首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A monolith representing 5420 14C yr of peat accumulation was collected from a blanket bog at Myrarnar, Faroe Islands. The maximum Hg concentration (498 ng/g at a depth of 4.5 cm) coincides with the maximum concentration of anthropogenic Pb (111 μg/g). Age dating of recent peat accumulation using 210Pb (CRS model) shows that the maxima in Hg and Pb concentrations occur at AD 1954 ± 2. These results, combined with the isotopic composition of Pb in that sample (206Pb/207Pb = 1.1720 ± 0.0017), suggest that coal burning was the dominant source of both elements. From the onset of peat accumulation (ca. 4286 BC) until AD 1385, the ratios Hg/Br and Hg/Se were constant (2.2 ± 0.5 × 10-4 and 8.5 ± 1.8 × 10-3, respectively). Since then, Hg/Br and Hg/Se values have increased, also reaching their maxima in AD 1954. The age date of the maximum concentrations of anthropogenic Hg and Pb in the Faroe Islands is consistent with a previous study of peat cores from Greenland and Denmark (dated using the atmospheric bomb pulse curve of 14C), which showed maximum concentrations in AD 1953.The average rate of atmospheric Hg accumulation from 1520 BC to AD 1385 was 1.27 ± 0.38 μg/m2/yr. The Br and Se concentrations and the background Hg/Br and Hg/Se ratios were used to calculate the average rate of natural Hg accumulation for the same period, 1.32 ± 0.36 μg/m2/yr and 1.34 ± 0.29 μg/m2/yr, respectively. These fluxes are similar to the preanthropogenic rates obtained using peat cores from Switzerland, southern Greenland, southern Ontario, Canada, and the northeastern United States. Episodic volcanic emissions and the continual supply of marine aerosols to the Faroe Islands, therefore, have not contributed significantly to the Hg inventory or the Hg accumulation rates, relative to these other areas. The maximum rate of Hg accumulation was 34 μg/m2/yr. The greatest fluxes of anthropogenic Hg accumulation calculated using Br and Se, respectively, were 26 and 31 μg/m2/yr. The rate of atmospheric Hg accumulation in 1998 (16 μg/m2/yr) is comparable to the values recently obtained by atmospheric transport modeling for Denmark, the Faroe Islands, and Greenland.  相似文献   

2.
3.
Mercury concentrations are clearly elevated in the surface and sub-surface layers of peat cores collected from a minerotrophic (“groundwater-fed”) fen in southern Greenland (GL) and an ombrotrophic (“rainwater-fed”) bog in Denmark (DK). Using 14C to precisely date samples since ca. AD 1950 using the “atmospheric bomb pulse,” the chronology of Hg accumulation in GL is remarkably similar to the bog in DK where Hg was supplied only by atmospheric deposition: this suggests not only that Hg has been supplied to the surface layers of the minerotrophic core (GL) primarily by atmospheric inputs, but also that the peat cores have preserved a consistent record of the changing rates of atmospheric Hg accumulation. The lowest Hg fluxes in the GL core (0.3 to 0.5 μg/m2/yr) were found in peats dating from AD 550 to AD 975, compared to the maximum of 164 μg/m2/yr in AD 1953. Atmospheric Hg accumulation rates have since declined, with the value for 1995 (14 μg/m2/yr) comparable to the value for 1995 obtained by published studies of atmospheric transport modelling (12 μg/m2/yr).The greatest rates of atmospheric Hg accumulation in the DK core are also found in the sample dating from AD 1953 and are comparable in magnitude (184 μg/m2/yr) to the GL core; again, the fluxes have since gone into strong decline. The accumulation rates recorded by the peat core for AD 1994 (14 μg/m2/yr) are also comparable to the value for 1995 obtained by atmospheric transport modelling (18 μg/m2/yr). Comparing the Pb/Ti and As/Ti ratios of the DK samples with the corresponding crustal ratios (or “natural background values” for preanthropogenic peat) shows that the samples dating from 1953 also contain the maximum concentration of “excess” Pb and As. The synchroneity of the enrichments of all three elements (Hg, Pb, and As) suggests a common source, with coal-burning the most likely candidate. Independent support for this interpretation was obtained from the Pb isotope data (206Pb/207Pb = 1.1481 ± 0.0002 in the leached fraction and 1.1505 ± 0.0002 in the residual fraction) which is too radiogenic to be explained in terms of gasoline lead alone, but compares well with values for U.K. coals. In contrast, the lowest values for 206Pb/207Pb in the DK profile (1.1370 ± 0.0003 in the leached fraction and 1.1408 ± 0.0003 in the residual fraction) are found in the sample dating from AD 1979: this shows that the maximum contribution of leaded gasoline occurred approximately 25 yr after the zenith in total anthropogenic Pb deposition.  相似文献   

4.
From 1992 to 1994, trace metal concentrations of bog water, Sphagnum mosses and peat cores of the bog “Georgenfelder Hochmoor” at Zinnwald-Georgenfeld in the Eastern Ore Mountains (Germany) were investigated. A sampling campaign in September 2019 allows the comparison of the older measurements with today's trace metal concentrations. No changes were found in the bog waters, while the trace metal concentrations of the Sphagnum mosses have decreased significantly. Due to the low growth rate of the peat and despite certain heterogeneity between the peat cores, the investigated elemental data for the peat sampled in the 1990s and in 2019 are in the same concentration range. The maximum concentrations are measured in the upper samples of all peat cores for the analysed elements (except sulphur). Compared to upper crustal data, a different behaviour of the elements is observed: Cr, Sc, Ti, and V, rare earth elements show crustal ratios, while Al and Si are also influenced by crust-air fractionation. Cd, Cu, Ni, Pb, and Zn are additionally enriched by anthropogenic atmospheric inputs from industry and transport. These results confirm the assumption that peat cores record past atmospheric deposition.  相似文献   

5.
The results of investigations (SEM/EDS and AAS) of a peat deposit, spanning 13,000 years of peat accumulation, are shown. The peat deposit is located in a region of shallow occurrence of Zn–Pb ores, near Tarnowskie Góry town, within the Cracow–Silesia district (southern Poland). Exploitation of lead, silver and iron during the medieval times (Twelfth and thirteenth century) was confirmed by historical documents whereas there are no unambiguous data showing that there was metal mining during the Romanian or earlier times in the region. The peat deposit is located within the influence of atmospheric Pb and Zn emission from a nearby Zn–Pb smelter. Two vertical peat profiles were investigated (120 and 140 cm depth of profile) showing variable concentrations of Zn up to 713 mg kg?1, Pb up to 317 mg kg?1, Cd up to 13 mg kg?1 and Tl up to 31 mg kg?1. The highest concentrations were recorded for the uppermost peat layers. SEM and EDS investigations revealed the occurrence of metalbearing, submicroscopic mineral components: Fe, Mn, Ti and Zn oxides and Zn and Pb carbonates. The top layer of the deposit contained Zn, Pb and Cd sulphides. The occurrence of aggregates of Au–Ag, Cu–Zn and Au–Ag–Cu alloys can be possibly related to pre-historical mining and smelting or be explained by geochemical transformations. The preservation of carbonates and oxides in the peat is discussed, indicating a generally neutral to alkaline peat water chemistry and maintenance of an oxidized environment in the fen.  相似文献   

6.
Associated with the rapid urbanization and industrialization, most of the urban parks and recreational areas in Shanghai are built close to major roads or industrial areas, where they are subject to many potential pollution source, including automobile exhaust and factory emissions. Urban dusts, containing many toxic heavy metals such as Pb, Cr, Cd, Hg and As, are one of main contributors for environmental pollution. In this study, 261 dust samples were collected from two different localities (streets and parks) in the urban area of Shanghai, China. Pb and Cr concentrations of all samples were determined by atomic adsorption spectrophotometer analyzer, and Cd, As and Hg concentrations in 74 samples by atomic fluorescence spectroscopy. The mean concentrations of Pb, Cr, Cd, As and Hg are 287, 157, 1.24, 8.73 and 0.16 mg kg−1, respectively. Each heavy metal shows a wide range of concentration values. In comparison with heavy metal background values of soil in Shanghai, urban dusts have elevated metal concentrations as a whole, except those of As. The concentrations of Pb, Cr, Cd, As and Hg are 11.3, 2.1, 10.3, 0.997, 1.7 times of the soil background values, respectively. Compared with the global mean concentrations, Cr concentration in urban dusts is slightly higher. Pb, Cr and Hg show normal distribution after logarithmic transformation. Pb, Cr, Cd, As and Hg have second-order variation trends of the spatial distribution. The spatial distribution features of five toxic heavy metals, in general, illustrate relatively high levels within the regions of the inner-city ring highway and southwestern Shanghai. Cr and Cd are higher in Baoshan industrial park and the shipbuilding industries regions. The order of environmental risk is Pb > Cd > Cr > Hg > As. Pb and Cd have the highest risk for environment pollution and human health among the five metals. The pollutant sources of toxic heavy metals in Shanghai urban dusts are preliminarily concluded as follows: As may have mainly a natural source. Burning of coal has become the main source of Hg pollution. Pb, Cr and Cd have three sources, traffic, building construction, and weathering corrosion of building materials.  相似文献   

7.
冀东平原土壤中重金属元素的地球化学特征   总被引:4,自引:3,他引:1  
通过分析冀东平原土壤中有害重金属元素Pb、Cr、Cd、As、Hg的含量变化特征,显示有害重金属元素Hg、Cd、Pb在冀东平原表层土壤的富集已较为明显,Cr、As也形成局部的异常,原有的地球化学特征发生较大变化。初步认为表层土壤中重金属元素的高含量与当地地质背景和人为活动有关,局部异常成因需要进一步研究。研究区地积累指数污染评价结果表明:以全国土壤背景值计算,重金属未造成污染;以研究区背景值计算,Hg表现为轻度—中度污染状况,As、Cd、Cr、Pb未造成污染。  相似文献   

8.
The concentrations of heavy metals (Cr, Co, Ni, Cu, Zn, Pb, Cd, As, Hg, and Fe) in sediments of the Yangtze River, China, were investigated to evaluate levels of contamination and their potential sources. The lowest heavy metal concentrations were found in the source regions of the river basin. Relatively high concentrations of metals, except Cr, were found in the Sichuan Basin, and the highest concentrations were in the Xiangjiang and Shun’anhe rivers. All concentrations, except Ni, were higher than global averages. Principal component analysis and hierarchical cluster analysis showed that Zn, Pb, As, Hg, and Cd were derived mainly from the exploitation of various multi-metal minerals, industrial wastewater, and domestic sewage. Cu, Co, and Fe were derived mainly from natural weathering (erosion). Cr and Ni were derived mainly from agricultural activities, municipal and industrial wastewater. Sediment pollution was assessed using the geoaccumulation index (I geo) and enrichment factor (EF). Among the ten heavy metals assessed, Cd and Pb had the highest I geo values, followed by Cu, As, Zn, and Hg. The I geo values of Fe, Cr, Co, and Ni were <0 in all sediments. EF provided similar information to I geo: no enrichment was found for Cr, Co, and Ni. Cu, Zn, As, and Hg were relatively enriched at some sites while Cd and Pb showed significant enrichment.  相似文献   

9.
Concentrations and isotopic compositions of Hg and Pb were measured in a sediment core collected from Lake Ballinger, near Seattle, Washington, USA. Lake Ballinger has been affected by input of metal contaminants emitted from the Tacoma smelter, which operated from 1887 to 1986 and was located about 53 km south of the lake. Concentrations and loadings of Hg and Pb in Lake Ballinger increased by as much as three orders of magnitude during the period of smelting as compared to the pre-smelting period. Concentrations and loadings of Hg and Pb then decreased by about 55% and 75%, respectively, after smelting ended. Isotopic compositions of Hg changed considerably during the period of smelting (δ202Hg = −2.29‰ to −0.38‰, mean −1.23‰, n = 9) compared to the pre-smelting period (δ202Hg = −2.91‰ to −2.50‰, mean −2.75‰, n = 4). Variations were also observed in 206Pb/207Pb and 208Pb/207Pb isotopic compositions during these periods. Data for Δ199Hg and Δ201Hg indicate mass independent fractionation (MIF) of Hg isotopes in Lake Ballinger sediment during the smelting and post-smelting period and suggest MIF in the ore smelted, during the smelting process, or chemical modification at some point in the past. Negative values for Δ199Hg and Δ201Hg for the pre-smelting period are similar to those previously reported for soil, peat, and lichen, likely suggesting some component of atmospheric Hg. Variations in the concentrations and isotopic compositions of Hg and Pb were useful in tracing contaminant sources and the understanding of the depositional history of sedimentation in Lake Ballinger.  相似文献   

10.
In this study, the retention of Ca and other metals (Pb, Cu, Fe, Zn and Mn) in the Oostriku peat bog (central Estonia) was modelled. Equilibrium sorption of metals on amorphous ferric oxyhydroxide and solid organic matter was simulated at steady-state. Ferric oxyhydroxide formation and possible precipitation of other metals (Mn, Pb and Cu) in the peat was also assessed. Evolution of metal sorption fronts along a peat profile over time was simulated with a dynamic model to test if metal–metal competition effects could cause Pb and Cu to sorb at higher amounts in the uppermost peat than in the lower peat, as observed in the field. The predicted sorbed amounts of metals were compared with those previously observed in the peat. In general, good agreement between both batch and dynamic model results and the independent observations at the Oostriku peat site was obtained. This suggests that the relatively simple model approach employed here might be generally useful for assessing other peat sites and similar applications.  相似文献   

11.
The objective of this study was to conduct an inventory of heavy metal concentrations (Cd, Cr, Cu, Hg, Ni, Pb and Zn) in the soils of La Réunion. 39 sampling sites were selected to cover the distribution of soils of the island. The results show that soils of La Réunion are rich in heavy metals: most of them exceed the French standard values beyond which sewage sludge spreading is not authorized. To identify the sources of heavy metals, we used: (i) the relationship between the heavy metal content in soils and the origin of the volcanic parent material; (ii) the comparison of heavy metal content between cultivated and uncultivated soils; and (iii) the heavy metal distribution in soil profiles. Cd and Pb evolution in soil profiles indicate an impact of human activities. High Hg concentrations in soils can be explained by the volcanic activity of the island. For Cr, Cu, Ni and Zn, we demonstrate that high concentrations in soils are mainly determined by the natural pedo-geochemical background.  相似文献   

12.
In order to study the heavy metal accumulation and distribution in the roots, stems, and leaves of Spartina alterniflora, we collected S. alterniflora samples and the associated sediments along three transects at the Andong tidal flat, Hangzhou Bay. Co, Ni, Cd, Pb, Cu, and Zn were mainly accumulated in the aerial parts (stems and leaves) of the plants, and their distributions depended on their mobility and their roles during the metabolism processes of S. alterniflora. The concentrations of Cu, Zn, Cd, Hg, and Pb were significantly enhanced with the increasing of heavy metal concentrations in the sediments, while those of Co and Ni remained relatively constant. Bioaccumulation factors results showed that the serious heavy metal contamination in the sediments from the transect A may overwhelm the accumulation capability of the plants. In addition, the physicochemical properties of the sediments and the pore water therein also play a role in the heavy metal concentrations and accumulations in the plants, because they can influence the behaviors and bioavailabilities of heavy metals during nutrition and bioaccumulation processes of the plants. The sediments with vegetation did not show significantly decreased heavy metal concentration with respect to the unvegetated sediments, although the plants did absorb heavy metals from the sediments. Principal component analysis and correlation analyses indicated that Co–Ni, Cu–Cd–Hg behaved coherently during accumulation, which may be ascribed to their similar accumulation mechanisms. This work provided essential information on the heavy metal accumulation by plants in a tidal flat, which will be useful for the environmental control through phytoremediation at estuaries.  相似文献   

13.
乔冈  徐友宁  陈华清  张江华  刘瑞平 《地质通报》2015,34(11):2031-2036
以某金矿区浅层地下水为研究对象,通过分析112件浅层地下水样的Hg、Pb、Cd、Cr~(6+)、As、Cu、Zn、CN~-等重金属元素及氰化物的含量特征,初步查明了这8种元素在地下水中的赋存规律。在此基础上,分别利用单项、综合污染指数评价方法对浅层地下水环境质量进行了重金属及氰化物污染评价。结果表明,浅层地下水中除背景元素Cr~(6+)局部区域超标外,受矿业选冶活动影响,双桥河流域中下游段局部区域Hg、Pb、CN~-等元素超标,该结论对浅层地下水资源污染防治具有重要意义。  相似文献   

14.
Ombrotrophic bogs are useful records of the impact of historical human activity on heavy metal contamination. Several studies concerning the trace element record (mainly Pb and Hg) in these particular environments have been carried out in recent years, although the role of humic substances has often not been considered. In particular, of the components of peat organic matter, fulvic acids and low molecular weight compounds are generally responsible for the mobility of trace elements through the profile, while humic acids (HAs) are involved in the formation of more stable organo-mineral complexes. In order to study the parallel distribution of As, Cr, Ni, Rb, Ti and Zr in bulk peat and the corresponding HAs, a peat core (10 × 10 × 81 cm) was collected from Etang de la Gruère (Switzerland) and cut into 27 slices of 3 cm. The samples were freeze-dried and milled very finely, and HAs extracted from each sample. Both peat and HAs were analyzed using an energy-dispersive miniprobe X-ray fluorescence multielement analyser (EMMA-XRF). Of the considered elements, Ni showed a great affinity for the humic acid component, while Cr was concentrated mainly into humic material from the deeper layers. On the other hand, Ti, Zr and Rb seemed to reflect the variation in mineral material both in peat and HA samples, while the As content of both materials reflected the environmental conditions characterizing the bog.  相似文献   

15.
小秦岭金矿区土壤重金属生物有效性与影响因素   总被引:1,自引:0,他引:1  
张开军  魏迎春  徐友宁 《地质通报》2014,33(8):1182-1187
土壤中重金属生物有效性与影响因素分析是土壤重金属风险管控的关键问题。通过实地调查、现场采样、实验测试、综合分析等方法,分析了研究区100km2内Hg、Pb、Cd、Cr、As、Cu、Zn七种重金属元素的有效态含量特征,研究了这些重金属有效态含量之间、有效态含量与全量、有效态与土壤pH、有机质含量、粒度等基本理化参数之间的相关性,分析了重金属污染来源。结果表明,土壤中Hg、Pb、Cd、Cr、As、Cu、Zn七种重金属有效态的平均含量分别为2.29mg/kg、594mg/kg、2.52mg/kg、6.30mg/kg、2.16mg/kg、48.14mg/kg、50.21mg/kg,其变异系数大小为:HgPbCuZnCdAsCr。Hg的变异系数最大,是由于金矿选矿活动采用混汞法提金排放的尾矿堆(库)分布不均。Hg、Pb、Cd、Cu、Zn有效态量与全量之间均存在显著的相关性;土壤有机质与重金属有效态之间存在显著的相关性;土壤pH与有效态重金属之间存在显著的负相关性;土壤粒度对重金属有效态的累积影响不明显。  相似文献   

16.
A 24-cm long sediment core from an oxic fjord basin in Ranafjord, Northern Norway, was sliced in 2 cm sections and analysed for As, Co, Cu, Ni, Hg, Pb, Zn, Mn, Fe, ignition loss and Pb-210. Partitioning of metals between silicate, non-silicate and non-detrital phases was assessed by leaching experiments, in an attempt to understand the mechanisms of surface metal enrichment in sediments. Relative to metal concentrations in sediments deposited in the 19th century, metals in near surface sediments were enriched in the following order: Pb > Mn > Hg > Zn > Cu > As > Fe. Cobalt and Ni showed no enrichment. The non-detrital fraction of Cu, Pb, Mn and Zn was significantly higher in the upper 10 cm than at greater depth in the core. This corresponds to sediments deposited since 1900, when mining activities started in the area. The enrichment of Cu, Pb and Zn is assumed to be mainly a result of mining, while Mn is apparently enriched in the surface due to migration of dissolved Mn and precipitation in the oxic surface layer. Elevated concentrations of As and Fe in the upper 4 cm are presumably due to discharges from a coke plant and an iron works respectively. The excess Hg present in the near surface sediments is tightly bound, either in coal particles or ore dust introduced by local industry, or via long distance transport of atmospheric particles. Calculations of metal flux to the sediments indicate an anthropogenic flux of Zn equal to its natural flux, while the flux of Pb shows a threefold increase above natural input.  相似文献   

17.
 Heavy metal and metalloid concentrations within stream-estuary sediments (<180-μm size fraction) in north-eastern New South Wales largely represent natural background values. However, element concentrations (Ag, As, Cd, Cr, Cu, Hg, Ni, Pb, Sb, Zn) of Hunter River sediments within the heavily industrialized and urbanized Newcastle region exceed upstream background values by up to one order of magnitude. High element concentrations have been found within sediments of the Newcastle Harbour and Throsby Creek which drains into urbanized and light industry areas. Observed Pb enrichments and low 208Pb/204Pb, 207Pb/204Pb and 206Pb/204Pb ratios are likely caused by atmospheric deposition of Pb additives from petrol and subsequent Pb transport by road run-off waters into the local drainage system. Sediments of the Richmond River and lower Manning, Macleay, Clarence, Brunswick and Tweed River generally display no evidence for anthropogenic heavy metal and metalloid contamination (Ag, As, Cd, Cr, Cu, Hg, Ni, Pb, Sb, Zn). However, the rivers and their tributaries possess localized sedimentary traps with elevated heavy metal concentrations (Cu, Pb, Zn). Lead isotope data indicate that anthropogenic Pb provides a detectable contribution to investigated sediments. Such contributions are evident at sample sites close to sewage outlets and in the vicinity of the Pacific Highway. In addition, As concentrations of Richmond River sediments gradually increase downstream. This geochemical trend may be the result of As mobilization from numerous cattle-dip sites within the region into the drainage system and subsequent accumulation of As in downstream river and estuary sediments. Received: 5 September 1997 · Accepted: 4 November 1997  相似文献   

18.
The origin and distribution of twelve potentially Hazardous Air Pollutants (HAPs; As, Be, Cd, Cr, Co, Hg, Mn, Ni, Pb, Sb, Se, and U) identified in the 1990 Clean Air Act Amendments were examined in relation to the maceral composition of the A1 bed (Paleocene, Calvert Bluff Formation, Wilcox Group) of the Calvert mine in east-central Texas. The 3.2 m-thick A1 bed was divided into nine incremental channel samples (7 lignite samples and 2 shaley coal samples) on the basis of megascopic characteristics. Results indicate that As, Cd, Cr, Ni, Pb, Sb, and U are strongly correlated with ash yield and are enriched in the shaley coal samples. We infer that these elements are associated with inorganic constituents in the coal bed and may be derived from a penecontemporaneous stream channel located several kilometers southeast of the mining block. Of the HAPs elements studied, Mn and Hg are the most poorly correlated to ash yield. We infer an organic association for Mn; Hg may be associated with pyrite. The rest of the trace elements (Be, Co, and Se) are weakly correlated with ash yield. Further analytical work is necessary to determine the mode of occurrence for these elements. Overall, concentrations of the HAPs elements are generally similar to or less than those reported in previous studies of lignites of the Wilcox Group, east-central region, Texas. Petrographic analysis indicates the following ranges in composition for the seven lignite samples: liptinites (5–8%), huminites (88–95%), and inertinites (trace amounts to 7%). Samples from the middle portion of the A1 bed contain abundant crypto-eugelinite compared to the rest of the samples; this relationship suggests that the degradation of plant material was an important process during the development of the peat mire. With the exception of Hg and Mn, relatively low levels of the HAPs elements studied are found in the samples containing abundant crypto-eugelinite. We infer that the peat-forming environment for this portion of the coal bed was very wet with minimal detrital input. Relatively high concentrations of crypto-humotelinite were found in samples from the top and base of the coal bed. The presence of abundant crypto-humotefinite in this part of the coal bed suggests the accumulation of wood-rich peat under conditions conducive to a high degree of tissue preservation in the peat mire. Although several of the trace elements (Be, Co, Ni, and Sb) exhibit enrichment in these samples, they are not necessarily chemically associated with humotelinite. We infer that these elements, with the exception of Be, are possibly associated with deposition of the roof and floor rock of the coal bed; however, further analytical work would be necessary to confirm this hypothesis. Beryllium may have an organic origin.  相似文献   

19.
Over the last few years there has been growing concern over the mobilisation of anthropogenically derived, atmospherically deposited Pb from upland blanket peat soils to receiving surface waters. The near-surface layer of blanket peat soils of the Peak District, southern Pennines, UK, is severely contaminated with high concentrations of Pb. Erosion of peat soils in this upland area may be releasing large quantities of previously deposited Pb into the fluvial system. Samples of fluvial sediments (suspended, floodplain, streamside fan, trash-line and channel bed) were collected from a severely eroding blanket peat catchment in the Peak District in order to investigate Pb contamination of fluvial sediments, to determine the mechanism for fluvial Pb transport and to determine if erosion of contaminated peat soils in the catchment is releasing Pb into the fluvial system. Concentrations of Pb associated with fluvial sediments are considerably higher than those in the catchment geology, but not as high as those in peat soils in the catchment. Intra- and inter-storm variability in the Pb content of suspended sediments can be explained by differences in organic matter content of these sediments and differences in erosion processes operating within the catchment. High Pb concentrations are associated with suspended sediments that have a high organic matter content. The results of this study suggest that organic matter is the principle vector for sediment-associated Pb in the fluvial system. Erosion of contaminated peat soils in the Peak District is releasing Pb into the fluvial system. The extent to which this is a problem in other peatland environments is an area requiring further research.  相似文献   

20.
The potential for soil heavy metal contamination in high risk areas is a crucial issue that will impact the environment. Soil samples were collected in 2003 and 2007 to investigate heavy metal contamination characteristics and pollution changes in the industrialized district of Baoshan (Shanghai, China). Both multi-statistic and geostatistic approaches were used and proved to be useful in the interpretation of the analytical results. The potential for soil contamination in the high risk areas presents a crucial issue that will impact the environment. The results indicate that soil in the Baoshan District is alkaline. Additionally, the accumulation of heavy metals in the soil increased between 2003 and 2007. The study results indicated that the concentration of the metals lead (Pb), chromium (Cr), cadmium(Cd), mercury (Hg), arsenic (As), zinc (Zn) and copper (Cu) in the soil has great discrepancy, especially of Pb and Cr. The concentrations of Pb and Cr in the soil show significant difference between two observed years (p?<?0.05). The concentration of most of these metals was higher in 2007 than 2003. Only the concentrations of Cd and As were not higher in 2007. Traffic and industrial contaminants were the likely source of Pb and As; Hg largely came from agricultural contamination, household garbage and industrial contamination; Cd, Cr, Zn and Cu mainly originated from industrial activities. Multivariate statistical analyses showed that human activities mainly contributed to heavy metal contamination. Spatial distribution confirmed this by showing that areas with the highest metal concentrations occurred where there were high levels of industrial activity and traffic. Potential ecological risk assessment results showed that high risk zones were highly correlated with spatial analysis. The study estimated that in 2007, 85.2?% of the district could be categorized as high risk, which is 77.4 times more than that in 2003.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号