首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Petrographic analysis of hydrocarbon inclusions in reservoirs is the basis and prerequisite for study of hydrocarbon charge history using fluid inclusion analysis.Samples from Silurian reservoirs in the Kongquehe area were studied with microscopy,cathode luminescence and scanning electron microscopy,and the paragenetic sequence of diagenetic events was established.Aqueous and oil inclusions were found in four different occurrences,i.e.,① in healed cracks in detrital quartz grains,② in quartz overgrowths that were formed relatively early in diagenesis,③ in healed cracks crosscutting quartz overgrowths and detrital quartz,and ④ in paragenetically late calcite cements.Solid bitumens were found in intergranular pores and in late fractures,whereas gas inclusions occur in healed cracks crosscutting quartz overgrowths and detrital quartz.The homogenization temperatures of aqueous(Th_(aq)) and oil incluisons(Th_0) within individual fluid inclusion assemblages are very consistent,suggesting that the microthermometric data are reliable.The Th_(aq) values are generally larger than Th_0,indicating the oil charging events took place at significant depths.The results suggest that there were at least two episodes of hydrocarbon charging in the Kongquehe area:the early hydrocarbon charging occurred in late Caledonian,dominated by oil,and the late hydrocarbon charging occurred in the Yanshan-Himalayan,first by oil and then gases.In addition,two episodes of hydrocarbon reservoir adjustment and destruction occurred in the Hercynian and Himalayan,respectively,forming solid bitumen.  相似文献   

2.
Late Palaeozoic deformation in the southern Appalachians is believed to be related to the collisional events that formed Pangaea. The Appalachian foreland fold and thrust belt in Alabama is a region of thin-skinned deformed Palaeozoic sedimentary rocks ranging in age from Early Cambrian to Late Carboniferous, bounded to the northwest by relatively undeformed rocks of the Appalachian Plateau and to the southeast by crystalline thrust sheets containing metasedimentary and metaigneous rocks ranging in age from late Precambrian to Early Devonian. A late Palaeozoic kinematic sequence derived for a part of this region indicates complex spatial and temporal relationships between folding, thrusting, and tectonic level of décollement. Earliest recognized (Carboniferous(?) or younger) compressional deformation in the foreland, observable within the southernmost thrust sheets in the foreland, is a set of large-scale, tight to isoclinal upright folds which preceded thrafing, and may represent the initial wave of compression in the foreland. Stage 2 involved emplacement of low-angle far-traveled thrust sheets which cut Lower Carboniferous rocks and cut progressively to lower tectonic levels to the southwest, terminating with arrival onto the foreland rocks of a low-grade crystalline nappe. Stage 3 involved redeformation of the stage 2 nappe pile by large-scale upright folds oriented approximately parallel to the former thrusts and believed to be related to ramping or imbrication from a deeper décollement in the foreland rocks below. Stage 4 involved renewed low-angle thrusting within the Piedmont rocks, emplacement of a high-grade metamorphic thrust sheet, and decapitation of stage 3 folds. Stage 5 is represented by large-scale cross-folding at a high angle to previous thrust boundaries and fold phases, and may be related to ramping or imbrication on deep décollements within the now mostly buried Ouachita orogen thrust belt to the southwest. Superposed upon these folds are stage 6 high-angle thrust faults with Appalachian trends representing the youngest (Late Carboniferous or younger, structures in the kinematic sequence.  相似文献   

3.
The calcite cement in the Lower Ordovician Majiagou Formation in the Ordos basin in northern China can be subdivided into three groups based on preliminary results of oxygen and carbon isotopes and fluid inclusion microthermometry. Group 1 has low oxygen isotopes (− 14‰ to − 18‰), low Th values (92–103 °C), and low salinities (1.7–4.9 wt.% NaCl equivalent) and is interpreted to have precipitated during early burial from porewater influenced by meteoric water. Group 2 has much higher oxygen isotope values (− 5‰ to − 8‰), which, coupled with the higher Th values (136–151 °C), suggest that the calcite was precipitated from fluids that were significantly enriched in 18O, possibly resulting from fluid–rock reaction during burial. Group 3 occurring along fractures is characterized by high salinities (21–28 wt.% NaCl equivalent) and is interpreted to have been precipitated from locally preserved residual evaporitic brines. The occurrence of primary hydrocarbon inclusions and its low carbon isotopes (− 11‰ to − 15‰) suggest that precipitation of group 3 calcite took place in the presence of hydrocarbons.  相似文献   

4.
The Talate Pb-Zn deposit,located in the east of the NW-SE extending Devonian Kelan volcanic-sedimentary basin of the southern Altaides,occurs in the metamorphic rock series of the upper second lithological section of the lower Devonian lower Kangbutiebao Formation(D_1k_1~2).The Pb-Zn orebodies are stratiform and overprinted by late sulfide—quartz veins.Two distinct mineralization periods were identified:a submarine volcanic sedimentary exhalation period and a metamorphic hydrothermal mineralization period.The metamorphic overprinting period can be further divided into two stages:an early stage characterized by bedding-parallel lentoid quartz veins developed in the chlorite schist and leptite of the ore-bearing horizon,and a late stage represented by pyritechalcopyrite-quartz veins crosscutting chlorite schist and leptite or the massive Pb-Zn ores.Fluid inclusions in the early metamorphic quartz veins are mainly CO_2-H_2O-NaCI and carbonic(CO_2±CH_4±N_2) inclusions with minor aqueous inclusions.The CO_2-H_2O-NaCl inclusions have homogenization temperatures of 294-368℃,T_(m,CO2) of-62.6 to-60.5℃,T_(h,CO2) of 7.7 to 29.6℃(homogenized into liquid),and salinities of 5.5-7.4 wt%NaCl eqv.The carbonic inclusions have T_(m,CO2)of-60.1 to-58.5℃,and T_(h,Co2) of-4.2 to 20.6℃.Fluid inclusions in late sulfide quartz veins are also dominated by CO_2-H_2O-NaCl and CO_2±CH_4 inclusions.The CO_2-H_2O-NaCl inclusions have T_(b,tot) of142 to 360℃,T_(m,CO2)of-66.0 to-56.6℃,T_(h,CO2) of-6.0 to 29.4℃(homogenized into liquid) and salinities of 2.4-16.5 wt%NaCl eqv.The carbonic inclusions have T_(m,Co2)of-61.5 to-57.3℃,and T_(h,CO2) of-27.0to 28.7℃.The aqueous inclusions(L-V) have T_(m,ice) of-9.8 to-1.3℃ and T_(h,tot) of 205 to 412℃.The P-T trapping conditions of CO_2-rich fluid inclusions(100-370 MPa,250-368℃) are comparable with the late- to post-regional metamorphism conditions.The CO_2-rich fluids,possibly derived from regional metamorphism,were involved in the reworking and metal enrichment of the primary ores.Based on these results,the Talate Pb-Zn deposit is classified as a VMS deposit modified by metamorphic fluids.The massive Pb-Zn ores with banded and breccia structures were developed in the early period of submarine volcanic sedimentary exhalation associated with an extensional subduction-related back-arc basin,and the quartz veins bearing polymetallic sulfides were formed in the late period of metamorphic hydrothermal superimposition related to the Permian-Triassic continental collision.  相似文献   

5.
Kuh-e Mond Field is a conventional heavy oil resource in the Zagros foreland Basin, Iran, produced from the fractured carbonates partially filled by dolomite, calcite, and anhydrite cement. Vitrinite reflectance data from carbonate reservoir suggest low-maturation levels corresponding to paleotemperatures as low as 50 °C. The observed maturation level (< 0.5% Rmax) does not exceed values for simple burial maturation based on the estimated burial history. Oil inclusions within fracture-filled calcite and dolomite cement indicate the key role of these fractures in oil migration.The fluid inclusion temperature profiles constructed from the available data revealed the occurrence of petroleum in dolomite, calcite, and anhydrite and characterize the distinct variations in the homogenization temperatures (Th). Fluid inclusions in syntectonic calcite veins homogenize between 22 °C and 90 °C, showing a salinity decrease from 22 to 18 eq. wt.% NaCl. Fluid inclusions in anhydrite homogenize at < 50 °C, showing that the pore fluids became warmer and more saline during burial. The Th range in the calcite-dolomite cement depicts a change in water composition; therefore, we infer these cements precipitated from petroleum-derived fluids. The microthermometry data on the petroleum fluid inclusions suggest that the reservoir was filled with heavy black oils and high-salinity waters and indicate that undersaturated oil was present in a hydrostatically pressured reservoir.The Th data do not support vertical migration of hot fluids througout the section, but extensive lateral fluid migration, most likely, drove tectonically dewatering in the south or west of the pool.  相似文献   

6.
Vein-type, structurally controlled Cu–Au mineralisation hosted by turbidites of late Silurian to earliest Devonian age, forms an important resource close to the eastern margin of the Cobar Basin. Here we report 103 new sulfur isotope analyses, together with homogenisation temperatures and salinity data for 545 primary two-phase fluid inclusions for the mineralised zones from the central area of the Cobar mining district. A range in δ34S values from 3.8 to 11.2‰ (average 7.9‰) is present. Sulfur is likely to have been derived from rock sulfur/sulfide in basin and basement rocks, but there may be an additional connate-derived component. Homogenisation temperatures (Th) for inclusion fluids trapped in quartz and minor calcite veins range from near 150°C to 397°C. Fluid inclusions are characterised by a low CO2 content and low, but variable salinities (2.1–9.1 wt% NaCl equivalent). Generations of inclusion fluids correspond to six paragenetic stages of vein quartz deposition and recrystallisation at the Chesney mine. Primary fluid inclusions in the first two stages were subjected to re-equilibration resulting from increased confining pressure. Their Th range (151–317°C) is considered a minimum for the temperature of these fluids. Sulfide and gold deposition at Chesney appears to be related to fluids of moderately high Th (range 270–397°C) associated with the final paragenetic stage. Th for the ore-related fluids may be close to the solvus of the H2O–NaCl–CO2 system and hence near trapping temperatures. Late-stage entry of a hot, moderately saline ore-forming fluid is implicated as the origin of the Cu–Au mineralisation. However, comparison with geochemical data for the vein-style Zn–Pb–Ag deposits at Cobar demonstrates that differences in metal content for individual zones cannot be attributed to major differences in fluid temperature or salinity. Rather, these differences are probably due to variations in source-rock reservoirs and structural pathways along which the ore-forming fluids moved.  相似文献   

7.
准噶尔东北缘前陆盆地构造演化与油气关系   总被引:16,自引:0,他引:16  
在挤压构造环境下,造山带与相邻的克拉通之间形成前陆盆地,其演化是由早期不稳定阶段向晚期稳定阶段不断发展。准噶尔盆地东北缘于克拉麦里山前形成典型的前陆盆地。前陆盆地及前缘陆隆的演化、迁移与克拉麦里深大断裂的走滑发展休戚相关。早石炭世前陆盆地位于陆南-滴西地区,晚石炭世迁至东部大井-石钱滩北部,二叠纪,受克拉麦里大断裂影响,开始向西迁移至五彩湾一带;晚二叠世晚期前陆盆地消失,进入统一拗陷时期。前陆盆地的发展演化过程中,早期与晚期的构造应力作用松弛期,为前陆盆地发育期,分别形成该地区滴水泉组与平地泉组两套烃源岩。其中滴水泉组形成的石炭纪原生油气藏,在后期的构造变动中,遭受了破坏,油气发生散失,而平地泉组最具现实意义。前缘陆隆的变迁,控制着油气的运移方向;前缘陆隆于演化过程中逐步被NE向构造改造,后期得到不断加强的古隆起之上的NE向构造是油气有利聚集带。  相似文献   

8.
Synthetic hydrocarbon and aqueous inclusions have been created in the laboratory batch reactors in order to mimic inclusion formation or re-equilibration in deeply buried reservoirs. Inclusions were synthesized in quartz and calcite using pure water and Mexican dead oil, or n-tetradecane (C14H30), at a temperature and pressure of 150 °C and 1 kbar. One-phase hydrocarbon inclusions are frequently observed at standard laboratory conditions leading to homogenization temperatures between 0 and 60 °C. UV epifluorescence of Mexican oil inclusions is not uniform; blue and green-yellow colored inclusions coexist; however, no clear evidence of variations in fluid chemistry were observed. Homogenization temperatures were recorded and the maxima of Th plotted on histograms are in good agreement with expected Th in a range of 6 °C. Broad histograms were reconstructed showing non-symmetrical Th distributions over a 20 °C temperature range centered on the expected Th. This histogram broadening is due to the fragility of the fluid inclusions that were created by re-filling of pre-existing microcavities. Such Th histograms are similar to Th histograms recorded on natural samples from deeply buried carbonate reservoirs. Th values lower than those expected were measured for hydrocarbon inclusions in quartz and calcite, and for aqueous inclusions in calcite. However, the results confirm the ability of fluid inclusions containing two immiscible fluids to lead to PT reconstructions, even in overpressured environments.  相似文献   

9.
The Polaris Zn–Pb Mine in Nunavut, Canada was one of the largest single Mississippi Valley-type ore deposits in the world. Over 20 Mt of sphalerite (ZnS) and galena (PbS) was hosted in brecciated carbonate rocks of the Upper Ordovician Thumb Mountain Formation. Three paragenetic stages are recognized: 1) early dolomite and marcasite; 2) main stage sulphide and dolomite; and 3) late calcite, marcasite and barite. Ore mineral textures range from discrete crystals to massive crystal aggregates and formed as replacements of the dolomite host rock or as fracture- and open space-filling mineralization. Zinc concentration is highest in the core of the deposit where botryoidal aggregates predominate, whereas iron is concentrated in the upper part. Observations of temperature and in situ sulphur isotope fractionation support a genetic model for the Polaris deposit in which thermochemical sulphate reduction occurred within the deposit, with locally generated hydrocarbons acting as a reducing agent. Information from the Polaris Mine indicates that hydrothermal alteration including dolomite, marcasite and barite; complex paragenesis with numerous ore textures; Th values > 100 °C associated with organic-rich strata; and a geochemical signature that includes in situ sulphur fractionation are effective predictors for determining which showings are prospective in the vast central Arctic Pb–Zn district.  相似文献   

10.
Fluid inclusions have been studied in minerals infilling fissures (quartz, calcite, fluorite, anhydrite) hosted by Carboniferous and Permian strata from wells in the central and eastern part of the North German Basin in order to decipher the fluid and gas migration related to basin tectonics. The microthermometric data and the results of laser Raman spectroscopy reveal compelling evidence for multiple events of fluid migration. The fluid systems evolved from a H2O–NaCl±KCl type during early stage of basin subsidence to a H2O–NaCl–CaCl2 type during further burial. Locally, fluid inclusions are enriched in K, Cs, Li, B, Rb and other cations indicating intensive fluid–rock interaction of the saline brines with Lower Permian volcanic rocks or sediments. Fluid migration through Carboniferous sediments was often accompanied by the migration of gases. Aqueous fluid inclusions in quartz from fissures in Carboniferous sedimentary rocks are commonly associated with co-genetically trapped CH4–CO2 inclusions. P–T conditions estimated, via isochore construction, yield pressure conditions between 620 and 1,650 bar and temperatures between 170 and 300°C during fluid entrapment. The migration of CH4-rich gases within the Carboniferous rocks can be related to the main stage of basin subsidence and stages of basin uplift. A different situation is recorded in fluid inclusions in fissure minerals hosted by Permian sandstones and carbonates: aqueous fluid inclusions in calcite, quartz, fluorite and anhydrite are always H2O–NaCl–CaCl2-rich and show homogenization temperatures between 120 and 180°C. Co-genetically trapped gas inclusions are generally less frequent. When present, they show variable N2–CH4 compositions but contain no CO2. P–T reconstructions indicate low-pressure conditions during fluid entrapment, always below 500 bar. The entrapment of N2–CH4 inclusions seems to be related to phases of tectonic uplift during the Upper Cretaceous. A potential source for nitrogen in the inclusions and reservoirs is Corg-rich Carboniferous shales with high nitrogen content. Intensive interaction of brines with Carboniferous or even older shales is proposed from fluid inclusion data (enrichment in Li, Ba, Pb, Zn, Mg) and sulfur isotopic compositions of abundant anhydrite from fissures. The mainly light δ34S values of the fissure anhydrites suggest that sulfate is either derived through oxidation and re-deposition of biogenic sulfur or through mixing of SO42−-rich formation waters with variable amounts of dissolved biogenic sulfide. An igneous source for nitrogen seems to be unlikely since these rocks have low total nitrogen content and, furthermore, even extremely altered volcanic rocks from the study area do not show a decrease in total nitrogen content.  相似文献   

11.
Staurolite–cordierite assemblages are common in mica schists of the Aston and Hospitalet gneiss domes of the central Axial Zone, Pyrenees (France, Andorra). Within a 200 m wide zone, staurolite, cordierite and andalusite porphyroblasts contain inclusion trails that preserve the same stage of development of a crenulation cleavage, strongly suggesting that all three phases are contemporaneous. Their syntectonic growth occurred during a short period at the beginning of the formation of the dominant schistosity (S2) of the domes. Staurolite and cordierite touching each other further indicates an equilibrium relationship. Whole‐rock analyses show that some staurolite–cordierite schists are depleted in K2O compared to post‐Archean shales (PAAS) and amphibolite facies pelites. Analysis of the st‐crd paragenesis in K‐poor schists without muscovite using KFMASH and MnNCKFMASH petrogentic grids, pseudosections and AFM compatibility diagrams predicts stable conditions at pressures of ~3.5 kbar at 575 °C. For metapelites with intermediate XMg values (0.7 >  XMg >0.48) a ‘muscovite‐out window’ exists from 550–650 °C at 3.5 kbar in the KFMASH system. Conventional thermobarometry (GB‐GASP, AvT‐AvP) and petrogenetic grids show an isobaric P–T path to peak temperatures of ~650 °C, supported by the presence of sillimanite‐K‐feldspar gneiss and migmatites. LP‐HT metamorphism in the Aston dome is related to early Carboniferous (c. 339 Ma) granitic intrusions into the dome core. As metamorphism is directly linked with the formation of the main S2 schistosity, the temporal relations demonstrated in this study conflict with previous studies which constrained LP‐HT metamorphism and the development of flat‐lying schistosity to the late Carboniferous (315–305 Ma) – at least in the eastern Axial Zone.  相似文献   

12.
The Dalradian and Ordovician–Silurian metamorphic basement rocks of southwest Scotland and Northern Ireland host a number of base‐metal sulphide‐bearing vein deposits associated with kilometre‐scale fracture systems. Fluid inclusion microthermometric analysis reveals two distinct fluid types are present at more than half of these deposits. The first is an H2O–CO2–salt fluid, which was probably derived from devolatilization reactions during Caledonian metamorphism. This stage of mineralization in Dalradian rocks was associated with base‐metal deposition and occurred at temperatures between 220 and 360°C and pressures of between 1.6 and 1.9 kbar. Caledonian mineralization in Ordovician–Silurian metamorphic rocks occurred at temperatures between 300 and 360°C and pressures between 0.6 and 1.9 kbar. A later, probably Carboniferous, stage of mineralization was associated with base‐metal sulphide deposition and involved a low to moderate temperature (Th 70 to 240°C), low to moderate salinity (0 to 20 wt% NaCl eq.), H2O–salt fluid. The presence of both fluids at many of the deposits shows that the fractures hosting the deposits acted as long‐term controls for fluid migration and the location of Caledonian metalliferous fluids as well as Carboniferous metalliferous fluids. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

13.
Secondary calcite, silica and minor amounts of fluorite deposited in fractures and cavities record the chemistry, temperatures, and timing of past fluid movement in the unsaturated zone at Yucca Mountain, Nevada, the proposed site of a high-level radioactive waste repository. The distribution and geochemistry of these deposits are consistent with low-temperature precipitation from meteoric waters that infiltrated at the surface and percolated down through the unsaturated zone. However, the discovery of fluid inclusions in calcite with homogenization temperatures (Th) up to ∼80 °C was construed by some scientists as strong evidence for hydrothermal deposition. This paper reports the results of investigations to test the hypothesis of hydrothermal deposition and to determine the temperature and timing of secondary mineral deposition. Mineral precipitation temperatures in the unsaturated zone are estimated from calcite- and fluorite-hosted fluid inclusions and calcite δ18O values, and depositional timing is constrained by the 207Pb/235U ages of chalcedony or opal in the deposits. Fluid inclusion Th from 50 samples of calcite and four samples of fluorite range from ∼35 to ∼90 °C. Calcite δ18O values range from ∼0 to ∼22‰ (SMOW) but most fall between 12 and 20‰. The highest Th and the lowest δ18O values are found in the older calcite. Calcite Th and δ18O values indicate that most calcite precipitated from water with δ18O values between −13 and −7‰, similar to modern meteoric waters.  相似文献   

14.
The last (decompression) stages of the metamorphic evolution can modify monazite microstructure and composition, making it difficult to link monazite dates with pressure and temperature conditions. Monazite and its breakdown products under fluid‐present conditions were studied in micaschist recovered from the cuttings of the Pontremoli1 well, Tuscany. Coronitic microstructures around monazite consist of concentric zones of apatite + Th‐silicate, allanite and epidote. The chemistry and microstructure of the monazite grains, which preserve a wide range of chemical dates ranging from Upper Carboniferous to Tertiary times, suggest that this mineral underwent a fluid‐mediated coupled dissolution–reprecipitation and crystallization processes. Consideration of the chemical zoning (major and selected trace elements) in garnet, its inclusion mineralogy (including xenotime), monazite breakdown products and phase diagram modelling allow the reaction history among accessory minerals to be linked with the reconstructed P–T evolution. The partial dissolution and replacement by rare earth element‐accessory minerals (apatite–allanite–epidote) occurred during a fluid‐present decompression at 510 ± 35 °C. These conditions represent the last stage of a metamorphic history consisting of a thermal metamorphic peak at 575 °C and 7 kbar, followed by the peak pressure stage occurring at 520 °C and 8 kbar. An anticlockwise P–T path or two clockwise P–T loops can fit the above P–T constraints. The former path may be related to a context of late Variscan strike‐slip‐dominated exhumation with minor Tertiary (Alpine‐related) reworking and fluid infiltration, while the latter requires an Oligocene–Miocene fluid‐present tectono‐metamorphic overprint on the Variscan paragenesis.  相似文献   

15.
巴颜喀拉古特提斯洋的消亡过程反映在巴颜喀拉残留盆地到边缘前陆盆地的转化的沉积记录中。鉴于这个前陆盆地与其向克拉通延伸的组成部分-四川盆地现为龙门山逆冲带所分隔,以致已往的沉积盆地研究多针其相割裂,本文将结合巴颜喀拉洋的消亡过程,把这两个盆地视为一个统一整体来加以分析,研究其演变历程。  相似文献   

16.
巴颜喀拉-川西边缘前陆盆地演化   总被引:4,自引:0,他引:4  
巴颜喀拉古特提斯洋的消亡过程反映在巴颜喀拉残留盆地到边缘前陆盆地转化的沉积记录中。鉴于这个前陆盆地与其向克拉通延伸的组成部分——四川盆地现为龙门山逆冲带所分隔,以致已往的沉积盆地研究多将其相割裂,本文将结合巴颜喀拉洋的消亡过程,把这两个盆地视为一个统一整体来加以分析,研究其演变历程。
晚二叠世,扬子板块向西楔入的同时,发生向北(昆仑-柴达木陆块)和向南(羌塘-昌都陆块)的双向俯冲消减。本文提出了巴颜喀拉洋的主体闭合,从而开始转化为边缘前陆盆地阶段的时间是在拉丁(T22)中晚期,而不是晚三叠世的见解。这点可由拉丁中晚期时,四川盆地川中广大地区形成与前陆挠曲沉降相对应的前陆隆起得以证明。此时期发生的前陆沉降,结束了被动边缘的饥饿(T1—T21)沉积盆地状态,充填了厚逾2,000—10,000m的类复理石沉积,并向扬子克拉通边缘超覆。随着逆冲带的由北向南推进,在诺利一瑞替期形成了滨海含煤磨拉石和陆相含煤磨拉石(逆冲褶皱带地区大多后期被剥蚀)。晚三叠世中晚期,逆冲带侵位推进到四川盆地西部边缘的龙门山地带,从而前陆盆地迁移入四川盆地内,进入陆内汇聚的后造山陆相磨拉石前陆盆地阶段。晚白垩世一早第三纪,因四川盆地晚期的抬升,这一前陆盆地便逐渐萎缩消亡。  相似文献   

17.
The Yangla Cu deposit is the largest Cu skarn deposit in the Jinshajiang tectonic belt. Based on the detailed observation of crosscutting relationships, three mineralization stages (i.e., pre-ore, ore and supergene) have been identified in the Yangla deposit. The pre-ore stage is dominated by prograde skarn. The ore stage is characterized by the precipitation of hydrous silicate minerals, Fe-oxides, Fe-Cu-Mo-sulfides, quartz and calcite, whose mineral assemblages were formed in the early and late sub-ore stages. The early sub-ore stage is marked by retrograde alteration with the deposition of hydrous silicate minerals (e.g., actinolite, epidote and chlorite), Fe-oxides, abundant Fe-Cu-Mo-sulfides, quartz and minor calcite. Whilst, the late sub-ore stage, associated with silicic and carbonate alteration, is represented by widespread thick quartz or calcite veins with disseminated pyrite, chalcopyrite, galena and sphalerite. We present new carbon-oxygen (C-O) isotopic compositions of the ore-hosting marble and hydrothermal calcite of this deposit. The hydrothermal calcite in the Yangla deposit was precipitated from both the early and late sub-ore stages. Calcite I from the early sub-ore stage is anhedral, and occurs as spot in the skarn or locally replaces the skarn minerals. Calcite II from the late sub-ore stage is distinguished by being coarse-grained, subhedral to euhedral and its occurrence in thick veins. Calcite I contains lower δ13CPDB (−7.0‰ to −5.0‰) and δ18OSMOW (7.2‰ to 12.7‰) than Calcite II (δ13CPDB = −4.5‰ to −2.3‰; δ18OSMOW = 10.7‰ to 19.4‰). In the δ13CPDB vs. δ18OSMOW diagram, the Calcite I and Calcite II data fall close to the igneous carbonatite field and between the fields of igneous carbonatite and marine carbonates, respectively. This suggests a dominantly magmatic origin for the early sub-ore fluids, and there might have been increasing carbonate wall rock involvement towards the late sub-ore stage. The ore-hosting marble (δ13CPDB = −4.8‰ to −0.3‰; δ18OSMOW = 10.2‰ to 23.9‰) also shows a positive δ13CPDB vs. δ18OSMOW correlation, which is interpreted to reflect the decreasing alteration intensity during the interactions between the hydrothermal fluids and ore-hosting carbonates. Simulated calculation suggests that both the Calcite I and Calcite II precipitated at 350 °C to 250 °C and 250 °C to 150 °C, respectively. We proposed that CO2 degassing and water/rock interactions were likely the two major processes that precipitated the calcite and led to the observed C-O isotopic features of the Yangla Cu deposit.  相似文献   

18.
三塘湖盆地处于西伯利亚板块南缘,早石炭世晚期,盆地褶皱基底形成;晚石炭世早期,总体处于碰撞期后伸展构造环境;晚石炭世晚期,洋壳消亡,断陷收缩与整体抬升,形成剥蚀不整合.早二叠世,进入陆内前陆盆地演化阶段;中二叠世,盆地进入推覆体前缘前陆盆地发育期;晚二叠世,构造褶皱回返,前陆盆地消失;三叠纪晚期至侏罗纪中期,进入统一坳...  相似文献   

19.
Carboniferous magmatism is one of the most important tectonothermal events in the Central Asian Orogenic Belt(CAOB). However, the final closure time of the Kalamaili Ocean between East Junggar and Harlik Mountain is still debated. Early Carboniferous(332 Ma) and late Carboniferous(307–298 Ma) granitic magmatism from Kalamaili fault zone have been recognized by LA-ICP-MS zircon U-Pb dating. They are both metaluminous highly fractionated I-type and belong to the high-K calc-alkaline. The granitoids for early Carboniferous have zircon ε_(Hf)(t) values of-5.1 to +8.5 with Hf model ages(T_(DM2)) of 1.78–0.83 Ga, suggesting a mixed magma source of juvenile material with old continental crust. Furthermore, those for late Carboniferous have much younger heterogeneous zircon ε_(Hf)(t) values(+5.1 to +13.6) with Hf model ages(T_(DM2)=1.03–0.45 Ga) that are also indicative of juvenile components with a small involvement of old continental crust. Based on whole-rock geochemical and zircon isotopic features, these high-K granitoids were derived from melting of heterogeneous crustal sources or through mixing of old continental crust with juvenile components and minor AFC(assimilation and fractional crystallization). The juvenile components probably originated from underplated basaltic magmas in response to asthenospheric upwelling. These Carboniferous highly fractionated granites in the Kalamaili fault zone were probably emplaced in a post-collisional extensional setting and suggested vertical continental crustal growth in the southern CAOB, which is the same or like most granitoids in CAOB. This study provides new evidence for determining the post-accretionary evolution of the southern CAOB. In combination with data from other granitoids in these two terranes, the Early Carboniferous Heiguniangshan pluton represents the initial record of post-collisional environment, suggesting that the final collision between the East Junggar and Harlik Mountain might have occurred before 332 Ma.  相似文献   

20.
Three-phase NaCl-H2O fluid inclusions featuring halite dissolution temperature(Tm)higher than vapor bubble disappearance temperature(Th) are commonly observed in porphyry copper/molybdenum deposits,skarn-type deposits and other magmatic- hydrothermal ore deposits.Based on |ΔV1|(the absolute value of volume variation of NaCl-H2O solution in a heating or cooling process of inclusions)= |ΔVs|(the absolute value of volume variation of the halite crystal in a heating or cooling process of inclusions) and on the principle of conservation of the mass of NaCl and H2O,we systematically calculated the densities of NaCl-H2O solutions in the solid-liquid two-phase field for temperatures(Th) from 0.1℃ to 800℃ and salinities from 26.3 wt%to 99.2wt%.Consequently for the first time we obtained the upper limit of the density of NaCI-H2O solutions in the solid-liquid twophase field for Tbm inclusions with variant salinities.The results indicate that for inclusions of the Thm type with the same Th,the higher the Tm or salinity is,the higher the density of the NaClsaturated solution will be.If a group of fluid inclusions were homogeneously trapped,they must have the same Th value and the same Tm or salinity value.This may be used to distinguish homogeneous,inhomogeneous,and multiple entrapments of fluid inclusions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号