stress obtained was (4 Pa). Nutrients removal results from synthetic sewage were 97.32, 79.68, and 13% for COD, NH3–N, and PO 4 ?3 , respectively, at 6 days retention time. The results obtained are quite significant in practice because it contributes to improve the efficiency of membrane bioreactor in Al-Rustamiyah sewage treatment plant.  相似文献   

16.
The cross-section and surface structures of wing membranes from the ctenochasmatid pterosaur Beipiaopterus chenianus were observed through a scanning electron microscope (SEM). The results show that the wing membrane contains a high density of blood vessels, implying strong thermoregulatory function, similar to that of a bat wing membrane. This is the first comparison of the microstmctures of pterosaur wing membranes with those of the modem bat. It is inferred that a bat-like physiology exists, at least in relatively small pterosaurs suggesting that these pterosaurs were warm-blooded, active fliers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号